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Chapter 3

Integral Equations and Other
Field Representations

The field integral representations given in the previous chapter, although of

sufficient generality are often inconvenient and possibly inefficient for spe-
cific applications. Also, their integrands are highly singular requiring special
treatment, when the observation point is in the source region. This difficulty
cannot be eliminated but any reduction in the integrand’s singularity is desir-
able for achieving higher accuracies in numerical computations involving such
integrals. Obviously, there are a variety of field representations, integral equa-
tions and formal solutions that could be derived, many of which can only be
applicable to a specific situation. Below, we shall consider some alternative
field representations to construct integral equations that are among the most
frequently used. First, we shall develop three dimensional representations.
Many of the two-dimensional representations can then be reduced from the
three dimensional ones. However, for scattering applications a larger variety
of two-dimensional representations are available primarily because the topic
has been extensively studied.
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124CHAPTER 3. INTEGRAL EQUATIONS AND OTHER FIELD REPRESENTATIONS

3.1 Three-Dimensional Integral Equations

3.1.1 Kirchhoff’s Integral Equation

Perhaps the simplest integral equation can be derived by considering the wave
equations {2.86) in conjunction with Green’s second identity (see (2.42}). To
proceed, we assume the existance of certain structures whose surfaces will
be denoted by S5i,S52,...,5yv. The collection of these surfaces, henceforth
referred to as Sq (enclosing the volume V), are illuminated by sources which
are enclosed within the volume V;;. The volume region exterior to Sq shall be
denoted by V.. which, as seen, is also bounded by the surface S, placed at
infinity.

Without loss of generality, let us consider one of the electric field compo-
nent, say F,. Then from (2.86}

F,(r) reV,
VE, +K'E, = (3.1)
0 T Vi

in which F,(r) = F(r) - & represents the source terms in the right hand side
of (2.86). Multiplying this by the free space Green’s function and integrating
yields

f / f G(r,1')[V2E,(r) + E*E, ()] dv = {

J Iy, Fa(r)Gr,x)dv € Vi

0 rd Vi,
(3.2)

and we remark that V,, includes the source volume V,,. Also, from Green’s
second identity (see (2.42)) we have

[ [ ], [ vi6s) - o) B )] e

- #Sg I:Ea,(r)m — Glr,r) aE"“(r)l ds

on
+gjﬁsm [ o aG (x r) - G(r,r’)w] ds (3.3)
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Figure 3.1: Geometry for the application of Green’s second identity.

where 5% = fi - V and we remark that the negative sign in front of the integral

over 5o was introduced because the unit normal 7 points toward the interior of
Vao. Further, by noting that G(r,r') and E,(r) satisfy the radiation condition
(2.39), it follows that the integral over S, in {(3.3a} vanishes. Thus we have

[ [ cwrrsiin= [ ] [ sovan o

+#Sn [Ea(r)%lw _ G(r,r’)aE"'(r)] ds (3.4)
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and when this is combined with (3.2) we obtain

o nimoie o

e L [ [ [ Rwew e @)

We now recall the differential equation (2.38) satisfied by the Green’s function
and when this is introduced into (3.5), upon interchanging r and r' we obtain

B, [Emﬂ;f’)a(, e ]d’ [ ] R s

EJr) rtinV,
= { (3.6)

0 r not in V

in which the differentiation is on the primed coordinates and is taken along
the normal directed away from S1,S.,...,Sy.

The above result given by (3.6) is often referred to as the extinction or
Kirchhoff’s integral equation and is valid for all field components provided
these satisfy the radiation condition. No other boundary condition is required
to be satisfied by the field and since E,(r) is completely arbitrary we can
generalize it to the case of vector fields. We have

@Sﬂ {E(r’)&)G{é;”ﬂ) - G(r, 1) aE(f’)] ds' — ///is Fpe(r)G(r,)dv'

{ E(r) rin V,

0 r not in V

{(3.7a)

and by duality

#sn {H(r)ﬁGa(;r) G(r, 1') ﬁn }ds —f// Fy(r)G(r,r)dv

H(r) rin Vy
= { (3.7b)

