Review of Differential Equations

1) First-order D.E.

E. Kreyszig, Advanced Engineering Mathematics, J. Wiley, 4th ed.

v+ flz)y = r(z) .i\&homogeneous
v+ flz)y=0 homogeneous

e

y(z) = coe ™™ + e“h/ehr(m) dz

a) homogeneous solution

b)  iwhomogeneous solution

Example

Find the current of the circuit
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Applying Kirchoff’s voltage law we have

dI(t) = [+ EI: V_(t_)_

V(t) = RI(t)+ 12 2=

i.e., from (1}
flt) = % and 7(t) = (t) = h= L
Choose V(t) = sinwt. Then

I() = coe™ (/D) e—(R/L)t/eﬂR/L)tSilewt 0t

Using integration by parts

cepe B L psinet -
I{(t) = coe * BAYAY (Rsinwt wL coswt)
el Y pan
o€ 7 IR (Rsinwt — wL coswt)
transient ™
response

steady state response

L
§ = tan~! vl
an (R)

Note: ¢o = I(t=10).
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Second-order D.E. (see Chapters 2 and 4 of your text)

General form:

v+ f(x) ¥ + g(z)y = r(z) "‘-:‘b-‘l‘uhomogeneous
v+ )y +g(z)y=0 homogeneous

1) Cauchy’s equation or Euler’s equation

ae2y" +azy +by =0

Solution is y = a7, substituting in D.E. we have

'r2+(a-1)1r+b=0:>7‘:r1,2:>

Complete solution is |y(m) =1z’ + cpa™?

Hr=ry=rythen|y(z)=c1z”" + calnra”

2) Homogeneous solution with constant coefficients

yff+ayf+byf: 0

A solution is y = ¢**. Substituting in D.E. we have

—a =+ a2 —4b

)\2+a/\~|~b:0:¢‘)\112: 2

Case 1 Ay real
then y = 1y, = AjeME 4 A,

Case II A ,=%£jF{(a=0)
then y = y, = (1 cos fz + Gy sin fou

Case III )\1’2 - ﬁ:jﬁ
then y = y, = €*"(¢1 cos fz + cgsin fz)
The constants as you well know are computed with the appropriate initial conditions.

Case TV A = Ay = A (real, of course complex roots appear always in conjugate pairs)
y=yp = (D1 + ng)e’\“’

3) Non-homogeneous solution of D.E. with constant coeflicients
@Iﬁ MM“W y" +ay' + by = r(z)

general solution is
y(#) =+ 5%
where “h” indicates the homogeneous solution from 2) and “p” indicates the particular solution
corresponding to r{z).
The choices of y,{z) according to r(z) are as follows:




r(z) | yo(2)

eb® Be?”
AXN, N =0,1,2,... SN B X"
Acosgz By cosgr + By singz
Asingz Ajcos gz + Agsin gz

Note: The constants B; for y,(z) are found by substituting y, in the D.E. and equating the
coefficients of like basis functions.

A general method for finding g, is also given by

ve(®) = “yl(w)/yg(%(—m—)dm +yz(w)/_m—y1(m%($) da

where g, and y; are the two homogeneous solutions to the D.E. and W = y145 — 92, referred to
as the Wronskian.

4) Bessel’s Differential Equation (sections 4.5, 4.6)

g +y a2y + (2% - vy =0 v = real number

The solution is found by using the power series substitution of y = >°° m+tk

m=0
the coefficients ¢, .
In particular,

Cin and determining

=0 for m odd

Com = — Cam—2
dm(v +m)

o= — 1

2°T(v+ 1)

I'(v) = gamma function = /00 et dt; [(1/2) = /7
forv=n= intiger I'(n+1) = n!
The solution is written as
y(z) = ApJu(z) + ApJ_(x)  for v # nsince J_,(2) = (=1)"J.(z)

or in general as
y(z) = BiJ,{x)+ ByY,(z) forallw

where Jy(2) is the Bessel function of the first kind and of order », given by

p ( ) _ x i (ml)mm%n
v\ = fopard 22mtvm! (v +m + 1)

