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Note that these are exact expressions, something rare in electromagnetics since the integrations
cannot be performed except for the simplest of the current excitations,

Of particular importance to us in antenna analysis and design are the field expressions when
R —Q¢In this case, the integral expressions simplify substantially. For example, we can drop all
terms of the integrals that decay as 1/R2, 1/R3,..., giving
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where dd = {dl,ds,dv}. We can do further approximations, by noting that as R — e,

R-p
Rz r  (for amplitude terms)

These approximations are apparent when we view them geometrically:



wmlm,%

Clearly, when talking about amplitude,
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However, for phase computations, a substantial difference between
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exists. This implies that for the phase, R needs to be carefully considered,
One acceptable approximation is
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Mot

T imemsion

This is referred to as the far field approximation, and for r/A > 2D? /A2 it is associated with a phase
error of no more than 7/8, i.e., kR — kRapprox < 1/8 or so! Thus we can state:

R= R amplitude
T |r—r'-# phaseterm

This is the Fraunhofer or far field approximation, valid for » > 2D? /A.

In the handout (see also Balanis, 2nd ed., pp. 145-151) we also show that the improved ap-
proximation
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(Fresnel approximation) makes
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Thus, we can write
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In the latter, using £ (D*/A)!/? instead of $(D? /A2 is more exact.

With the above approximation, we write now the most simplified expression for the far field
(valid for r > 2D?/A):
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i.e., E¢r, Hy behave like plane waves in the far field. Also,
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Most often, we are interested in the ¢ and 8 componenis of E4. We find
Egy = — jamFy — jode = NHg,
Eff¢ = JmFﬂ - ij¢ = ""anfa

See handout for more simplifications.

Summary of handout
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The above can be integrated over line, surface or volume once (1¢)7 — J. 'f’j

Dipole at r':
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Put [ for arbitrary source (7£)f - J
When r — oo, there is no need to keep 1/72, 1/r°, which decay much faster than the | Jr terms.
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for dipole but this is true for all far zone fields regardless of antenna sources (note Z = 1 ¥ =m).



