Solution of time harmonic Maxwell’s equations
(using phasors)

Review of plane waves (source free or source is far away)

Starting from
VxE=—juuH=—jkZH (Z= \/g, impedance)

1
VxH=+jweE=+jkYE (Y = \/E =7 admittance)

k=wy/pe=k - jk" = § - ja
B = Re(k)

in which ¢ is complex and ¢ is an attenuation constant. As before, taking the curl of the first
Maxwell’s equation and substituting into the second yields

VxVxE—K*E=0  vector wave equation
VxVxE=V(VaE)-VE
VE+KE=0  waveequation (V-E=0)

V’E; +k’E; =0
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We like to solve this latter equation subject to some boundary conditions. Since we assume free
space, there are no conditions or interfaces to invoke i x (E; — E;) = Oor /i x (H; — Hy) = 0.
Instead the only boundary condition of consideration is the one at infinity. That is, our domain
ends at T — oo. The only reasonable condition to apply is therefore that the field decays at infinity.



One-dimensional plane wave solution

To begin with, let us consider a one-dimensional solution to the wave equation. In this case, the
field can be rewritten as

E=E f(z)=¢ f(z)

in which é represents the polarization of the wave such that V - E = 0. When used in the wave

equation, this field gives
8% f

5 +kf=0
Oz? /
This is a second order ordinary differential equation, and has the well-known possible solutions:
et coskx, sinkz
Note also that
e:i:jk:i: e} e+jk’me—k"m
with e~*" vanishing to 0 when z — oo (k” > 0). Hereon, we will assume £” = 0. Thus

(k =k — jk" = ) _ .
f(z) = CLe778% 1 Cpetibe

is the appropriate solution. In time domain
f@,t) = |Ci|cos(wt — Bz +¢1) <« Re{Cie” e}, C) = |Cy|e*
+ |Cy| cos{wt + Bz + ¢o)
We can rewrite the above in a more general form as
E = §(Cre 1% 4 0y kedn)
with

OE, , OE, 9B

VE=0 = St T

If we choose

é—»{g 5 or 22 etc}
il ] ﬁ i "
then V - E = 0, as required.
We identify
k]_ - :f?ko, kg = —.’Ekg,

ko = Bo = w+/Hoeo
so that k - Tz = kox as required. The unit vector

~ k
p— k= —



represents the-direction of the wave. A
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-Using this identification, we can write an.expression for the general plane wave as

E(r) = é{Cre** £ Che**™}  in phasor form
€(r,t) = ¢|Cy| cos(wt — k- £ + ¢1) + écos(wt + k- 1+ ¢), in time domain form
H=Y(p x E})
k = (ik, + gk, + 2k,)  direction of the wave
r=gxi+yj+zz

where r is the position vector at which location we measure the phase of the wave. Clearly, the
equations wt — k - r = constant, or k - r = constant refer to equations of a plane (the plane on
which the phase of the wave is constant). This is the reason why the fields of this form are called
“plane waves,” i.e., at a specific time, the constant phase surfaces of the wave are planes,

Plane waves in spherical coordinates
Set
k = ko(Z cos ¢sinf + fsin ¢ sin @ + Z cos ) = kyf

k; =kocosgpsinf

ky = kosin ¢ siné

k, = kocosé
Thus, we write E as

E = ge7kT — go—iko(zcos dsin-+ysin psin 12 cos0) (outgoing wave)

For constant & = #cosgsind + ysingsinf + Zcos#, the exponent & = zcosdsing +
ysingsind + zcos = const. represents a plane, and therefore the wave is referred to as a plane
wave.



Spherical waves

Consider, e 7¥7 = g—Jkr,

Since we know that waves have a decay of 1, a proposed solution in 3D is

eﬁjkr

T

Spherical waves decay in accordance with the QTL- factor and have constant phase on r = r; spheres.
But let’s not take the above generalization for granted. Let us instead proceed to solve the wave
equation in 3D using the method of separation of variables (uniqueness theorem helps here).

General solution (separation of variables)

VxE=—jkZH

VIE4KE =0
V x H=+jkVE

withV-E =0
jkY = jwe, JkZ = jwp
k=w/uie=k - jk" = 8- jo
where « is the attenuation constant. Consider the solution
E(z,y,2) = & X(2) Y{y) 2(2) = e ¢(a,y, 2)

Then
Vi + k*p =0  (Helmholtz equation)

Substituting ¢ = XY Z, we get

PX Y &z
0X _ 1

o



or (divide by XY Z)
XH YH’ ZH’ kz 0
X Tyt s
Since X, Y and Z are independent of each other, each must be a constant if their sum is a constant.