For v = n, an integral form of J,(z} is

1 ¥
Jn(z) = ;/ﬂ cos(sin @ — n@) dé
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for small z = Jv($)|$_>0 = "fm (5) ) JO(O) =1 & ;iUD(O) =9
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Frg. D-1, Begsel funcetions of the first kind,

Basic recursive relationships for Bessel functions

(E}UJU)’ = -'EvJv_l
(2700,) = &~ Jpiq

T = Jy g — 2y
X
v
To= 0y = o
; 1
= E[Jv—l — Ju1]
x
Jy = %['j‘u-—l + Jut1]

2v
Jop1 = —Jy — J
+H= 1
/m”Jv(m) dr = 2" oy +{v—p+ 1)/m“_1Jv+1 dz

/m”Jy(m) de=a2*J,_ 1 +{v+p—1) /m‘”’_lJv__l dx

fJU dr = —2J.U"_1 4+ f Jy_g dx
/Jv dr = 2Jv+1 + f Jv+2 dx

it is a real number

Y,(z) are referred to as the Bessel functions of the second kind or Newman functions. They are

given by
Jo(z) cosvr — J_p(z)

gin v

Yo(z)=




For small z = Y, ()|, = B ; Ol (W)
HA

and for large z = Y,(z)|, ,, = 1/213111 (:c _ g _ %)
T

Note that we can also write the solution to Bessel’s equation in terms of the Hankel functions given
by

HN(2) = Jy(2)+ iV, (z) and HP(2) = Jy(2) - jY,(a) |77

la

5) Legendre’s equation (section 4.3)
(1—aBy” — 22y +n(n+ y=2  n: integer Tem

vy

>

Using v = Y 7 . £, 2™ a solution to Legendre’s equation is
g Y n=0 2 q

| :
! B
‘ ]
y(.’l’)) ] Can(Q?) { “_j >< %
where P,{z) are Legendre’s polynomials of the first kind, given by i T K___%ﬁf_—‘ﬁ_—“w H
/2 ( 2m)’ n—2m 7 /73 e ?E,
—_1y™ IR W Y g
m) Z( ) anml ( ‘TI’I,)‘ (n zm)'| (n even) X §>< ;
™~ -8
n—l)/? AN &
" —~ 2m)l gT2m B i N
Z (-1) 2”m’ e —zmy (o) LTS
or using Rodrigue’s formula 5§33 ° 8 33 I
! [
P, 7
.n,(ﬂ}') 2”’?’&' diL‘n [( 1) ]
Note 1
Po(z)=1, Pz)==2, Plz)= (33: -1), Plz)= 5(5:5'3 -~ 3a)
Also, note

Bu(-z) = (=1)"Pu(2)

6) Sturm-Liouville Problem (section 4.8)

All of the homogeneous D.E. equations discussed above can he written in the form
[r(2)y') + [g(z) + Ap(z)]y = 0

which is referred to as the Sturm-Liouville equation.
For example, if we choose -
Fig. 74. Legendre polynomiale

a) r(@)=g, g&)=-—, p)=2, & A=1,
then we have
(zy') + (—-Tg + w) y=0
which after multiplying by 2 reduces to Bessel’s equation.
b) rlz)=1-2% qz)=0, A=n(n+1), & p) =1,
then we have
(=2 +n(n+D)y=0= —22y + (1 - 2)%" + n(n+ 1)y =0

‘which is Legendre’s equation.



7) Orthogonality of the basis functions which are solutions to the Sturm-Liouville D.E.

