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Manual Handbook 

 

Strength of materials Laboratory Brief Technical and Lecture Notes 

Stress Terms 

Stress is defined as force per unit area. It has the same units as pressure, and in fact pressure is 

one special variety of stress. However, stress is a much more complex quantity than pressure 

because it varies both with direction and with the surface it acts on. 

Compression  
Stress that acts to shorten an object.  

Tension  
Stress that acts to lengthen an object.  

Normal Stress  
Stress that acts perpendicular to a surface. Can be either compressional or tensional.  

Shear  
Stress that acts parallel to a surface. It can cause one object to slide over another. It also 

tends to deform originally rectangular objects into parallelograms. The most general 

definition is that shear acts to change the angles in an object.  

Hydrostatic  
Stress (usually compressional) that is uniform in all directions. A scuba diver experiences 

hydrostatic stress. Stress in the earth is nearly hydrostatic.  

 

Directed Stress  
Stress that varies with direction. Stress under a stone slab is directed; there is a force in 

one direction but no counteracting forces perpendicular to it. This is why a person under a 

thick slab gets squashed but a scuba diver under the same pressure doesn't. The scuba 

diver feels the same force in all directions.  

We only see the results of stress as it deforms materials. Even if we were to use a strain gauge to 

measure in-situ stress in the materials, we would not measure the stress itself. We would measure 

the deformation of the strain gauge (that's why it's called a "strain gauge") and use that to infer 

the stress. 

Strain Terms 

Strain is defined as the amount of deformation an object experiences compared to its original size 

and shape. For example, if a block 10 cm on a side is deformed so that it becomes 9 cm long, the 

strain is (10-9)/10 or 0.1 (sometimes expressed in percent, in this case 10 percent.) Note that 

strain is dimensionless.       
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ε= (δL)/L 

Longitudinal or Linear Strain  
Strain that changes the length of a line without changing its direction. Can be either 

compressional or tensional.  

Compression  
Longitudinal strain that shortens an object.  

Tension  
Longitudinal strain that lengthens an object.  

Shear  
Strain that changes the angles of an object. Shear causes lines to rotate.  

Infinitesimal Strain  
Strain that is tiny, a few percent or less. Allows a number of useful mathematical 

simplifications and approximations.  

Finite Strain  
Strain larger than a few percent. Requires a more complicated mathematical treatment 

than infinitesimal strain.  

Homogeneous Strain  
Uniform strain. Straight lines in the original object remain straight. Parallel lines remain 

parallel. Circles deform to ellipses. Note that this definition rules out folding, since an 

originally straight layer has to remain straight.  

Inhomogeneous Strain  
How real geology behaves. Deformation varies from place to place. Lines may bend and 

do not necessarily remain parallel.  

Terms for Behavior of Materials 

Elastic  
Material deforms under stress but returns to its original size and shape when the stress is 

released. There is no permanent deformation. Some elastic strain, like in a rubber band, 

can be large, but in rocks it is usually small enough to be considered infinitesimal.  

Brittle  
Material deforms by fracturing. Glass is brittle. Rocks are typically brittle at low 

temperatures and pressures.  

Ductile  
Material deforms without breaking. Metals are ductile. Many materials show both types 

of behavior. They may deform in a ductile manner if deformed slowly, but fracture if 

deformed too quickly or too much. Rocks are typically ductile at high temperatures or 

pressures.  

Viscous  
Materials that deform steadily under stress. Purely viscous materials like liquids deform 

under even the smallest stress. Rocks may behave like viscous materials under high 

temperature and pressure.  

Plastic  
Material does not flow until a threshold stress has been exceeded.  

Viscoelastic  
Combines elastic and viscous behavior.  

 

Beams  
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A beam is a structural member which carries loads. These loads are most often perpendicular to 

its longitudinal axis, but they can be of any geometry. A beam supporting any load develops 

internal stresses to resist applied loads. These internal stresses are bending stresses, shearing 

stresses, and normal stresses.  

Beam types are determined by method of support, not by method of loading. Below are three 

types of beams that will be investigated in this course: 

 

1. Simple Support Beam:    2. Cantilever Beam:  

3. Indeterminate Statically Beam Support  

 

The first two types are statically determinate, 

meaning that the reactions, shears and moments can be found by the laws of statics alone. 

Continuous beams are statically indeterminate. The internal forces of these beams cannot 

be found using the laws of statics alone. Early structures were designed to be statically 

determinate because simple analytical methods for the accurate structural analysis of 

indeterminate structures were not developed until the first part of this century. A number 

of formulas have been derived to simplify analysis of indeterminate beams. 

 

 

Beam Loading Conditions: 

 

 

The two beam loading conditions that either occur separately, or in some combination, are: 

A. Concentrated Load 

B. Distributed Laod 
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CONCENTRATED 
Either a force or a moment can be applied as a concentrated load. Both are applied at a single 

point along the axis of a beam. These loads are shown as a "jump" in the shear or moment 

diagrams. The point of application for such a load is indicated in the diagram above. Note that 

this is NOT a hinge! It is a point of application. This could be point at which a railing is attached 

to a bridge, or a lamppost on the same.  