Thus, we conclude that

XH' 9 YH 9 ZH 5
RS — = -
X & Y Fy: Z g
=
X"+KEX=0, Y'+EY=0, Z'+kZ=0
and

kZ-+k2+k2=Fk*  (consistency condition or characteristic equation)

General solution is (see pp. 85 and 143 of Harrington)

X(z) = Ae ks 4 B gikaz more convenient
| Alcoskyz+ Bisink,z  notconvenient
Aze‘jkvy + Bzejkyy
Y(y):{ Lcosk,y+ Bisink
2 vy 2 S Ky Y

_ Age—jk”z -+ B36jk"z
2z) = { Ajcosk,z + Blsink,z

We remark that each of these solutions satisfies the so-called radiation condition at infinity (£ —
o0): 5

Ey

1D: — £ jkoEy =0

o€ Kot

where £ = {z,y, orz }.
In 3D, the general form of the radiation condition is
m r(V X E+ jkt x E) =0

r—oQ

(in unbounded media). Fields must satisfy Maxwell’s equations and the radiation condition as
stated above. A specific example of the solutions E = X (z) Y (y) Z(z) is

E(z,vy, 2) = éBye IketeThive=ikr — g B o=7 2(@4:2)

In time domain, £ = éFy cos(wt — @)
i ko + kyt) + k,2

JETRTR

®(z,y, 2) = constant
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We remark that this wave propagates along k, where & is normal to the surface

—®(z,y, #) = constant

In fact, the “phase front” (the plane on which the wave has constant phase) of the wave is on one
of these surfaces (say ® = ®q) at some specific time ¢ = 5. Since

® = k;x + kyy + k,2 = constant

is the equation of a plane, the wave is called “plane wave” (i.e., its constant phase surfaces are
planes).

Spherical and cylindrical waves
If

S =ky/22+ oyt 22 =kr

then we will refer to the wave as “spherical.” If

Q= k22 +yt=kp

we will refer to the wave as “cylindrical,” and so on.
We remark that the solution of the wave equation in spherical coordinates is

e:i:ﬂcr

r
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Power decays as 1/r2.
Also, the solution of the wave equation in cylindrical coordinates is

+ikr

VP

€

Power decays as 1/p.

Velocity of the plane wave

The velocity of the wave represents the speed at which the wave moves from one phase front @ to
another. Alternatively, the wave velocity is that seen by an observer who is situated on a specific
phase front @ as the wave passes by. To find the wave velocity, let us try to “track” the crest of the
wave. For a sinusoidal wave cos{wt — @), the wave crest satisfies the condition

dwt—®)=0 = wdt—dd=0

where d® = the derivative along direction of the wave. By chain rule

od o o®
d=—dr+-—dy+ —
d e x+ay y+aydz

it follows that X
d® =V .-ds = (VP k) ds

Thus

wdt-db=wdt—(Vé-k)ds=0 =

?g% = Velocity =

RS
o




For a plane wave,
ds +w

7t Uphase = Vp = i

since for a plane wave ) ﬁ
VO -k =3k, + Gk, + 2k,) k=k

Also, the velocity along the z direction is

Up, = = etc.

hd
Ve Kk
Other forms of plane waves

We can rewrite £ as )
E = éEye™ %" = gEjeihokr
If
k = % cos ¢ysin; + §sin ¢ sin 6 - Z cos §;

where (6;, ¢;) is the direction angles of the wave, then

E= éEOg‘ij(m c03 ¢; sin 6; +y sin @ sin 8;+2z cos §;)

Usually
€= {qﬁiEg or éiEO}

(no 7* component exists for a plane wave since V - E # () when defined in spherical system or free
space.



Casel: 6, =73

E = { qfi }Eoe—jk(m003¢;+ysin¢i)
i
b ik
o " Eane=ik#p
{ 6 f°
by = —2 sin ¢ + § cos
§; = % cosb; cos i + ycos d;sin ¢y — Zsin 9i|9;=7r_/2

19

Case2: ¢ = Z andf; = 3
E = { :if: }E{)e—j"‘y + as before
Note that for plane waves

H=YkxE, E=ZHxk

ie., V — k for Maxwell’s equations for plane waves.

Spherical wave fronts
If

® =k\/2?+y?+ 22 =kr

then




Cylindrical wave fronts

O =ky/22+ 9% —r kp

then
eI® y gIkp

I R
\
‘D/‘

NA
k=p
{ x’*njz‘.:c., WCL ,

The following spherical wave is also a solution to Maxwell’s equations:

Spherical solutions

e:l:jkr
E~¢

T

This is the field generated by all 3D sources as r — 00, subject to the radiation/boundary condition

lim r[f % (V x B) ¥ jkE] = 0

T

Cylindrical solutions
The following cylindrical wave is also a solution to Maxwell’s equations:
e:l:jkp
‘/ﬁ

This field is generated by all 2D sources (for example, current of an infinite wire) as p — oo
subject to the radiation/boundary condition

E~zZ

1im\/5{%:[:jk} E, =0
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