3D Waveguides

Ax modes

Figure 1: Waveguide geometry.

Solution for the fields within the guide can be written as a summation of modes. As done for
2D waveguides, we will decompose the modes down to TE and TM. Since propagation is along z
(a choice), we will refer to the modes as TE® and TM? (i.e., transverse electric to z and transverse
magnetic to z). As usual the TE* modes will have H, #£ 0, E, =0 and the TM* modes will be
associated with H, = 0, E, # 0. Further, since H, =%- 1V X (24,) =0, and E, = 3- V X (2F;) =0,
we can associate the TE® modes with the electric Vector potential F = ZF; and the TM‘Z modes with
the magnetic vector potential A = ZA;. All of these statements are summarized below.
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Expressions assume an ¢=/% " ¢ dependence.

TM? modes

Using the method of separation of variables, we let

™M
Ay =y™(x,3,2) = BM f(x) g(y) e /%2

(see Harrington p. 148 or Balanis p. 362). Here, we chose 4(z) = e~/ % since we expect propa-

gation along the -z direction. For propagation along the —z direction h(z) = etik Mz and if both

+z and —z propagation is allowed then h(z) = Aze %% 4 Byt "z — = Al cosk Mz + B’ sink Mz,

where A3, B3 are constants to be determined on the basis of boundary cond1t10ns and the excitation.
From the above expression for A;, we have that
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Given that f(x) and g(y) must satisfy the wave equation and that

) E(x,y=0)=E;(x,y=5)=0

2) Ey(x=0,y)=Ey(x=a,y)=0

we readily conclude that



D gy=0)=0, gb=b)=
implying g(y) = sin (%2), n=1,2,3,...

2) flx=0)=0, flx=a)=
implying f(x) =sin (ZZx), m=1,2,3,...
Thus, ‘n:
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as dictated by the wave equation
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Here each of the wave functions yIM represents a possible solution or mode of the fields that may
be supported inside the metallic waveguide. For this case, this mode will be referred to as the
'TM;,, mode. As stated earlier, the complete solution will be the sum of all modes. Specifically,
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where
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1s a convenient set of constants to be determined from the excitation.
The TM,,, modes will propagate when k,, are real, else they will atienuate and vanish within
a small fraction of a wavelength from the source. That is, the TMZ,, mode propagates/exists inside

the guide when
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The cutoff frequency of the (mn)th mode occurs when
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The wave frequency f = w/21 must be above (fi)ms for the (mn)th mode to propagate. It is
convenient to express k,, = — jy in terms of the cutoff wavenumber as

Y:jkz:jk\/l*(fc/f)za f>r

We note that the modes vanish (since E, vanishes) when either m — 0 or » = 0. That is, the
lowest TM® mode to propagate is the TM?; mode. As an example, when b = 6.5 in = 16.51 cm,
a@ = 3.25 in = 8.25 cm (WR650/L band guide) the TM; mode will propagate when
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It will be seen next that this frequency is higher than the cutoff frequency of certain TE? modes
(pp- 361, 364, 365 of Balanis). Thus it is not the lowest supporting mode, and therefore it is not of
much importance since typically only the lowest propagating mode is utilized for transmission in
waveguides.

f> M =

TE? modes

Again, using the method of separation of variables, we express the electric vector potential as

TR
F=vy"(x,y,2) = ATF f(x) g(y) ek =

(see Harrington, p. 149, or Balanis, p. 356). The procedure for determining f(x) and g(y) follows
that used for the TM modes. Again, note that the function A(z) = e %" could be replaced by
h(z) = Ase %72 4 Bye— itz = Al cos(kIBz) + B sin(k1Fz) if we were to consider propagation in
both +z and —z directions.

To determine the form of f(x) and g(y}, we first look at the corresponding expressions for Ey
and E,, viz.
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Next, we note the boundary conditions to be satisfied by E; and E,. Specifically (as before for TM
modes),

1) Ex(x,y=0)=E(x,y=5b)=0
2) Ey(x=0,y) =Ey(x=a,y) =0
Each of these implies the following forms for g{y) and f(x), respectively:

1) gy} =cos (%), n=0,1,2,...