DISTRIBUTED 
Distributed loads can be uniformly or non-uniformly distributed. Both types are commonly found 

on all kinds of structures. Distributed loads are shown as an angle or curve in the shear or 

moment diagram. A uniformly distributed load can evolve into a one with unevenly uniformly 

distributed load (snow melting to ice at the edge of a roof), but are normally assumed to act as 

given. These loads are often replaced by a singular resultant force in order to simplify the 

structural analysis. 

Introduction Beam Design:  

Normally a beam is analyzed to obtain the maximum stress and this is compared to the 

material strength to determine the design safety margin.  It is also normally required to 

calculate the deflection on the beam under the maximum expected load.  The 

determination of the maximum stress results from producing the shear and bending 

moment diagrams.   To facilitate this work the first stage is normally to determine all of 

the external loads. 

Nomenclature 

e = strain  

σ = stress (N/m2) 

E = Young's Modulus = σ /e (N/m2) 

y = distance of surface from neutral surface (m). 

R = Radius of neutral axis (m). 

I = Moment of Inertia (m4 - more normally cm4)  

Z = section modulus = I/ymax (m3 - more normally cm3) 

M = Moment (Nm) 

w = Distributed load on beam (kg/m) or (N/m as force units)  

W = total load on beam (kg ) or (N as force units) 

F= Concentrated force on beam (N) 

S= Shear Force on Section (N) 

L = length of beam (m) 

x = distance along beam (m) 
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Calculation of external forces 

To allow determination of all of the external loads a free-body diagram is 

construction with all of the loads and supports replaced by their equivalent 

forces.  A typical free-body diagram is shown below. 

 

The unknown forces (generally the support reactions) are then determined using the 

equations for plane static equilibrium.  

 

For example considering the simple beam above the reaction R2 is determined by 

Summing the moments about R1 to zero  

R2. L - W.a = 0 Therefore R2 = W.a / L 

R1 is determined by summing the vertical forces to 0  

W - R1 - R2 = 0 Therefore R1 = W - R2 

 
Shear and Bending Moment Diagram 

The shear force diagram indicates the shear force withstood by the beam section 

along the length of the beam. 

The bending moment diagram indicates the bending moment withstood by the beam 

section along the length of the beam. 

It is normal practice to produce a free body diagram with the shear diagram and the 

bending moment diagram position below 

 

For simply supported beams the reactions are generally simple forces.  When the 

beam is built-in the free body diagram will show the relevant support point as a 

reaction force and a reaction moment.... 

Sign Convention 
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The sign convention used for shear force diagrams and bending moments is only 

important in that it should be used consistently throughout a project.  The sign 

convention used on this page is as below. 

 

Typical Diagrams 

A shear force diagram is simply constructed by moving a section along the beam from 

(say) the left origin and summing the forces to the left of the section.   The equilibrium 

condition states that the forces on either side of a section balance and therefore the 

resisting shear force of the section is obtained by this simple operation 

 

The bending moment diagram is obtained in the same way except that the moment is the 

sum of the product of each force and its distance(x) from the section.  Distributed loads 

are calculated buy summing the product of the total force (to the left of the section) and 

the distance(x) of the centroid of the distributed load. 

 

The sketches below show simply supported beams with on concentrated force. 

 

The sketches below show Cantilever beams with three different load combinations. 
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Note: The force shown if based on loads (weights) would need to be converted to 

force units i.e. 50kg = 50x9,81(g) = 490 N. 

Shear Force Moment Relationship 

Consider a short length of a beam under a distributed load separated by a distance 

δx.  

 

The bending moment at section AD is M and the shear force is S.  The bending 

moment at BC = M + δM and the shear force is S + δS. 

 

The equations for equilibrium in 2 dimensions results in the equations.. Forces. 

 

S - w.δx = S + δS 

Therefore making δx infinitely small then.. dS /dx = - w 

Moments.. Taking moments about C 

M + Sδx - M - δM - w(δx)2 /2 = 0 

Therefore making δx infinitely small then.. dM /dx = S 

Therefore putting the relationships into integral form.  
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The integral (Area) of the shear diagram between any limits results in the change of 

the shearing force between these limits and the integral of the Shear Force diagram 

between limits results in the change in bending moment... 
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Torsion  

 

 

 

  

In solid mechanics, torsion is the twisting of an object due to an applied torque. In circular 

sections, the resultant shearing stress is perpendicular to the radius. 

For solid or hollow shafts of uniform circular cross-section and constant wall thickness, the 

torsion relations are: 

 

where: 

 R is the outer radius of the shaft. 

 τ is the maximum shear stress at the outer surface. 

 φ is the angle of twist in radians. 

