
1.Create a new data type which is a structure
This uses the typedef and struct keywords in combination

typedef struct task {
 int state;
 unsigned long period;
 unsigned long elapsedTime;
 int (*TickFct)(int);
} task;

2.Call the Tick Function as a pointer to a function
In the Structure definition and declaration above:
 int (*TickFct)(int);

Calling the tick function in the TimerISR Scheduler 'for loop'
tasks[i].state = tasks[i].TickFct(tasks[i].state);

3.Create an array of tasks
task tasks[2];
const unsigned char tasksNum = 2;

4.Move the scheduler to the TimerISR
 for (i = 0; i < tasksNum; ++i) { // Heart of scheduler code
 if (tasks[i].elapsedTime >= tasks[i].period) { // Ready
 tasks[i].state = tasks[i].TickFct(tasks[i].state);
 tasks[i].elapsedTime = 0;
 }
 tasks[i].elapsedTime += tasksPeriodGCD;
 }

5.Set up a global guard variable to detect interrupted interrupt
 if (processingRdyTasks) {
 printf("Period too short to complete tasks\n");
 }

6.In the Main, initialize each state machine's variables in the
array. Repeat for each element in the array (each element is a
state machine)

 tasks[i].state = -1;

 tasks[i].period = periodBlinkLed;
 tasks[i].elapsedTime = tasks[i].period;
 tasks[i].TickFct = &TickFct_BlinkLed;

7.Initialize the timer for the GCD
 TimerSet(tasksPeriodGCD);
 TimerOn();

8.Modify each state machine to be called with its state and return
its state value

int TickFct_BlinkLed(int state) {
.
.
 return state;
}

9.Scheduler code details.... see comments below
 for (i = 0; i < tasksNum; ++i) { // Heart of scheduler code .. loop for each SM
 if (tasks[i].elapsedTime >= tasks[i].period) { // Is elapsed time >= SM period?
 tasks[i].state = tasks[i].TickFct(tasks[i].state); // yes, then tick SM
 tasks[i].elapsedTime = 0; // reinit elapsed time because just ticked
 }
 tasks[i].elapsedTime += tasksPeriodGCD; // increment elapsed time
 }

10. Idle loop now does nothing and can even go to sleep or to
Operting System- the TimerISR wakes up and starts tick
process

while(1) { Sleep(); }

	1. Create a new data type which is a structure
	2. Call the Tick Function as a pointer to a function
	3. Create an array of tasks
	4. Move the scheduler to the TimerISR
	5. Set up a global guard variable to detect interrupted interrupt
	6. In the Main, initialize each state machine's variables in the array. Repeat for each element in the array (each element is a state machine)
	7. Initialize the timer for the GCD
	8. Modify each state machine to be called with its state and return its state value
	9. Scheduler code details.... see comments below
	10. Idle loop now does nothing and can even go to sleep or to Operting System- the TimerISR wakes up and starts tick process

