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Applying the unit vector relations of (26) and (27), (28) reduces to
AxB= R(Asz - Asz) + 9(Asz - Asz) + i(AxBy - AyBx) (29)
This may be expressed concisely in determinant form as follows:
. e V4
AxB=|A,
B

[

(30)
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1-9 INTRODUCTION TO COORDINATE
SYSTEMS '

As an introduction to the subject of coordinate systems, let us compare the rec-
tangular and polar two-coordinate systems. Here the basic relations can be shown
in a two-dimensional flat space (plane of the page). These ideas are then easily
extended to three-dimensional systems which are discussed later. The coordinate
systems we will use are all orthogonal systems, that is, their axes are mutually
perpendicular (at 90° angles).

The position of a point P in a flat plane may be described by its perpendicular
distance x from a y axis and its perpendicular distance y from an x axis as in Fig.
1-15a. The x and y axes of this rectangular two-coordinate system intersect at right
angles. The point of intersection (x = y = 0) is called the origin.

The point P may also be located in polar coordinates as the radial distance
r from the origin and the angle ¢ to the radial line as measured from a reference
direction (x axis) (Fig. 1-15b). Thus, P is at the intersection of a circle of radius r
and a straight line at the angle ¢. The point for which r =0 is the origin.

RECTANGULAR

FIGURE 1-15
(a) Point P in rectangular coordinates (x, y) with vector A

resolved into its rectangular components (A, A,). (Continued
on next page)
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POLAR
A
. A =TA,
A= 04,
A
S L4
T
Point
r P(r, ¢)
¢
Origin , FIGURE 1-15 (continued)
r=0 (b) Point P in polar coordinates (r, ¢) with vector A re-
(b) solved into its polar components (A,, A,).

Comparing the rectangular and polar systems in Fig. 1-15a and b, we note
that
' X =T COos ¢ (1)
y=rsin ¢
and conversely that

r=Jx*+)? )

-i(7Y
¢ = tan (;)

Thus, the coordinates of the point P are transformed from polar into rect-
angular coordinates by (1) and from rectangular into polar by (2).

Suppose next that we have a vector A at the point P with coordinates (x, y)
or (r, $)." Referring to Fig. 1-15a, the vector A may be expressed in terms of its

rectangular components as

A=%A4,+ 34, 3)
or in terms of its polar components (Fig. 1-15b) as
A =1A, + dA, )
It follows that
A, = A,cos ¢ + A,sin ¢ 5)

Ay= —A,sin¢ + A, cos ¢
and that
A,=A,cos p — Ay sin ¢ ©)
A, = A,sin¢ + A, cos ¢

t Note that 4 is not the distance from the origin (r is the distance). Note also that

A= JAT+ A2 = JAT + 4}
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Thus, the vector A at the point P is transformed from rectangular into polar
components by (5) and from polar into rectangular components by (6).

Turning now to three-coordinate systems, the most common are the rectan-
gular (Fig. 1-16a), the cylindrical (Fig. 1-16b), and the spherical (Fig. 1-16c).

In rectangular coordinates a point P is specified by x, y, z, where these values
are all measured from the origin (Fig. 1-16a). A vector at the point P is specified
in terms of three mutually perpendicular components with unit vectors %, §, and
. The unit vectors X, §, and Z form a right-handed set, that is, turning X into §
like a right-handed screw, we move in the Z direction (Fig. 1-7a).

Plane z = const

Plane y = const

| RECTANGULAR (a)

Xy 2

at(x, y, 2)
/ Plane x = const

Plane z = const
z

Point P
at(r, ¢, 2)

CYLINDRICAL (b)

Point P
at(r, 6, ¢)

SPHERICAL
r, 8, ¢ (c)

FIGURE 1-16
Sphere r = const Coordinate systems. (@) Rectangular.
_Ptane ¢ = const (b) Cylindrical. (c) Spherical.
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In cylindrical coordinates a point P is specified by r, ¢, z, where ¢ is measured
from the x axis (or x-z plane) (Fig. 1-16b). A vector at the point P is specified in
terms of three mutually perpendicular components with unit vectors f perpendicular
to the cylinder of radius r, d) perpendicular to the plane through the z axis at angle
¢, and 2 perpendicular to the x-y plane at distance z. The unit vectors f, ¢, Z form
a right-handed set.

We note that the polar (two-coordinate) system of Fig. 1-15b is the same as
the x-y plane coordinates of a cylindrical system (Fig. 1-16b).