 T is the torque (N·m or ft·lbf). 

http://en.wikipedia.org/wiki/Solid_mechanics
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Newton_metre
http://en.wikipedia.org/wiki/Foot-pound_force
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 ℓ is the length of the object the torque is being applied to or over. 

 G is the shear modulus or more commonly the modulus of rigidity and is usually given in 

gigapascals (GPa), lbf/in2 (psi), or lbf/ft2. 

 J is the torsion constant for the section . It is identical to the polar moment of inertia for a 

round shaft or concentric tube only. For other shapes J must be determined by other 

means. For solid shafts the membrane analogy is useful, and for thin walled tubes of 

arbitrary shape the shear flow approximation is fairly good, if the section is not re-

entrant. For thick walled tubes of arbitrary shape there is no simple solution, and FEA 

may be the best method. 

 the product GJ is called the torsional rigidity. 

The shear stress at a point within a shaft is: 

 

where: 

 r is the distance from the center of rotation 

Note that the highest shear stress is at the point where the radius is maximum, the surface of the 

shaft. High stresses at the surface may be compounded by stress concentrations such as rough 

spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the 

maximum stress in the shaft and increase its service life. 

The angle of twist can be found by using: 

 

Polar moment of inertia 

The polar moment of inertia for a solid shaft is: 

 

where r is the radius of the object. 

The polar moment of inertia for a pipe is: 

 

where the o and i subscripts stand for the outer and inner radius of the pipe. 

For a thin cylinder 

http://en.wikipedia.org/wiki/Modulus_of_rigidity
http://en.wikipedia.org/wiki/Gigapascal
http://en.wikipedia.org/wiki/Pounds_per_square_inch
http://en.wikipedia.org/wiki/Torsion_constant
http://en.wikipedia.org/wiki/Polar_moment_of_inertia
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Torsional_rigidity
http://en.wikipedia.org/wiki/Stress_concentrations
http://en.wikipedia.org/wiki/Radius
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J = 2π R3 t 

where R is the average of the outer and inner radius and t is the wall thickness. 

Failure mode 

The shear stress in the shaft may be resolved into principal stresses via Mohr's circle. If the shaft 

is loaded only in torsion then one of the principal stresses will be in tension and the other in 

compression. These stresses are oriented at a 45 degree helical angle around the shaft. If the shaft 

is made of brittle material then the shaft will fail by a crack initiating at the surface and 

propagating through to the core of the shaft fracturing in a 45 degree angle helical shape. This is 

often demonstrated by twisting a piece of blackboard chalk between one's fingers. 

Deflection of Beams 

The deformation of a beam is usually expressed in terms of its deflection from its original 

unloaded position. The deflection is measured from the original neutral surface of the beam to the 

neutral surface of the deformed beam. The configuration assumed by the deformed neutral 

surface is known as the elastic curve of the beam. 

  

 

  

Methods of Determining Beam Deflections 

Numerous methods are available for the determination of beam deflections. These methods 

include: 

1. Double-integration method 

2. Area-moment method 

3. Strain-energy method (Castigliano’s Theorem) 

4. Three-moment equation 

5. Conjugate-beam method 

http://en.wikipedia.org/wiki/Principal_stress
http://en.wikipedia.org/wiki/Mohr%27s_circle
http://en.wikipedia.org/wiki/Brittle
http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/double-integration-method-beam-deflections
http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/area-moment-method-beam-deflections
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6. Method of superposition 

7. Virtual work method 

Of these methods, the first two are the ones that are commonly used. 

Introduction  

The stress, strain, dimension, curvature, elasticity, are all related, under certain 

assumption, by the theory of simple bending.   This theory relates to beam flexure 

resulting from couples applied to the beam without consideration of the shearing 

forces. 

 
Superposition Principle  

The superposition principle is one of the most important tools for solving beam 

loading problems allowing simplification of very complicated design problems.. 

 

For beams subjected to several loads of different types the resulting shear force, 

bending moment, slope and deflection can be found at any location by summing the 

effects due to each load acting separately to the other loads. 

 

 
Nomenclature 

e = strain 

E = Young's Modulus = σ /e (N/m2) 

y = distance of surface from neutral surface (m). 

R = Radius of neutral axis (m). 

I = Moment of Inertia (m4 - more normally cm4)  

Z = section modulus = I/ymax(m3 - more normally cm3) 

F = Force (N) 

x = Distance along beam 

δ = deflection (m) 

θ = Slope (radians) 

σ = stress (N/m2) 

 

 
Simple Bending  

A straight bar of homogeneous material is subject to only a moment at one end and 

an equal and opposite moment at the other end...  
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Assumptions  

The beam is symmetrical about Y-Y 

The traverse plane sections remain plane and normal to the longitudinal fibres after 

bending (Beroulli's assumption) 

The fixed relationship between stress and strain (Young's Modulus)for the beam 

material is the same for tension and compression ( σ= E.e )  

 

 

Consider two section very close together (AB and CD). 