0 r not in Vi
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in which
: vV - J(r)
F = i
(r) = jwpd(r) P + V x M(r)
and
Fg(r) = jweM(r) — M -V x J{(r).
JWit

If no external sources are present or if all sources are located on or within

the surfaces Si,Ss, etc, then Fg = Fpy = 0. In that case E, H, gf,}, or %%—
when integrated over Sg play the role of equivalent sources of the same type
as 'y and ¥ 5. This will become apparent in later applications. Alternatively,
the integrals associated with Fg and Fys can be recognized to vield the fields

radiated by the sources within V,, and we may thus set

= [ [ [Fe)Glrxhan - B
~ [ [ [Fu)Ga o W)

where (E’, H') denote the excitation or incident fields. For scattering compu-
tations these are usually plane waves whose source is at infinity.

In practice, additional boundary conditions would be imposed on the fields
at the surfaces 5y, 55, ete. This leads to the construction of integral equations
for a unique solution of the fields. However, in their present form, (3.6) and
(3.7) are not applicable to the case where r is on Sp, i.e. at the boundary of
Vo coinciding with Sq. To make them applicable to this case we shall consider
the limit as the observation point P at r = r, approaches the surface from
outside or inside Sg. In order to simulate the last situation, we distort the
surface Sp about the observation point P as shown in Fig. 3.2, i.e. by adding
a hemispherical surface to Sq of radius B, — 0 which has its center at the
observation point P. Accordingly, from (3.7a)

[/ { 8G(r r') _G(rjr,)aE(r’)} e

an
i// [ c')Gr r) _G(rjr,)aE(r’)]dS,
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hemispherical

Figure 3.2: Geometry for evaluating the field on Sq.

For the integral over the hemispherical surface S5, we have ds' =
Rﬁ sin B, df,,

, e ikRo
Glrx) =
and
G(e,r) I . N 0G 1y e 7kRe
T_ RD VG(I',I')—Ro'VG(rJr)_aRO_<7k Eg) 47T"Rg

Substituting these into the integral gives

, % 2r . 1 6_ijo 9 .
7ff540[ ds =E(ro)/0 /D (gmﬁm) R sin 0,do,do,

2% G e ikR. 5 .
_ jo ]U S T T sin ot

and it is seen that the last integral vanishes as R, — 0. Also,

o 1y e dbfa 1
E(r(,)f0 fo (ijrR) o Fosinfdéudt, = SB(r,) (3.8)
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and thus we can write [Kellogg, 1929

#giE(r’)%ﬂl G, r,)m;;_gf)} ds' — %E(r) (3.9

for r on Sq. This simply states that the field on the surface Sg is obtained by
averaging its values just inside and just outside Sg. Using (3.9) we can now
revise the integral expressions (3.7) to read

S&JE(T’)% - Gl ‘932?')] ds' + B/(r)

E(r} rinV,,
=< 2E(r) ron Sy (3.10a)
0 I within Sq

#gan(r’) 9G(r,x) Gir,r") aH(r’)} ds' + H'(r)

on' on'
H(r) rinV,
H(r) ron Sy (3.100)
r within S

Do

and it should be noted that these are valid provided the observation point is not
at a corner or an edge formed by Sq. They are evocative of Huygens’ principle
which states that the fields caused by the presence of the volume enclosed by
the surface(s) Sq can be determined uniquely everywhere from a knowledge of
that field and its normal derivative on Sq. Alternatively, it will be shown in
the next section that a knowledge of the tangential electric and magnetic fields
on Sq is suflicient to uniquely determine the fields exterior to Sg regardless
of the volume composition enclosed by Sq. These statements are valid even
if (E*,H) are zero and sources exist within Su. In that case we can state
that the fields exterior to S can be determined uniquely from a knowledge
of the surface tangential electric and magnetic fields or a knowledge of the
electric/magnetic field and its normal derivative. By referring to chapter 1,
one concludes that the surface equivalence principle can be thought as another
statement, of Huygens’ principle [Baker and Compson, 1939].