In spherical coordinates a point P is specified by r, 8, ¢, where r is measured
from the origin, 8 is measured from the z axis, and ¢ is measured from the x axis
(or x-z plane) (Fig. 1-16¢). With z axis up, as in Fig. 1-16c, 0 is sometimes called
the zenith angle and ¢ the azimuth angle. A vector at the point P is specified in
terms of three mutually perpendicular components with unit vectors f perpendicular
to the sphere of radius r, § perpendicular to the cone of angle 6, and <|> perpendicular
to the plane through the z axis at angle ¢. The unit vectors £, 8, ¢ form a right-
handed set.

Length elements (dL) and volume elements (dv) for the rectangular, cylindrical,
and spherical coordinate systems are shown in Fig. 1-17.

An infinitesimal length in the rectangular system is given by

dL = \/dx* + dy? + dz? )]

and an infinitesimal volume by

dv =dx dy dz 8)
In the cylindrical system the corresponding quantities are
dL = \/dr* + r* d¢?* + dz? 9
and ' dv=drrdédz (10)
In the spherical system we have
= \/dr* + r* d6* + r*sin® 0 d¢? (11)
and dv=drrdfrsin0d¢ (12)

Referring to Fig. 1-18, the projection x of the scalar distance r on the x axis
is given by r cos a where « is the angle between r and the x axis. The projection
of r on the y axis is given by r cos f, and the projection on the z axis by r cos .

Note that y = 6 so cos y = cos 6.
The quantities cos a, cos f, and cos y are called the direction cosines. From

the theorem of Pythagoras,
cos?a + cos? B+ cos?y =1 (13)
The direction cosines cos a and cos f§ are related to the spherical angles 0

and ¢ as follows:
cos o = sin 0 cos ¢

cos 8 = sin O sin ¢
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z dv = dx dy dz A '\d
/\
dL=‘de2+dy2+d22 ﬁ‘x&,‘-‘-b]lé]"% i‘_

o dz

A % = Rdybe +jaxda

p RECTANGULAR
y

dv=drrd¢ oA N -(»é.\cgi
i+ G ar s L= r*‘{’r&‘(’«&&_z
dL &;:r‘r& %:\“43 r

» a¢ CYLINDRICAL (b) +Z TQ e & 4)

y

dv = dr Psing d6 d¢
dL =Vdr2 + (r d6)? + (r sin® d ¢)2

,, SPHERICAL (c)
a a’.t = PQH-@"&Q‘“#’(?‘Q‘H’
L3S = ?‘r’sme&+&9+9,r\sh9&4’&r
4+ rdrdd

FIGURE 1-17
Elemental lengths and volumes in rectangular, cylindrical, and spherical coordinates.

This may be shown in two steps. First, we obtain the projection of r on the x-y
(horizontal plane). From Fig. 1-18 this is seen to be r sin 6. Then, we obtain the
projection of r sin 6 on the x axis which is r sin 6 cos ¢ = r cos a.

In a similar way, we find that the projection of r on the y axis is
rsin 6 sin ¢ = r cos B.

Thus (see Fig. 1-18), the scalar distance r of a spherical coordinate system
transforms into rectangular coordinate distances
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FIGURE 1-18

Scalar distance r to point P at (r, 6, ¢)
resolved into rectangular (x,y, 2)
components. Rectangular (X, §, 2)
unit vectors are also shown.

X =rcosa=rsin § cos ¢ (14)
y=rcos f=rsin0fsin ¢ (15)
z=rcosy=rcosf (16)
from which
cos a = sin 0 cos ¢ 17
cos f = sin @ sin ¢ (18)
cos y = cos 6 (19)

As the converse of (14), (15), and (16), the spherical coordinate values (r, 0, ¢)
may be expressed in terms of rectangular coordinate distances as follows:

r=Jx2+y*+z2  (r=0) (20)

z ©0<6<n @1)

X2+ y 4+ 22 -

— tan-12
¢—tan’x (22)

0 =cos™?!

From these and similar coordinate transformations of spherical to rectangular
and rectangular to spherical coordinates, we may express a vector A at some point
P with spherical components A4,, 4y, and A, as the rectangular components 4,,
A,, and A, where

A, = A,sin0cos ¢ + Agcos 0 cos ¢ — A, sin ¢ (23)
A, = A, sin 0sin ¢ + Aycos Osin ¢ + A, cos ¢ (24)
A, = A,cos @ — Aysin 0 (25)
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We note also from Fig. 1-18 that the dot products of the unit vector # with
the rectangular unit vectors &, §, and 2 are equal to the direction cosines as given

by

%+ f =cos a=sin 6 cos ¢ (26)
§-f=cos B =sin0sin ¢ 27)
‘f=cosy=cos@ (28)

These and other dot product combinations are listed in Table 1-1.