After bending the sections will be at A'B' and C'D' and are no longer parallel.   AC 

will have extended to A'C' and BD will have compressed to B'D' 

The line EF will be located such that it will not change in length.   This surface is 

called neutral surface and its intersection with Z_Z is called the neutral axis 

The development lines of A'B' and C'D' intersect at a point 0 at an angle of θ 

radians and the radius of E'F' = R 

Let y be the distance(E'G') of any layer H'G' originally parallel to EF..Then 

H'G'/E'F' =(R+y)θ /R θ = (R+y)/R  

And the strain e at layer H'G' = 

e = (H'G'- HG) / HG = (H'G'- HG) / EF = [(R+y)θ - R θ] /R θ = y /R 

The accepted relationship between stress and strain is σ= E.e Therefore 

σ = E.e = E. y /R  

σ / E = y / R  

Therefore, for the illustrated example, the tensile stress is directly related to the 

distance above the neutral axis.   The compressive stress is also directly related to 

the distance below the neutral axis.   Assuming E is the same for compression and 

tension the relationship is the same. 

 

As the beam is in static equilibrium and is only subject to moments (no vertical 

shear forces) the forces across the section (AB) are entirely longitudinal and the 

total compressive forces must balance the total tensile forces.  The internal couple 

resulting from the sum of ( σ.dA .y) over the whole section must equal the 

externally applied moment. 
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This can only be correct if Σ(yδa) or Σ(y.z.δy) is the moment of area of the section 

about the neutral axis.  This can only be zero if the axis passes through the centre of 

gravity (centroid) of the section. 

 

The internal couple resulting from the sum of ( σ.dA .y) over the whole section 

must equal the externally applied moment.  Therefore the couple of the force 

resulting from the stress on each area when totalled over the whole area will equal 

the applied moment  

 

From the above the following important simple beam bending relationship results 

 

 

It is clear from above that a simple beam subject to bending generates a maximum 

stress at the surface furthest away from the neutral axis.  For sections symmetrical 

about Z-Z the maximum compressive and tensile stress is equal. 

σmax = ymax. M / I 

The factor I /ymax is given the name section Modulus (Z) and therefore 
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σmax = M / Z 

Values of Z are provided in the tables showing the properties of standard steel 

sections 

 

 
Deflection of Beams 

Below is shown the arc of the neutral axis of a beam subject to bending. 

 

For small angle dy/dx = tan θ = θ 

The curvature of a beam is identified as dθ /ds = 1/R 

In the figure δθ is small and δx; is practically = δs; i.e ds /dx =1 

 

From this simple approximation the following relationships are derived.  

 

Integrating between selected limits. 

 

The deflection between limits is obtained by further integration. 

 

It has been proved ref Shear - Bending that dM/dx = S and dS/dx = -w = d2M /dx 

Where S = the shear force M is the moment and w is the distributed load /unit 

length of beam.   therefore 

http://www.roymech.co.uk/Useful_Tables/Beams/Shear_Bending.html#shearbend
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If w is constant or a integratatable function of x then this relationship can be used to 

arrive at general expressions for S, M, dy/dx, or y by progressive integrations with a 

constant of integration being added at each stage.  The properties of the supports or 

fixings may be used to determine the constants. (x= 0 - simply supported, dx/dy = 0 

fixed end etc )  

 

In a similar manner if an expression for the bending moment is known then the 

slope and deflection can be obtained at any point x by single and double integration 

of the relationship and applying suitable constants of integration. 

 

Singularity functions can be used for determining the values when the loading a not 

simple ref Singularity Functions 

 

 

Example - Cantilever beam 

Consider a cantilever beam (uniform section) with a single concentrated load at the 

end.  At the fixed end x = 0, dy = 0 , dy/dx = 0 

 

From the equilibrium balance ..At the support there is a resisting moment -FL and a 

vertical upward force F. 

At any point x along the beam there is a moment F(x - L) = Mx = EI d 2y /dx 2 

 

Example - Simply supported beam 

http://www.roymech.co.uk/Useful_Tables/Beams/Singularity.html
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Consider a simply supported uniform section beam with a single load F at the 

centre.    The beam will be deflect symmetrically about the centre line with 0 slope 

(dy/dx) at the centre line.   It is convenient to select the origin at the centre line. 

 

 

 

 
Moment Area Method  

This is a method of determining the change in slope or the deflection between two 

points on a beam.  It is expressed as two theorems... 

 

Theorem 1 

If A and B are two points on a beam the change in angle (radians) between the 

tangent at A and the tangent at B is equal to the area of the bending moment 

diagram between the points divided by the relevant value of EI (the flexural rigidity 

constant).  

 

Theorem 2 

If A and B are two points on a beam the displacement of B relative to the tangent of 

the beam at A is equal to the moment of the area of the bending moment diagram 

between A and B about the ordinate through B divided by the relevant value of EI 

(the flexural rigidity constant). 

