Solution of Maxwell’s equations

Having concluded that 3 equations are sufficient to solve for E, H and p, we next proceed to solve
these equations for specific situations. Let us begin by stating the derived equations. We have (in
time domain)

0H
VXE=- E
0
H=J —|E
V X J+(U+6Bt)
dp
V'J__E{

(We cannot use complex ¢ in time domain.) The last equation can actually be combined with the
divergence condition

V-E="

€
a by-product of the second Maxwell’s equation, and the constitutive relation J = oF to get

V. (oE) = —%(ev E)
Rearranging yields
d
(O‘ + aé) V-E=1(
or 5
vl
(J—l- ate) - 0
Thus, p(t) satisfies the first order D.E.
Oplt) o
o T A0=0

Solution of this is

p(t) = p(0) €719 = p(0) "
7 = relation time constant in seconds = ¢/o
=8x 107 sec foro = 10" s/mand € = ¢;



That is, p decays/diffuses rapidly when some initial charge p(0) = gy is placed on the conductor.
In most cases, we will assume ¢ = 0 or o = co. Clearly for ¢ = ), then V - E = 0 and this is the
relation most often quoted or used.

Maxwell’s equations in terms of E and H only
Solution of Maxwell’s equations

Using the constitutive relations we can rewrite Maxwell’s equations using E and H only. Let us
assume a simple medium (isotropic, homogeneous (constant e and ) and linear—all the good

stuff).

H
Faraday’s Law: VXE = —,u,%—t (B = uH)
N el
Ampére’s Law: VxH=J+ ‘5 (D = €E)
Before using J = oE, we need to classify J in two parts:
J; = source current (D
J. = conduction current on nearby conductors due to J; 2)

Je; = 0in air.

Thus we can write

J:J1+JC:Ji—|—O'E

and the two independent Maxwell’s equations take the form



(J; = 0 outside the source region.)
The divergence equations also take the form

_ V-H=0 _p _
V:-D=p V. (B) = or VxEmE for € = constant

without a need to invoke the continuity equation.



Solution of Maxwell’s equations in time domain

To simplify the solution of Maxwell’s pair of coupled equations, a customary approach is to com-
bine them to obtain a single (partial) differential equation. Let’s begin this process by taking the
curl of the first equation and substituting it into the second.

Taking the curl of first Maxwell’s equation (Faraday’s Law) gives

VX(VXE)z—u—(%VXH

Substituting the second Maxwell’s equation into this yields

d 0
Rearranging yields
JE &?
= “E =
VXVXE—I—,&Laat —l—,ueat 0

In fiuid mechanics uo is called the viscous or drag term producing decay.
We will assume o = 0. Thus, for lossless media
O*E
VxVxE + ,U,'-E—at— =)

Further, since
Vx(VxE)=V(V-E) - V:E=-VE

(since o = 0} we obtain the equation

What is meant by this vector equation?
It is actually a set of 3 equations in Cartesian coordinates. They are

4 82_51m 3\
2
V2E, ot
V2E, +#6<6Ey>:0
V2Ez 81;2
O E,
. g2 )

Each of them is called the Helmholtz or scalar wave equation.
We note that by following a similar procedure, we can also derive the corresponding wave
equation for the magnetic field H given by

V?H — e =0

ot?



where 1/pe = v* in which v is referred to as the wave phase velocity. This is the dual of the
corresponding E wave equation. In general, two equations are called dual if one is obtained from
the other via the replacements

E—H
H— -E
H—re
€ —r U
J—+M
M— -]

Example: Examine the field expression
E = Ze™ cos(wt ~ k,2)

where « and £, are constants. Determine whether this is a Maxwellian solution or not.

1) Must satisfy V2E,, — ue(0*E, /0t*) = 0.
Substituting in the given £, we get
O*E, N *E, 4 O E, 0%y 0
— f— =
dx? a2 62 Mo
+a*E, — kgEm + preEl. =

or

wipe+a® — k=0

This is called the characteristic or consistency equation and must be satisfied if the given E
is to be Maxwellian.

2) Must satisfy Vx E =0

Indeed,
oF, N OF, N oE, 0
Oz Oy 0z

We remark that in general, two components (one from E and one from H) are required for a unique
determination of all other field components. Specifically we just need (£, and H,,) or (K, and H,)
to obtain every other field component via Maxwell’s equations (see handout notes on the web).