Equations (3.10) can be referred to as the vector form of Kirchhoff’s equa-
tions who first emploved (a scalar form of) these for computing diffraction by
apertures. To obtain the standard Kirchhoft’s scalar equations the vector field
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in (3.10) is replaced by a scalar function or a component of the field. Be-
cause of their simpliecity, Kirchhof’s [1882] (also Rubinogicz, 1917) equations
are widely used for obtaining the diffraction by apertures or the scattering by
closed surfaces whose surface fields are known or can be reasonably approxi-
mated (using physical optics, for example).

3.1.2 Stratton-Chu Integral Equations

The Stratton-Chu {1939, 1940] integral formulae for field representations are
among the most popular in scattering and antenna related problems. Perhaps
a primary reason for their popularity is their reduced kernel singularity in
comparison to the representations (2.52) or (2.102), which integrate the cur-
rent sources directly over the volume. The main feature of the Stratton-Chu
representations is the transferring of one of the del operators from the Green’s
function to the current reducing the kernel singularity from R~ to R2 (see
(2.63)). There are several ways to derive the Stratton-Chu equations but it is
instructive to begin their derivation by considering one of the integral expan-
sions given earlier. Let us for example begin with equation {2.52a) where our
goal is to reduce the singularity of the integrand {or kernel) associated with
the last right hand side term of this equation. This term can he written as

f[f ) VVG(r, r)dy = —wv{/f/ ) - VG(r, r')dv }
{/]/V V'Grr)d}

and by invoking the identity (2.50) we have

//f -V'G(r,v)dv' —///V' {IEG{(r, ") Hdo'
-/ [ 1936 G,

Next, by employing the divergence theorem we obtain

][]VV’ AJNG(r,x") v = #.SCG(I', Y [I() - A ds' (3.11)

where # is the unit normal pointing outward of the surface S, enclosing the
volume V' containing the source J(r'). A natural boundary condition is that
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the current be confined within the volume V' implying that the component of
J normal to the surface S, must be zero. Thus, the integral in (3.11) vanishes
and we can then write

_jZ/// -VVG(r, " )dv' = _jZ/// (VI VG (e, o)dy'

(3.12)

When this identity and its dual is used in (2.52) we obtain the equations

fff[ ') x VG(r,x') ~ jkZI{)G(r, 1)

— %V’ - J(r"YVE(r, r’)] dv' (3.13a)

f//[ ') x VG(r, 1) — kY M(r')G(r, 1)

- %vf : M(r’)VG(r,r’)}dv’ (3.13b)

Alternative representations can be obtained by invoking the continuity equa-
tions (1.38) and (1.39} to replace the divergence of the current quantities with
volume charges. Doing so yields

/ f / ) X VG(r,1") = jhZI(x")G(r, ')

- @va(r,r’)}dw (3.140)
)= [ [ [ [ 36 % 96tex) — 1y M@)G(e.s)
.Omﬁg )VG(r r)]dv’ (3.14b)

which are the natural equations that result if we introduce the scalar potentials
®, and @, in equations (2.19).

When the above expressions (3.13) and (3.14) are applied to an antenna or
scattering configuration such as that shown in Figure 2.10 it is convenient to
employ Love’s equivalence principle (see Chapter 1). This allows one to replace
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the presence of the volume enclosed by the surfaces Sy,.5,, ..., Sy (comprising
the surface S,) by a set of equivalent sources

J=axH M=Exn (3.15)

placed on the surfaces 57,5;,...,Sy. Also, in accordance with the boundary
conditions (1.62) and {1.63) we may set

ps = € E),  pms = p(i - H) (3.16)
Introducing these into (3.14) vields

E(r) = E' + 5{159{ [E(r') x #] x VG(e,x') — jkZ [l x H(r')| G(r, ')

-7 - E{\VG(r, r')}ds’ (3.17a)
H(r)=H + ﬁgn{ Hr') x #'] x V&(x,r') — jkY [E(r') x #'] G(r, 1)

— 7 - H(r")\VE(r, r’)}ds’ (3.17b)

in which 7' = A(r’), where #(r') denotes the outward unit normal outward to
Sqo at r. We have also included the incident fields (E*, H") to account for any
source exterior to Sq. We remark that (3.17) give the most common form of
the Stratton-Chu equations.