Examples ..Two simple examples are provide below to illustrate these theorems 

Example 1) Determine the deflection and slope of a cantilever as shown.. 
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The bending moment at A = MA = FL 

The area of the bending moment diagram AM = F.L2 /2 

The distance to the centroid of the BM diagram from B= xc = 2L/3 

The deflection of B = y b = A M.x c /EI = F.L 3 /3EI 

The slope at B relative to the tan at A = θ b =AM /EI = FL2 /2EI 

 

Example 2) Determine the central deflection and end slopes of the simply supported 

beam as shown.. 

E = 210 GPa ......I = 834 cm4...... EI = 1,7514. 10 6Nm 2 

 

A1 = 10.1,8.1,8/2 = 16,2kNm 

A2 = 10.1,8.2 = 36kNm 

A2 = 10.1,8.2 = 36kNm 

A1 = 10.1,8.1,8/2 = 16,2kNm 

x1 = Centroid of A1 = (2/3).1,8 = 1,2 

x2 = Centroid of A2 = 1,8 + 1 = 2,8 

x3 = Centroid of A3 = 1,8 + 1 = 2,8 

x4 = Centroid of A4 = (2/3).1,8 = 1,2 
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The slope at A is given by the area of the moment diagram between A and C 

divided by EI.  

θA = (A1 + A2) /EI   =   (16,2+36).10 3 / (1,7514. 10 6) 

=  0,029rads   =   1,7 degrees 

The deflection at the centre (C) is equal to the deviation of the point A above a line 

that is tangent to C.  

Moments must therefore be taken about the deviation line at A. 

δC = (AM.xM) /EI   =   (A1 x1 +A2 x2) / EI   =   120,24.10 3/ (1,7514. 10 6) 

=   0,0686m = 68,6mm 

 

Mohr's Circle 

 
 

Introduced by Otto Mohr in 1882, Mohr's Circle illustrates principal stresses and stress 

transformations via a graphical format,  

 

The two principal stresses are shown in red, and the maximum shear stress is shown in orange. 

Recall that the normal stresses equal the principal stresses when the stress element is aligned with 

the principal directions, and the shear stress equals the maximum shear stress when the stress 

element is rotated 45° away from the principal directions.  

As the stress element is rotated away from the principal (or maximum shear) directions, the 

normal and shear stress components will always lie on Mohr's Circle.  

Mohr's Circle was the leading tool used to visualize relationships between normal and shear 

stresses, and to estimate the maximum stresses, before hand-held calculators became popular. 

Even today, Mohr's Circle is still widely used by engineers all over the world.  

 

Derivation of Mohr's Circle 

 
 

To establish Mohr's Circle, we first recall the stress transformation formulas for plane stress at a 

given location,  

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#Principal
http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#transform
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Using a basic trigonometric relation (cos2 2

we have,  

 

This is the equation of a circle, plotted on a graph where the abscissa is the normal stress and the 

x y as being the two 

principal stresses xy as being the maximum shear stress. Then we can define the average 

avg, and a "radius" R (which is just equal to the maximum shear stress),  

       

The circle equation above now takes on a more familiar form,  

 

The circle is centered at the average stress value, and has a radius R equal to the maximum shear 

stress, as shown in the figure below,  

 

 

http://www.efunda.com/math/trig_functions/trig_relation.cfm
http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#Principal
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STRAIN GAUGES 

 Introduction 

Stress is not directly measurable with 

current technology. We can measure 

the load that we apply to a specimen, 

but we cannot easily measure the load 

per unit area, stress, at any point on 

the specimen. Instead, the 

experimental analysis of engineering stresses must be based on strains, which can be used to 

calculate stresses. Using measured values of strain and knowledge of the mechanical properties 

of the material such as the modulus of elasticity and Poisson’s ratio, stresses can be calculated 

from the appropriate stress-strain relationship of the material. 

 

There are many types of commercially available strain gauges used in experimental mechanics. 

Examples are acoustical, capacitance, inductance, mechanical, optical, piezioresistive, resistance, 

and semiconductor. The optical strain gauges come in two types, diffraction and interferometric. 

Perhaps the most versatile and widely used gauge is the bonded electrical resistance strain gauge 

which is the type of gauge attached to the test specimens in Experiments 1 and 2 in this course. 

Experiment 5 uses a Berry Strain Gauge, which is a particular type of mechanical strain gauge. 

 

 Bonded Electrical Resistance Strain Gauge 

The bonded electrical resistance strain gauge consists of a metallic strain-sensing element 

encapsulated by a thin polyimide film that acts as an insulator attached to tabs for leadwire 

connections. The sensing element is a grid of very thin metal alloy. The entire assembly can then 

be bonded to the specimen so that the gauge moves in unison with the specimen. Figure  

  

 
 

Figure F1: A strain gauge with a uniaxial pattern 

for measuring strain in the direction of the gridlines. 