Solution of the wave equation
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Let us consider the case where E = E(z,t), ie., E is a function of z only and time. Such a
functionality may correspond to the so-called transmission line problem. This is basically the
wave inside your VHF cable that arrives from the antenna to your TV. Assume

E= Eo f(.'L' , t)
E, = {g?Eyo etc.
2E,, etc.

We seck to find f(z,1)) so that it satisfies the wave equation and V - E = 0, Let us try the form
(from experience)

E:ng($~vt)
or T
E=E f(i-7)

where v = velocity of the wave. Substituting into the wave equation

82E O*E O*E

9 -
VE g =gz Heg =0
yields
2 &2
@f(m—vt)—#ﬁﬁ flz—ovt) =
Note that
] , 9
gy J@—vt)=fz—vt) o (v —vt) = 'z~ w))
82
33 [@=1"), a=(z-w)
J ., da , ;
5 £(0) = £e) 5 = F'(@) (~) = v £'(a)
62
a2 (@) =" ()
Thus, we get

f”((E _ ’Ut) _ ,LLE’U2 f”(ﬂ? . 'Ut)‘m—_ 0




and since v* = 1/ pe, it is apparent that E = Eq f(z — vt) is a solution to the wave equation (note
that f(#) is still undefined!) and can be a solution to Maxwell’s equations subject to V - E = 0.
Generally, since we are having a second order partial differential equation, two linearly indepen-
dent solutions exist. The second solution is f(x + vt) and thus a general solution is

E=E} f(z —vt) + E; flz +vi)
or

E:ng(t+%)+ng(t—%)

For sinusoidal fields, i.e., for f(t) = coswt = Re{e/*!}, w = frequency of the wave, we have

flz £ vt) = cos[w(z £ vt)]

o+ 2) =l 12 2)] = s (2

Thus, the solution to the wave equation can be written as

or

E = E cos (wt — -u—):v) + Ey cos (wt + Em)
v v

where we identify the parameter

w .
k = — = w/pte = propagation constant
v

and v as the wave velocity. We will also use the quantity/variable

2m

o A = wavelength

ﬁ = E —_= W p’,e e
v
to define the propagation constant. Typically, for general material/media, we will use the relation
k=p8-ja (e = loss factor)

Letus now see how this solution implies propagation or movement of information with a velocity .
To do so, let us first rewrite E as

E = Ef cos(wt — fz)|,_, = Ff cos {ﬁ (a: — %to)}

or
W

f

For relevance, let us actually refer to the AM radio signal which has the form

Elims, = By cos[B(z — z0)], @0 = —to = v

E =2 g(t) cos[f(x — mo)] = 2 g(t) cos[Bz — why)]

in which 2 g(t) is the voice signal (very small in amplitude) and w is the AM station frequency.
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H field from E field

Since V x E = —uZL we can easily get H from E. Note that for
E = ED f(CL' - ‘Ut)
we can use the identity

VYXE=VfxE)+ fV x E,s

O

— (& x Eo) a% Fz — vt)
1 5

Thus,

_ oH
K 5¢
H = (2 x Bo) f(z — vt) + Ho

LU

= —2(2 x o) o f(z — vt)

and Hy = 0 since H = 0 at ¢ = 0. The quantity

LZM&ZVE:AZK Z:¢E
(v e woZ €

In general (for plane waves)

H=YpxE
E=ZHxp

Remember this special relation for plane waves in lieu of Maxwell’s equations.

P = Z (in above example) = direction of wave
Ephasor = E(}e_jkww

Alternatively, if

E = Eoe—jkyy
then

pP=4g

In general _

E — Eoe_J ker

where
k

=P

and k£ = |k| = propagation constant.



Spherical coordinates
E= HAE{] (’f' ) t)

32E9 &
2
VEy — 3t2 =

0y 2 0By 82 Ey

o Ty P =Y
To solve, set Ey :% =
LoU®  pe OU7 -0 = oun* €3U2_0
r ot - 0 ot Mo T

which is the same as the equation just solved for rectangular coordinates.
Thus,

U=f (t _ %) (instead of f(t — £))
or
U=flwt—r)
Thus, since Ey = -,,q =
EG:Cf(t“) ol it =1)

r r
An example solution would be
B = cos(wt kr)
T
. p—Jkr
By=0°
r

1/r is the decay of the field.
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