In addition to rectangular, cylindrical, and spherical coordinate systems, there
are many other systems such as the elliptical, spheroidal (both prolate and oblate),
and paraboloidal systems. Although the number of possible systems is infinite, all
of them can be treated in terms of a generalized curvilinear coordinate system.
However, we will not need to deal with these systems in this book, the rectangular,
cylindrical, and spherical systems being sufficient for our requirements.

The fundamental parameters of the rectangular, cylindrical, and spherical
coordinate systems are summarized in Table 1-2.

Table 1-3 gives the unit vector dot products in rectangular coordinates for
both rectangular-cylindrical and rectangular-spherical coordinates.

Table 1-4 summarizes the transformations between the three systems.

TABLE 1-1
Dot products of unit vectors in three coordinate systems

Rectangular Cylindrical Spherical

% § i ¢ é i |¢ 0 ¢

-ai 0 0 cos¢ —sing O sixgaoosdt cos@cos ¢ —sin¢
g §] O 1 0 sing cos¢p O sinfsing cos@sing cos¢
il o 0 0 0 1 |cos® —sin @ 0
_Tg #| cos¢ sin ¢ 0o |1 0 0 |sind cos 0 0
2 ¢|-sing cos ¢ o |o 1 o |o 0
G o 0 1 |0 0 1 |cos® —sin 0 0
Gl #| sinfcos¢ sinfsing cosb sinf 0 cosf|1 0
;5 0 coscos d cosOsingd —sinf |cosd O —sin 6 |0
& ¢| —sing cos ¢ o |o 1 o |o 0

Note that the unit vectors # in the cylindrical and spherical systems are not the same. Example:

% = sin 0 cos ¢



TABLE 12 Parameters of rectangular, cylindrical, and spherical coordinate systems

Coordinate system Coordinates Range Unit vectors Length elements Coordinate surfaces
Rectangular (Fig. 1-16a) x ~00 to + a0 b4 dx Plane X = constant
y —00 to +00 § dy Plane y = constant
z ~o to +00 2 dz Plane z = constant
Cylindrical (Fig. 1-16b) r 0to £ dr Cylinder r = constant
. ¢ 0to2n b rd¢ Plane ¢ = constant
. z —©oto +o0 .2 dz Plane z = constant
Spherical (Fig. 1-16c) r 0to £ dr Sphere r = constant
0 Oton 0 rdf Cone 0 = constant
¢ 0to2n ¢ rsin 6 d¢ Plane ¢ = constant
TABLE 1-3
Unit vector dot products for rectangular-cylindical and rectangular-spherical coordinates
Rectangular-cylindrical product Rectangular-spherical product
in rectangular coordinates in rectangular coordinates
b ] 2 R § 2
¢ ad 4 o | ¢ X y z
\/x’ + y! \/x! + y! \/x’ + y’ +22 \/x’ + y’ +22 \/xI + y’ + 22
$ -y X 0 é Xz yz s/x! + y2
N N NN U e X2yt iy 2 NI
a y b4
2 0 0 1 —— y— 0
¢ xX“+y \/x’ + y2 .
x x
Example: ¢ - § = cos ¢ = Example: & « # = sin 6 cos ¢ = ——ee_—
x*+y P NI
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TABLE 1-4 )
Coordinate transformations

Rectangular to cylindrical

b y
A=A, +4
! Vxt+y? ’\/xz +y?

y x
A, = —A + A
¢ BN N e

A=A,
Rectangular to spherical
x y z
A=A + A + A
Y+ 2 Tty IR +y+
A=A xz i yz p VE+y
R e e UV o i R B e
y x
A, = —A +
¢ S ry U+ 2
Cylindrical to rectangular

A, =A,cos ¢ — A, sin ¢

A, = A,sin ¢ + A cos ¢

A, =4,

Spherical to rectangular
A, = A,sin0cos ¢ + Agcos Ocos ¢ — A, sin ¢
A, = A, sin Osin ¢ + A, cos Osin ¢ + A, cos ¢
A, =A,cos0— A,sin 8

1-10  SUMMARY

With the history of electromagnetism as background, dimensions, units, symbols,
and equation numbering were explained. Finally, we discussed some of the intro-
ductory aspects of vector analysis and coordinate systems. We are now ready to
begin the basics of electromagnetism with the Static Electric Fields of Chap. 2.

QUESTIONS

I-1. Thales knew about electricity and magnetism in the year 600 B.c. Why did it take 25
centuries before Maxwell formulated his theory unifying electricity and magnetism?

1-2. Who designed the Niagara Falls power station of 1895? What is the unit named for
him?