 

 

F.1 shows a graphic of a uniaxial strain gauge. As the gauge is stretched, the thin wires elongate, 

increasing the electrical resistance of the gauge in direct proportion to the strain. The 

measurement of the change in electrical resistance, which is measured as a change in voltage in a 

bridge type circuit, is converted to strain is by dividing by a gauge factor. Equation F.1 illustrates 

this simple relationship. 

 

  (Eq. F-1) 

Where: R = resistance 
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L = original length 

 

The gauge factor is a property of the particular gauge being used and is usually between 2.00 and 

2.20  

 

The Figure above shows the 

arrangements of installation of strain 

gauges to a cantilever beam. 

 

There is a wide selection of grid 

configurations, sizes, and alloy 

compositions to accommodate test 

conditions, including temperature 

extremes, dynamic or cyclic loading, etc. "Rosette" configuration strain gauges have two or three 

sensing elements and are used to determine principal strains and principal directions for general 

two dimensional plane stress problems. 

 

Three element strain gauge rosettes will be used in Experiments 5 as well as Mechanical 

Measurements Labs.  

 Strain gauge resistance changes are very small, on the order of 10- -

strains occurring in engineering materials when stressed. Conventional ohmmeters are not 

capable of measuring resistances with enough precision to detect these small changes. Instead, 

potentiometer circuits and Wheatstone bridge circuits are used to convert these very small 

resistance changes to voltage signals that can be observed and recorded. The Wheatstone bridge 

circuits used in the laboratory are shown below. The dummy gauge in Figure F.2b is used to 

compensate for strain changes due to temperature only. The instruments in the laboratory are 

calibrated periodically and include adjustments for the strain gauge sensitivity (resistance), bridge 

balance (zero) and gauge factor. The instruments' readings are in proportion to strain.  
 

 
 

Figure F2: Different types of variable resistance bridges. 

A short explanation of how the instruments in the laboratory work is as follows. In Figure F.2 the 

G is zero. The 
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Active leg of the bridge (R1) is the strain gauge and the resistance of R1 varies as the structure is 

loaded. If the resistance of R1 increases (tension), the signal voltage (VG) increases in proportion 

to the strain. The signal voltage is amplified and displayed. 

 

Principal Stresses and Strains from Strain Gauge Rosettes 

Principal stresses cannot be directly determined from a strain rosette. Principal strains can be 

calculated from the measurements taken from the strain rosette and then Hooke’s Law can be 

used to convert principal strains to principal stresses. This section refers to homogeneous, 

isotropic materials in the linear- - -  

A rectangular rosette has three gauges so that measurements of normal strain can be taken along 

three axes the rosettes used in this course are Rectangular and have three gauges oriented 

2, 3 counterclockwise and measure the strains  and  respectively. The whole rosette is 

axes of the strain on the specimen. 

 

For 3 dimensional Rosette with 0,-60 and -120 Degrees:  

 
(1)   εp,q = (ε1 + ε1 + ε1 )/3 +  (√2/3){[ ( ε1 – ε2 )2 + ( ε2 – ε3 )2 +( ε3 - ε1 )2]}1/2 

 

And  

 
(2) σp,q = E/3 {(ε1 + ε1 + ε1 )(1-ν) +  (√2/(1+ν)){[ ( ε1 – ε2 )2 + ( ε2 – ε3 )2 +( ε3 - ε1 )2]}1/2 }. 

 

And angle of principal stress are calculated from: 

 

 

(3) Φp,q = ½ .Tan-1 (√3).{[ ( ε2 – ε1 )]/[ ( ε1 – ε2 )+ ( ε1 – ε3 )]}. 

 

These equations could be used to obtain the principal stresses and strains.  

 
 

Methods of Measurements of Data Using Wheatstone Bridge and Strain gauge indicators. 

 

The strain gauge subjected to deformation, ie. For a cantilever beam is attached to input channel 

of a Wheatstone Bridge, as shown below.  
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The  bridge is then balanced by appropriate balancing 

resistance, such that the measured voltage in the bridge 

is Zero. 

 

The output of Bridge is connected directly to input of 

Balanced Strain Gauge meter, and the direct strains, for 

the material gauge factor is obtained in (μ-length/μ-

length) units.  

 

Connections for Full, Half and quarter Bridges are shown below.
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Connections:  
1. the connections between strain indicator and balance unit are as the above photo  

2. Strain gage #1 (on top of the beam), single wire goes to RED terminal at CH#9, two ground 

wires go to the WHITE & YELLOW terminals.  

3. Strain gage #2 (on bottom of the beam), single wire goes to RED terminal at CH#10, two 

ground wires go to the WHITE & YELLOW terminals.  

 

 
1. Press “AMP ZERO ±strain value to “0” for strain gage #2.  

 

2 2. Press “GAGE FACTOR”, and set it to “value listed on Beam”  

3. Place the “WEIGHT HANGER” 

 4. Press “RUN”, switch to the CHANNEL #10, and use the “BALANCE KNOB at CH#10” to 

balance the strain value to “0” for strain gage #1. 