If the solutions to the Sturm-Liouville equation are chosen to also satisfy the conditions {Boundary
Conditions)

Ary(a) + Az (a) = 0

Biy(b) + Bay'(b) =0

where A;, By, a, b are constants. Then it can be proven that (see section 4.8)

b
(€ms€n) = / plx)em(z) en(2)de =0 form#mn

em () and e,(z) are solutions to the D.E. and satisfy the Boundary Conditions. The above integral
can be recognized as the interproduct of e, and e, with weighting function p(z) as it appears in
the Sturm-Liouville equation, i.e.,
(em,eny =0 form#n
and, of course, for m = n we have
(en en) = |l6n\|2

If (@) = r(b) = 0 then the Boundary Conditions are always satisfied and therefore e, and e, are
orthogonal for n # m with such a choice of ¢ and b.

Thus, choosing en(z) = P,(z), the Legendre polynomials, we then have that p(z) = 1. In
addition, note that for a = =1 and b= 1, #(—1) = r(1) = 0. Therefore

(P, Pr) = ./_1 Pu(z)Pp(2)dz =0 m+#£n

and it can be found that [|Po(2)[* = 525. The orthogonality of the Bessel functions will be

discussed in Chapter 11 when we discuss the solution of V2V = 0 in cylindrical coordinates. We
will see in Chapter 11 that the Bessel functions are cylindrical functions, whereas the Legendre
functions are spherical functions.

Further, note that if the set e, [°2, is a complete orthogonal set then any appropriate function
can be expressed as

flz)= Z cnen(z)

where @ < & < b and {en,en) = fab enep = 0, m # n. To find ¢, we multiply by e, and integrate
both sides =

b e b
/a f(z) em(z) do = ch/a en(2) em(z) de =
L F@) en(2)

T llem(2)

Examples: e,: sinnz, cosna and vEIT || sinnz||* = 7 = || cosnz|| and ||1||* = 27.

b=

Additional References
1) N.N. Lebedev, Special Functions and Their Applications, Dover Publications.
2) M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions, etc.
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For small z = Y‘U(‘F)FJ"‘—’O = —u (E)
T x

2
and for large z = Y ()| _, = 1/ :}—Si“ (33 — g — 32?_[)
T

Note that we can also write the solution to Bessel’s equation in terms of the Hankel functions given

by
H(z) = J(2) +jY,(z) and H{(z)= Jy(z) - 5Y,(z) !

5) Legendre’s equation (section 4.3)
(1-z%)y" — 229 + n(n+ L)y =2 n: integer
Using y = .5 ¢cm2™ a solution to Legendre’s equation is
y(z) = e1Pu(z)

where F,(z) are Legendre’s polynomials of the first kind, given by

2%
-

Fru. D-2. Bessel functions of the second kind.

n/? _ _ ':-
m QTL — 2m !lrn 2m | ‘ w0
P.z)= Z(—l) ijlng! (= m))! = 2m)] (n even) .___ - M%
m=1 . = { 152 K__ ,_____‘ -
(= 1)/ 2n — 2m)! g 2m _ T
R S Remea
m=1 !

-1.0
—1i.2
0

or using Rodrigue’s formula
1 4"

omn! dgn

Pr(z) = [(2* —1)"]

Note
Ro(e) =1, Pa)=2, Pye)=3(3*-1), Pie)= 5 (50° — 32)

Also, note
Po(=z} = (~1)"Pu(z)

6) Sturm-Liouville Problem (section 4.8)
All of the homogeneous D.E. equations discussed above can be written in the form
[r(2) '] + [a(=) + Ap(2))y = 0

which is referred to as the Sturm-Liouville equation.

For example, if we choose -
Flg. T4. Legendre polynomials
2

a) r(z) =z, q(m):—%, plz)==z, & X=1,

then we have
»2

(zy) + (_T + 1) y=70

which after multiplying by = reduces to Bessel’s equation.

by r(z)=1-2% ¢a)=0, A= n{n+1), & plr)=1,

then we have
(L= 2By +nn+ Dy =0= =2y + (1 — 2)y" + n(n4 Ly=20

which is Legendre’s equation.
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