An alternative field representation in terms of the dyadic Green’s func-
tion can be obtained by substituting (3.15) into (2.102). Since the equivalent
sources are only over the surface{s) Sp we have

E(r)=E' + / /f;n { {V X f(r,r'}] [E(r') x 7]
+ 7k ZT(r, ¢’} - [ x H(r'")] }ds’ (3.18a)
Hr') = H' / /éﬂ {jka‘(r,r’) [E(r") x /]

- [V x T{r, r’)} [A x H{x")] }ds’ (3.180)
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and this is equivalent to (3.17) only for closed surfaces in which case the
identity [Van Bladel, p. 503]

fhsov - 09GN 2 = - o, [+ 5] G 6 aa] @ =0
(3.19)

holds when J is replaced by 7' x H{r') or E(r') x #(r'}. In (3.19), R, and R,
denote the principle radii of curvature at the surface point r’ but in the event
Sp is not closed (i.e. Sy is the surface of a flat or curved conducting sheet as
shown in Fig. 1.1) then this identity must be replaced by [Van Bladel, p. 502]

.[sﬂv )G(r, )] ds’ = +j£b’ Glr,t')d¢
B f/s {Rl RJ Glr,r) [J(r') - A ds’
- 7{5 G(r,r')dt (3.20)

in which C' denotes the contour defining the outer perimeter of Sq and ¥ =
¢ x f' where # is the unit tangent to ' at r'. Thus, one cannot specialize
(3.13) to open surfaces such as curved plates (see Fig. 3.3) by simply changing

Figure 3.3: Geometry of a curved plate representing an open surface.

the volume integral to one over the boundary domain of J and M. Such an
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interchange of the volume and surface integral is permitted for the dyadic
representations (2.102) or {2.42) which are similar to Franz’s integral formulas
whose precise form is given in one of the problems. However, in the case of
(3.13) it is permitted only if the contour integral in (3.20) also vanishes. The
last is often referred to as Kottler’s boundary line integral and its presence is
necessary to ensure the divergenceless of the field for all r. If, however, one
thinks of J and M as representing the net currents on the open surface, then
J-b=0"—J)-b=0and M-b=(M'—M") b =0 at the boundary line
C. Consequently, the Kottler integral in (3.20) again vanishes implying that
with this interpretation of J and M, (3.13) remains valid when the volume
integrals are replaced by ones over the surface of the curved plate.

We remark that (3.18) are again evocative of Huygens' principle as dis-
cussed in the previous section in connection with Kirchhoff’s integral equa-
tion. In practice, however, the Stratton-Chu equations are more attractive
than (3.18) because of the lower singularity of their kernel leading to a more
accurate numerical implementation.

Integral equations such as those in (3.17) can be used for solving the fields
on Sq by enforcing the specific boundary conditions associated with the sur-
faces comprising Sq. To enforce these boundary conditions it is necessary to
have the observation point directly on Sp leading to singular kernels which
must be carefully integrated as done in the previous section. As before, we
refer to figure 3.2 and rewrite (3.17a) as

E(r,) = Ei(r,) + f fs . { [B(t)) x #] X VG(ts, ')
— jkZ [ﬁf X H(r’)] Q(r,,r"y — 7' - E{r')VG(r, r')}ds’
T/ fs a { [B(r') x #] X VG(ro,') — jkZ [ x H{T)] Glre, ¥')
—a- E(r’)VG(ro,r’)}ds’ (3.21)

in which S, ig a vanishingly small hemispherical surface. Noting the identities

(Ex#') x VG = VG x (i’ x E)
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~ #(E.VG) - E# - VG) (3.22)

—(n"E)VG = —#(E- VG)+E x (' x VG) (3.23)
1t follows that
(Exd)x VG- (R -EWGE=Ex (#/ xVG) - E(7 - VG) (3.24)

When the last is substituted into (3.21) the surface integral over S, becomes
ff {E(r’) % [A' x VG(r,, ")) — E@) [7' - VG (x,,1")]
—ikZ % < H(r")] Gz, r’)}ds'

For this integral #' = R, ds' = RZsin 6,d¢,df, and since S, — 0 we may set
E(r') =~ E(r,) and H{r") = H(r,). When we substitute for VG as given in
(2.55) with R = R,, we find that the first term of the integral vanishes because
VG = R|VG| and 7 x R, = 0. Also the third term goes to zero as R, — 0.
The second term (sec (3.8)) when infegrated gives —IE(r,) and thus we can
rewrite (3.21) as