5. The strain is shown in the strain gauge indicator panel. 
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Hardness 

 

Hardness is one of the most basic mechanical properties of engineering materials. 

Hardness test is practical and provide a quick assessment and the result can be used as a good 

indicator for material selections. This is for example, the selection of materials suitable for metal 

forming dies or cutting tools. Hardness test is also employed for quality assurance in parts which 

require high wear resistance such as gears. 

 

The nomenclature of hardness comes in various terms depending on the techniques used for 

hardness testing and also depends on the hardness levels of various types of materials. A scratch 

hardness test is generally used for minerals, giving a wide range of hardness values in a Moh.s 

scale at minimum and maximum values of 1 and 10 respectively. For example, talcum provides 

the lowest value of 1 while diamond gives the highest of 10. The basic principle is that the harder 

material will leave a scratch on a softer material. Hardness values of metals generally fall in a 

range of 4-8 in Moh.s scale, which is not practical to differentiate hardness properties for 

engineering applications. Therefore, indentation hardness measurement is conveniently used for 

metallic materials. A deeper or wider indentation indicates a less resistance to plastic deformation 

of the material being tested, resulting in a lower hardness value. 

 

The indentation techniques involve Brinell, Rockwell, Vickers and Knoop. Different types of 

indenters are applied for each type. The standard test methods according to the American Society 

Testing and Materials (ASTM) available are, for instance, ASTM E10-07a (Standard test method 

for Brinell hardness of metallic materials), ASTM E18-08 (Standard test method for Rockwell 

hardness of metallic materials) and ASTM E92-41 (Standard test method for Vickers hardness of 

metallic materials) These hardness testing techniques are selected in relation to specimen 

dimensions, type of materials and the required hardness information. Their principles and testing 

methods are mentioned as follow. 

 

1.  Brinell Hardness Test 

 

 
Brinell hardness test was invented by J.A. Brinell in 1900 

using a steel ball indenter with a 10 mm diameter. The steel 

ball is pressed on a metal surface to provide an impression as 

demonstrated in figure 1. This impression should not be 

distorted and must not be too deep since this might cause too 
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much of plastic deformation, leading to errors of the hardness values.  

 

Different levels of material hardness result in impression of various diameters and depths. 

Therefore different loads are used for hardness testing of different materials as listed in table 1. 

Hard metals such as steels require a 3,000 kgf load while brass and aluminum involve the loads of 

2,000 and 1,000 or 500 kgf respectively. For materials with very high hardness, a tungsten 

carbide ball is utilized to avoid the distortion of the ball.  

In practice, pressing of the steel ball on to the metal surface is carried out for 30 second, followed 

by measuring two values of impression diameters normal to each other using a low magnification 

macroscope. An average value is used for the calculation according to equation 1 

 

BHN = P/{(πD/2).(D-√D2 – d2)}  = P/(πDt) 

Where: 

 P is the applied load, kg 

D is the diameter of the steel ball, mm 

d is the diameter of the indentation, mm 

t is the depth of impression, mm 

 

Note: This BHN values has a unit of kgf.mm-2 (1 kgf.mm-2 = 9.8 MPa) which cannot be 

compared to the average mean pressure on the impression. Generally, the metal surface should be 

flat without oxide scales or debris because these will significantly affect the hardness values 

obtained. A good sampling size due to a large steel ball diameter is advantageous for materials 

with highly different microstructures or microstructural heterogeneity. Scratches or surface 

roughness have very small effects on the hardness values measured. However, there are some 

disadvantages of Brinell hardness test. These are errors arising from the operator themselves 

(from diameter measurement) and the limitation in measuring of too small samples. 

 
 

If we considered the plastic zone beneath the Brinell indenter, this plastic region is surrounded by 

elastic material which obstructs the plastic flow. This condition is said to be plane strain 

compressive where plastic deformation is limited. If the metal is very rigid, the metal flow 

upwards surrounding the indenter is possible as illustrated in figure   
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However this situation is rarely seen because the metal displaced by the indenter is accounted for 

by the reduced volume of elastic material.  

Rockwell Hardness Test 

Rockwell hardness test is commonly used among industrial practices because the Rockwell 

testing machine offers a quick and practical operation and can also minimize errors arising from 

the operator. The depth of an indentation determines the hardness values. There are two types of 

indenters, Brale and steel ball indenters. The former is a round-tip cone with an included angle of 

120o whereas the latter is a hardened steel ball with their sizes ranging from 1.6-12.7 mm. 

Therefore different combinations of indenters and loads selected are suitable for hardness testing 

of various materials. This is for example; the R scale is employed for soft materials such as 

polymers while the A scale is suitable for hardness testing of hard materials such as tool materials 

according to table 1. 

