Determination of the Mode Coefficients

Congider a waveguide structure whose infinite dimension is along the z direction. Defining the TE and
TM cigenfunctions as

=Y YA (A =zy™)

ot

=YYANvE Fa) v

nom

the electric and magnetic fields in the guide are given by
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These can be more conveniently rewritlen as
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for the modal fields propagating in the +z direction and as
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for the modal fields propagating in the —z direction, The specific form of the modal fields (B, HE: ) can

. im
be extracted from (2) once the eigenfunctions W' and Y™ have been determined. Note that the form of

(Ef,,Ht,) was chosen so that this pair satisfies Maxwell’s cquations. Thus, we can write
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We are interested in finding the waveguide coefficients C,;, for a given electric current distribution J{r)
placed within the waveguide. In the following, we present a rather standard plocedu.re for accomplishing
this,

We begin with Maxwell’s equations
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When these are combined with (5) we obtain that
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{refer to Poynting’s theorem for a proof of this identity}, and upon application of the divergence theorem we

have
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The latter surface integral involves integration over the waveguide walls and the surfaces SE')' and 57 to the
left and right of the source as illustrated in the figure below.
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Since A x K, and A x E satisfy the boundary conditions on the waveguide’s walls, it follows that
/]g[E x H, —E., xH] Ads— f/s+ | [BxH,, —Ep, xH]-2ds ©)
(PR
For the last integral we have (by virtue of mode orthogonality, the infinite sums reduce to a single summand):
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From this expansion of the fields under the integrals, it is readily seen that the integrand associated with the
surface S vanishes. On making some additional cancellations in the other integral over St we find that
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From (8}, we then conclude that
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To find an expression for (7, we repeat the process with (£ H- )
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When magnetic currents are present, the above expressions generalize (0
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Example

Consider a rectangular wavegnide whose cross sections are shown below (b < 4).
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The fields in this guide can be represented as (f = 0. /€, B, = \/Bz — (an/a)? — (mr/a)*)
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Consequently,
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and for the lowest order TE g mode, we have
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By comparison with (3), C, = A, /€.
Assuming that the probe current distribution is given by
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we find that

For example,

with

mode admittance.
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