Waves in lossy media

Plane waves in lossy media

Consider the field E = 2] e 7. Since e = ¢/ — ic,
v =gk = juype = a+jf

or k = [ — ja. By substituting for ¢, we can simplify £ = w,/Ji€ to get
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Power density carried by a plane wave
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For lossless media and real Z, we have
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Skin depth: distance in conductor when the transmitted wave loses 60% — (63.2%) of its strength.

e =1 =0.368 =

Z2=0=—
o




Potentials and Green’s functions

e (Goal is to solve E in terms of potentials.
e Potentials are intermediate quantities.

e We avoid “dyadic Green’s functions” tensors this way.

Potentials: Do, P, AR
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scalar  vector

VxE=—jwupH-M
VxH=jwekE+J
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which can be decomposed into contributions from J or M as follows:

V X B, = —jwuH,

V xH, = +jweE, + J
V- (uH,) =0

V-De=p

and
VxEy=—jwuH, — M

V x Hy = +jweBEy,

V- (4Hm) = pm
V-D=0

where Ky = E. + Ep,. Since

V- (pH,) =0 and V- (VxA)=0
= pHe =V x A
then
VxE,=—jw(V x A) = V X (Be+ jwA) =0
and since V x V®, =0

E, = —-V&, — jwA




Now, we can solve for A and ®, instead! The equation for A is (from V x H, = 4+ JwE)

A
v x (v: ) = jwe(—jwA — V) + T

Introducting the identity
Vx(VxA)=V(V-A)- VA
gives
VA + 2A=V(V-A) + jwueVd, — ul (D
B2 = wiue
We can simplify this by noting that we still have freedom in specifying A. We already specified
V x A = pH, but this specifies only a few derivatives of A. As is the case with the definition

of any function, we need all derivatives of the function to specify A precisely. For example, in a
Taylor series
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The V - A has different derivatives than V x A, and this implies that we can specify V - A without
affecting V x A. So we choose to define it conveniently, viz., set

V(V-A) = —jwucVd,

(z — o) (y — yo) + ete.

implying that (after cancelling the dels)

]V A = —jwued, )

Thus, (1) becomes (recall V?E + 52E = 0)

VIA + FA =

This is a standard inhomogeneous wave equation to be solved subject to boundary conditions.
We proceed to find an expression for E by combining (1) and (2) to get

B, = —jwA -V, = —jw (A + e V(V - A))
B, = 1P (A+—1§vv-A)
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The equation satisfied by ®, can be obtained from
V- (eE,) = p

or

Vo (~jwA=V)=p = —jue(V-A)—eV-(Vd)=p
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= wpued, - V2@, = p = |V + P, = hg




Recall that the solution of Poisson’s equation is
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or more generally
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where G(r, r') is the free space Green’s function. Likewise
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In the far zone (r — o0) these are not difficult to evaluate.

Far zone approximation:
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For

it turns out that
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From the figure
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Duality gives us E;.
In this case
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in which F' is the potential due to M.



Fields in the presence of electric and magnetic sources
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in the far zone, and r > A (typically v > 2D?%/))
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i the far zone.

See the “Holy Grail of EM Radiation™ handout.

EE'T*—}DO = -—ijtra.ns = jWTA X (f X A)
Atrans =A - ’.'2(?": . A)

2D sources

Cross section of J

is the same for all 7',
i.e., currents travel to
infinity if z-directed

For 2D, the potential expression is the same, but 3/8z terms vanish, viz., 8/8z — 0.
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1D sources

Current sheet/plate

/ has the same current

value along the xy plane
{only z-variation}
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Volume equivalence

scat — Jext ... Jpinc Eext
Escat = | E

exl .- Jrscat
E E

The above (J,, My} are equivalent volume currents which generate the same fields (E=%, H®t) as
if the dielectric was there. The derivation in terms of (E"® H'™) is straightforward.
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