 

The testing procedure starts with indenting a flatly ground metal surface with a diamond or 

hardened steel ball with a minor load of 10 kgf to position the metal surface as shown in figure 

above. 

 

 

The depth of the impression caused by the minor load will be recorded as H1onto the machine 

before applying a major load level according to a standard as shown in table 2 and is recorded as 

H2. The difference of the depths (ΔH= H1-H2) when applying the minor and the major loads 

indicates the hardness value of the material. If the depth difference is small, the deformation 

resistance of the metal is high, resulting in a high Rockwell hardness value. The hardness value 

will be displayed on a dial or a screen, having 100 divisions and each division represents a depth 

of 0.002 mm. Therefore the hardness value can be determined from a relationship as follows 

 

HRX = M-ΔH/2 

 

Where ΔH is H1-H2 and M is the maximum scale which equals 100 in general for testing with the 

diamond indenter (scale A, C and D). The M value equals 130 when testing with a steel ball for 

Rockwell scales B, E, M, and R. 

 

1. Power switch 

2. Test scale scroll key 

3. Indenter 

4. Indenter display 

5. Major load (kg) display 

6. Weight selector dial 

7. Anvil 

8. Specimen 

9. Capstan handwheel 

10. Minor load (kg) display 

 

 

Figure 2 – A Wilson Rockwell Model 
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The Rockwell hardness units are in RA, RB and RC (or HRA, HRB, HRC), depending on 

material’s hardness. Tables 1 and 2 summarize loads and types of an indenter utilized for each 

scale. There are two types of indenters used, Brale indenter and steel ball indenters as mentioned 

previously. The applied major loads vary from 60, 100 and 150 kgf, also depending on the 

Rockwell hardness scale utilized. For instance, hardened steel is tested on a Rockwell scale C 

using a Brale indenter and at a major load of 150 kgf. On the Rockwell scale C, the obtained 

hardness values range from RC 20 F RC 70. Metals with lower hardness are tested on a Rockwell 

scale B using a 1.6 mm diameter steel ball at a 100 kgf major load, providing RB 0 F RB 100 

hardness values. Rockwell scale A offers a wider range of hardness values which can be used to 

test materials ranging from annealed brass to cemented carbide. Due to high accuracy, the 

Rockwell hardness test is commonly conducted for measuring hardness of heat-treated steels. 

Furthermore, the smaller indenter (in comparison to that of Brinell hardness test) facilitates 

hardness measurement in small areas. However, this technique requires good surface preparation 

since the hardness values obtained is significantly affected by rough and scratched surfaces. 

There are several considerations for Rockwell hardness test: 

 

- Require clean and well positioned indenter and anvil 

- The test sample should be clean, dry, smooth and oxide-free surface 

- The surface should be flat and perpendicular to the indenter 

- Low reading of hardness value might be expected in cylindrical surfaces 

- Specimen thickness should be 10 times higher than the depth of the indenter 

- The spacing between the indentations should be 3 to 5 times of the indentation diameter 

Loading speed should be standardized. 
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Vickers Hardness Test 

 

Vickers hardness test requires a diamond pyramid indenter with an included angle of 136o. 

This technique is also called a diamond pyramid hardness test (DPH) according to the shape of 

the indenter. To carry on the test, the diamond indenter is pressed on to a prepared metal surface 

to cause a square-based pyramid indentation as illustrated in figure 4. 

 

 

 
 

Figure: Vicker Micro hardness Equipment and Data acquisition. 

 

 
 

The Vickers hardness value (VHN) can be calculated from the applied load divided by areas of 

indentation, at which the latter is derived from the diagonals of the pyramid as expressed in the 

equation below 

 

VHN = 2PSin(θ/2) /d2 = 1854.4P/d2  
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Where P is the applied load in grams (g

m. The constant 1854.4 incorporates the value of sin

conversion factors to give VHN a unit of kg/mm2. 

 

Procedure for microhardness test: 

 

1. Turn on the tester. 

2. Select and install the indenter (Vickers or Knoop), if not already installed. 

3. Place the weights selected on the loading pan. 

4. 
specimen surface with the focusing control until surface features can be seen. 

5. Gently turn the loading handle clockwise to raise the weights and the indenter, and turn 

the indenter into place. Slowly release the loading handle counter-clockwise to apply the 

load. Leave the indenter on the specimen for 10 to 15 s. 

6. Raise the indenter by turning the loading handle clockwise gently, and turn the objective 

lens back into place. 

7. Focus on the specimen surface to view the indentation. Measure length of the long 

diagonal (Knoop) or both diagonals (Vickers) of the indentation with the scale in the 

microscope. The numbers on the scale are length measured in 0.001 mm. alternatively, 

the diagonal lengths can be determined by moving a point on the scale from a corner to 

the opposite corner of the impression under microscope and noting the difference in 

micrometer readings (numbers on the fine scale are in 0.01 mm). 

8. Calculate microhardness number using the appropriate formula. 

 

 

Various Hardness Techniques. 