2) f(x) =cos (%x), m=0,1,2,...
Thus, i
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as dictated by the wave equation satisfied by F,/ywIE . The associated field expressions are
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where Hg™ is a new constant proportional to the original constant ALE, viz.,
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The TEZ,, modes will propagate when kgf; is real. Hise, they will attenuate. That is, the (mn)th

mode propagates when
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Thus, the corresponding cutoff frequency for the (mn)th mode is
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For the TE modes, if either m = 0 or n = 0, then H, is associated with non-zero E, or E,, respec-
tively. Thus, setting m = 0 or n = 0 yields a viable mode that can propagate in the waveguide. The
corresponding cutoff frequency is
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(fTEY o, pee1 = e 0.9085GHz,  (A{%)p1 =2b=733.02cm
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That is, for f > (fér E)m the TEq; mode propagates. Alternatively, the TEg; mode begins to propa-
gate when A < 2b or b > A/2. The TE1o mode will begin to propagate when (A < 2a) a > A/2 and

(ATE) 10 =24



the TE»p mode will begin to propagate when a > A, and so on. Whether TEq; or TEqg is the lowest
order mode to propagate, this will depend on the values of @ and b. Specifically, if » > a then TE,;
will be the lowest order mode. For b = 6.5 in, & = 3.25 in, the TEy; propagates for frequencies

1 3x 108 0.3
>0 = = =2~ GHz

2b/foto 2b 2b

Typically, the chosen frequency is slightly above (f.)o1, but is low enough so that no other mode
is allowed to propagate.

Impedance of a mode

The impedance of a given TEZ,, or TMZ,, mode is obtained by taking the ratio of the transverse
components to z. That is,
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implying that the attenuating modes have imaginary reactive impedance,
Similarly, for the TE,,, modes
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Note that (Zy)IE —s o when f = f., and (Zo)IM 5 0 when f = fe.

Power carried by waveguide fields

The power carried by each mode along z is found by integrating the power density over the cross
section of the waveguide. Specifically,
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(See scanned figure)

Figure 2: Plot of the TE and TM meode impedances as a function of frequency. Note that for f < f,
ZIE — iX and ZIM = — jX . For f > f., ZTBET™M = R,

Ax

Figure 3: Cavity cross section for power computation.

where

1
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(see p. 172 of Harrington, p. 374 of Balanis)
For the lowest order TE 1y mode, we have
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Thus, for the TE;p mode
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Waveguide losses

Figure 4: Surface currents for power loss computations.

Waveguide losses are caused by currents generated on the walls of the waveguide. Since the
waveguide has finite conductivity, these currents generate heat due to I>R losses.
The currents generated on the waveguide are given by

Js=Ax(H'—H ) =axH"
since H™ = 0 inside the conductor. Thus, each mode is responsible for a current density
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H"* =0 conductor

Figure 5: Definition of H™ fields used for surface current computations.

A good conductor is associated with a surface impedance due to its skin depth, viz.
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Thus, dissipated power on walls is given by
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For the TE ;3 mode, we have
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where £ = length of the guide. Thus, total power dissipated per unit length is
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Since power decays as e , Where o refers to the imaginary part of &, due to conductor losses,
the corresponding decay factor o is given by
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Figure 6: Attenuation coefficient for the TE1q mode due to conductor losses.
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Figure 2: Plot of the TE and TM mode impedances as a function of frecﬁuency. Note that for
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TABLE 8-1
Ratio of cutoff frequency of TE;,, mode to that of TES,

™ 3 |
mn (!) =\/m2+(2) m = l'z""}m=n¢0
( !) b n=0012,.

