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which is identical to that for a two-port network in circuit theory. Reciprocity and
the reaction theorem will now prove useful in determining the elements Zij of the
impedance matrix. These elements can be easily determined by shorting or open-
circuiting the antennas one at a time. Setting I2 = 0, gives

Z21 = V (1)
2

I1

and by referring to (1.126) we may express Z21 as

Z21 = −〈1, 2〉
I1 I2

. (1.129)

By invoking the reciprocity theorem (1.123), we also have Z12 = Z21 and in general

Zi j = −〈 j, i〉
Ii I j

. (1.130)

This expression is valid for computing the self-impedance elements Zii as well and
is useful in numerical simulations of antenna and scattering problems.

1.12 APPROXIMATE BOUNDARY CONDITIONS

In Section 1.4, we discussed the boundary conditions that must be imposed on
material interfaces. These are the usual natural or exact boundary conditions. How-
ever, in many cases, it is possible to employ approximate boundary conditions that
effectively account for the presence of some inhomogeneous interface, a material
coating on a conductor, or a dielectric layer without actually having to include their
geometry explicitly in the analysis.

1.12.1 Impedance Boundary Conditions

The most common approximate boundary condition (ABC) is the impedance bound-
ary condition attributed to Leontovich (1948), which often carries his name in the
literature. It can be derived by considering the simple problem of a plane wave inci-
dence on a material half space. Choosing the interface to be the plane y = 0 with the
y axis directed out of the half space, the Leontovich impedance boundary condition
takes the form

Ez = −ηZo Hx , Ex = ηZo Hz (1.131)
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where Zo =
√

μo

εo
, and η is a function of the material properties of the half space.

These conditions are applied at y = 0+ (just above the interface) and can be combined
to yield the vector form

n̂ × (n̂ × E) = −ηZon̂ × H (1.132)

where n̂ is the unit vector normal in the outward direction (see Figure 1-10). As
can be seen, the form of the impedance boundary condition is independent of the
geometry of the interface or the boundary where it is enforced and is thus applicable
to planar as well as curved surfaces. Further, it can be generalized to the case of
anisotropic material surfaces by writing it as

n̂ × (n̂ × E) = −Zoη · n̂ × H (1.133)

where η is a tensor (a 2 × 2 matrix).
One way to derive the appropriate normalized impedance parameter η is to

demand that the equivalent impedance surface satisfying the condition (1.132) re-
produces the same reflected field. In doing so, for the planar dielectric interface we
readily find that

η =
√

μr

εr
(1.134)

and for this choice of η the condition (1.132) becomes an approximation for simu-
lating curved dielectric boundaries (see Figure 1-10b) provided (Senior, 1960)∣∣Im(

√
εrμr )

∣∣ koρi 	 1 (1.135)

where ρi are the principal radii of curvature associated with the surface. This ensures
that the material is sufficiently lossy so that the fields penetrating the surface do not
reemerge at some other point.

For the coated conductor in Figure 1-10c, the value of η is generally chosen
to be the actual impedance of the corresponding planar structure illuminated by a
plane wave, typically at normal incidence. Accordingly, for a homogeneous coating
of thickness τ (Harrington and Mautz, 1975)

η = j
√

μr

εr
tan(ko

√
εrμrτ) (1.136)

and we can readily compute the corresponding impedance for multilayer coatings.
However, as can be expected, the accuracy of the proposed impedance boundary
condition deteriorates for oblique angles of incidences, requiring that τ be kept
small with respect to the wavelength to achieve resonable accuracies.

Provided the material parameters change slowly from one point of the simulated
surface to another, the impedance boundary condition (1.132) is still applicable. In
this case, the normalized surface impedance for the coating is computed from (1.136)
with the material parameters now being functions of the location on the surface. For
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FIGURE 1-10 Simulation of dielectric boundaries and coatings with equivalent
impenetrable impedance surfaces. (Reference FEM book by Volakis et al.)

a planar interface, if εr and μr vary with respect to y, Rytov (1940) has shown that

η =
√

μr

εr

{
1 + 1

2 jko N

∂

∂y
ln(Zo N ) + O(N−2)

}
(1.137)

where N = √
μrεr is the refractive index, and the derivative is evaluated at the

surface.
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1.12.2 Resistive and Conductive Sheet Transition Conditions

For certain applications, it is desirable to replace a thin dielectric layer with an
equivalent model in an effort to simplify the analysis. To illustrate this idea, let us
consider a thin dielectric slab of thickness τ as shown in Figure 1-11. The slab has
a conductivity σ , and it will thus support a current density given by (see (1.36))

J = σE (1.138)

where E denotes the field within the slab. However, since τ � λ, we may replace J
by an equivalent sheet current (having units in A/m)

Js = τJ (1.139)

and thus from (1.138)

E = Js/στ = Zo ReJs . (1.140)

This condition is a mathematical definition for a resistive sheet supporting a sheet
current Js . The parameter Zo Re is referred to as the resistivity of the sheet and is
measured in �/square (e.g., �/cm2 or �/m2) (Senior and Volakis, 1995).

