
1.Create a new data type which is a structure
This uses the typedef and struct keywords in combination

typedef struct task {
   int state;
   unsigned long period;
   unsigned long elapsedTime;
   int (*TickFct)(int);
} task;

2.Call the Tick Function as a pointer to a function
In the Structure definition and declaration above:
 int (*TickFct)(int);

Calling the tick function in the TimerISR Scheduler 'for loop'
tasks[i].state = tasks[i].TickFct(tasks[i].state);

3.Create an array of tasks
task tasks[2];
const unsigned char tasksNum = 2;

4.Move the scheduler to the TimerISR
 for (i = 0; i < tasksNum; ++i) { // Heart of scheduler code
      if ( tasks[i].elapsedTime >= tasks[i].period ) { // Ready
         tasks[i].state = tasks[i].TickFct(tasks[i].state);
         tasks[i].elapsedTime = 0;
      }
      tasks[i].elapsedTime += tasksPeriodGCD;
   }
   

5.Set up a global guard variable to detect interrupted interrupt
  if (processingRdyTasks) {
      printf("Period too short to complete tasks\n");
   }

6.In the Main, initialize each state machine's variables in the 
array.  Repeat for each element in the array (each element is a 
state machine)

   tasks[i].state = -1;



   tasks[i].period = periodBlinkLed;
   tasks[i].elapsedTime = tasks[i].period;
   tasks[i].TickFct = &TickFct_BlinkLed;
   

7.Initialize the timer for the GCD
   TimerSet(tasksPeriodGCD);
   TimerOn();

8.Modify each state machine to be called with its state and return
its state value

int TickFct_BlinkLed(int state) {
.
.
   return state;
}

9.Scheduler code details.... see comments below
  for (i = 0; i < tasksNum; ++i) { // Heart of scheduler code .. loop for each SM
      if ( tasks[i].elapsedTime >= tasks[i].period ) { // Is elapsed time >= SM period?
         tasks[i].state = tasks[i].TickFct(tasks[i].state); // yes, then tick SM
         tasks[i].elapsedTime = 0;  // reinit elapsed time because just ticked
      }
      tasks[i].elapsedTime += tasksPeriodGCD; // increment elapsed time
   }
   
   

10. Idle loop now does nothing and can even go to sleep or to 
Operting System- the TimerISR wakes up and starts tick 
process

while(1) { Sleep(); }   
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