a/ b= 10 5 2.25 2 1
m, n = 1,0 1,0 1,0 1.0 1.0:0.1
R, 1 1 1 1 1
m,n = 2,0 2,0 2,0 2,0:0.1 1.1
R,, = 2 2 2 2 1414
m,n=s 3,0 3,0 0,1 1.1 2.0
R, 3 3 2.25 2.236 2
m,n = 4,0 4,0 1.1 2,1 2,1:1.2
R, = 4 4 2.462 2.828 2.236
m,n= 5,0 5,0:0,1 3,0 3.0 2.2
R, = 5 5 3 3 2.828
m,n=> 6,0 1,1 2,1 3,1 3,0;0,3
R, = 6 5.099 3.010 3.606 3
m,n = 7,0 2,1 3,1 4,0:0,2 3,1;1,3
R,,= 7 5.385 3.75 4 3.162
m,n = 8,0 3,1 4,0 1,2 3,2:2,3
R, = 8 5.831 4 .4123 3.606
m,n = 9,0 6,0 0,2 4,1:2,2 4,0:0,4
R,., 9 6 4.5 4472 4
m, n = 1@,@@; 4,1 4,1 5,0:3,2 4,1:1.4
R = 10 6.403 4.589 5 4123



‘TABLE 8-2
Ratio of cutoff frequency of TM:  mode to that of TEje

_E_Q;E_\/mz+(ff)’ m=1,23,...
" (L)re b n=1,23,.
a/b = 10 5 2.25 2 1
n,n = 1.1 1,1 1,1 1,1 1,1
T,, = 10.05 5.10 2.46 2.23 1.414
m, n = 2,1 2,1 2,1 2,1 2,1;1,2
7. = 1019 538 301  2.83 2.236
m,n = 3,1 3,1 3,1 3,1 2,2
T, = 10.44 6.00 3.75 3.61 2.828
0, on = 4,1 4,1 4,1 1,2 3,1;1,3
7., = 10.77 6.40 4.59 4.12 3.162
n, n = , 1 5,1 1,2 4,1:2,2 3,2;2,3
T, = 11.18 7.07 5.09 4.47 3.606
m, n = 6,1 6,1 2,2 3,2 4,1;1,4
7., = 11.66 7.81 5.38 5.00 4.123
m, n = 7.1 7,1 5,1 5,1 3,3
T, = 12.21 8.60 548 5.39 4.243
m, n = 8,1 8,1 3,2 4,2 4,2;2,4
T,,, 6 = 12.81 9.43 5.83 5.66 4,472
m,n = 9,1 1,2 4,2 1,3 4,3:3,4
T,..= 13.82 1004 640 6.08 5.00
m, n = 10,1 2,2 6,1 2,3 51;1,5
T = 14.14 1020 6.41 6.32 5.09
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TABLE 8-2
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TABLE 8-1

Ratio of cutoff frequency of TE;, mode to that of TES,

Te:
_ (S _ m2+(f‘i)2 m=0,1,2.. }m=ﬁ$0
m (ft)':l)t- b r=012,.
a/ b= 1¢ 5 2.25 ) 1
m, n = 1,0 1.0 1.0 1.0 1,0.0,1
R, = 1 1 1 1 1
m, n = 2,0 2,0 2,0 2,0:0.1 1.1
R, = 2 2 2 2 - 1.414
m, n = 3,0 3,0 0,1 1.1 2.0
R, = 3 3 2.25 2.236 2
m, n = 4,0 4.0 1,1 2,1 2,1:1.2
R,,.= 4 4 2.462 2.828 2.236
m, n = 5,0 5,0;0,1 3,0 32,0 2,2
R,,, = 5 5 3 3 2.828
m, n = 6,0 1,1 2,1 3,1 3,0:0.3
R, = 6 5.099 3.010 3.606 3
mi, n = 7,0 2,1 3,1 4,0;0,2 3,1;1,3
R, = 7 5.385 3.75 4 3.162
m,n = 8,0 3,1 4.0 1,2 3,2;2,3
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