In deriving (1.140) it has been assumed that E is tangential to the layer or sheet,
and therefore a more precise definition of the condition is

n̂ × (n̂ × E) = −Zo ReJs (1.141)

where n̂ denotes the upper unit normal to the sheet. Further, it is desirable to work
with field quantities that are measured outside the layer or sheet, and since n̂ × E is
continuous across the layer we may rewrite (1.141) as

n̂ × [n̂ × (E+ + E−)] = −2Zo ReJs (1.142a)

n̂ × (E+ − E−) = 0 (1.142b)

The superscripts ± denote the fields above and below the sheet or layer, and it was
necessary to introduce (1.142b) to maintain the equivalence of (1.142) with (1.141).
Alternatively, by employing the natural boundary condition (1.60), (1.142) can be
rewritten as

n̂ × [n̂ × (E+ + E−)] = −2Zo Re n̂ × (H+ − H−) (1.143a)

n̂ × (E+ − E−) = 0 (1.143b)

By allowing n̂ to be other than constant, these can be employed for the simulation
of curved layers, provided again there is sufficient loss in the layer to suppress field
repenetration from one layer location to another.
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FIGURE 1-11
A thin sheet of
dielectric
material.
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The dual to (1.143) are

n̂ × [n̂ × (H+ + H−)] = 2Yo Rm n̂ × (E+ − E−)
(1.144)

n̂ × (H+ − H−) = 0

and these define a conductive sheet capable of supporting a magnetic current Ms =
−n̂×(E+−E−). The parameter, Yo Rm , is now referred to as the conductivity (Senior
and Volakis, 1995) of the magnetic sheet measured in Siemens/square. The utility of
this sheet is not yet apparent but it will be shown to be essential for a sheet simulation
of dielectric layers with nontrivial permeability. Also, it has been shown (Senior,
1985) that a special combination of coincident electric and magnetic current sheets is
equivalent to an impenetrable impedance sheet. This equivalence holds when we set

Re = η

2
, Rm = 1

2η
(1.145)

implying 4Re Rm = 1, where η is the normalized impedance of the sheet. Because
co-planar electric and magnetic currents are independent of each other, (1.145) is
important in simplifying the analysis with flat impedance surfaces.

Let us now consider a dielectric layer having a relative permittivity εr and
thickness τ such that koτ � 1 as illustrated in Figure 1-11. Based on the volume
equivalence theorem, this layer can be replaced by the equivalent polarization
currents

Jx = jkoYo(εr − 1)Ex

Jy = jkoYo(εr − 1)Ey (1.146)

Jz = jkoYo(εr − 1)Ez.

On the assumption of koτ � 1, the Jy component may be neglected, and the current
densities Jx,z can then be replaced by the equivalent sheet currents

Jsx = τ Jx , Jsz = τ Jz. (1.147)

From (1.140), it now follows that

Ex = Zo Re Jsx , Ez = Zo Re Jsz (1.148)

with

Re = − j

koτ(εr − 1)
. (1.149)

Equation (1.148) are clearly identical to (1.140) except that Re is now complex.
Coordinate independent transition conditions for the dielectric layer are thus given
by (1.141), (1.142), or (1.143) with the new definition for Re.

When the dielectric slab is associated with nonunity μr , (1.143) must be com-
plemented with a conductive sheet defined by (1.144) and in accordance with the
volume equivalence theorem the normalized conductivity Rm is given by (Senior
and Volakis, 1995)

Rm = − j

koτ(μr − 1)
. (1.150)



Volakis-7200025 book ISBN : 9781891121937 August 8, 2011 9:6 27

Problems 27

Thus, possible sheet transition conditions for a thin ferrite layer are

n̂ × [n̂ × (E+ + E−)] = −2Zo Ren̂ × (H+ − H−)
(1.151)

n̂ × [n̂ × (H+ + H−)] = +2Yo Rmn̂ × (E+ − E−)

where Re and Rm are defined in (1.149) and (1.150), and n̂ denotes the upward unit
normal to the layer. More accurate, higher-order transition and impedance conditions
can also be derived. These involve higher-order derivatives of the field above and
below the sheet or impedance surface and can permit modeling of thicker or higher
contrast material layers and coatings (see, e.g., Senior and Volakis, 1987, 1991).

PROBLEMS
1. A chiral medium has the constitutive relations

D = εE − jχB, H = − jχE + B
μ

where χ is the chirality parameter.

(a) Show that the vector wave equation for this medium takes the form (see (1.109) and
(1.110))

∇ × ∇ × F − k2F + V = 0

where F = E, H, D, or B, and V is a vector to be found from your solution.

(b) Assume now a circularly polarized plane wave (RCP or LCP) propagating along the
z-direction. Find the propagation constants kRCP and kLCP so that the wave equation
found in (a) is satisfied.

(c) If a linearly polarized plane wave is incident upon a chiral interface as shown in
Figure 1.P1, find the reflected and transmitted fields (by enforcing tangential field
continuity at the interface).
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FIGURE 1.P1
Plane wave
incident on a
chiral interface.