E(r,) = 2E(r,) + 2 ' Sﬂ{ [E(r") x 1] x VG(1,, 1)

—jkZ 7 x H(x)] G(r,,v') — 7' E(r’)VG(ro,r’)}ds’ (3.25)
Incorporating this result into {3.17} we have

#sg{ [E(r") x 2] x VG{xr,v") — jkZ [/ x H(r)] G(r, ")

— ' E{f)VG(r, r’)}ds' +E(r) =< LE(r) ronSq (3.26a)

rwithin Sp

{ E(r} rinV,

[ RNIT

#Sn{ [H(r") x 2'] x VG(r,r') — jkY [E(r) x #'] G(r, 1)
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7 H{r) rinV,
—a" H{r"YVG(r, r’)}d,s’ +H'{r) =< ZH(r) ronSy (3.26b)
0 within Sg

For completeness, we note that the impressed fields (ET;, H"“) may be replaced
by their volume integral representations (3.13) or {2.52), However, when the
observation point is within the volume of the impressed or equivalent vol-
ume sources (J, M), we must then revert to the principle-value integral rep-
resentation given in (2.69). It should also be noted that the Stratton-Chu
equations are completely equivalent to the vector Kirchhoff equations (3.10).
Notably, both sets of integral equations involve the normal and tangential field
components on the surface Sp but Kirchhoff’s equations decouple each field
component from the others. However, these are unavoidably coupled upon
application of the boundary conditions on Sp. Nevertheless, in the case of
two-dimensional applications where only a 2-directed electric or magnetic field
exists, Kirchhoff’s equations arc the most simple to use. By setting i = 2F,
or H = 2H, in (3.10), a scalar equation is obtained instead of the vector
integral equation resulting from (3.26). Consequently, the extinction or Kirch-
hoff’s integral equations are, generally, the preferred choice in formulating
two-dimensional problems.

3.1.3 Integral Equations for Homogeneous Dielectrics

Man-made structures such as vehicles made of composites and microstrip an-
tennas are typically composed of piecewise homogeneous diclectrics. The ef-
fects of these materials must therefore be accounted for in computing the
radiated or scattered fields. So far, field representations were given which ap-
ply in the presence of structures enclosed within a surface Sg by invoking the
equivalence theorem. In this section we will specialize these expressions to the
case where the surface Sq encloses a piecewise homogeneous dielectric body.
We shall first consider the simplest case, i.e. that pertinent to a homogeneous
dielectric body.

Consider the homogeneous dielectric body enclosed by the surface Sq =
Sy as shown in Fig. 3.4. The dielectric is immersed in some excitation field
(B, H*) generated by the sources (J', M?) which are exterior to S; and we are
interested in finding a representation of the field in the exterior region (region
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f:;"_gR_e-gioni #2. o
.:. . 1‘2! MIQ:'E'_:,_ B £ 1}
et rla r]
Region #1
(. H)
(a)
fi=h Sq
: 81‘1! “’1‘1
o Region #1
: (E,, H,)
(b)
T Sy
T Region#2
_ € My

(c)

Figure 3.4: Application of the equivalence principle for a dielectric. (a) original
problem (b) equivalent problem for Region #1, (c) equivalent problem for
Region #2.
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#1) and perhaps interior to Sy (region #2). One of the simplest integral
expressions in this case is obtained by invoking the surface equivalence theorem
and with this in mind we set up the two problems illustrated in Figure 3.4. The
set-up in Figure 3.4(a) assumes zero field interior to Sg and thus the equivalent
current (¥, M) can be used for computing the fields (E,, H,) exterior to Sy.
In contrast, the set-up in Figure 3.4(b) assumes zero exterior fields and thus
the equivalent currents {J5, My) can be used for computing the interior fields
(Eq, Hy).

It should be remarked that the set-up assumed here, where the fields are
set to zero in the indicated region, is not unique. Any other non-zero field
could have been used and this would result in a different, albeit equivalent,
formulation. In fact, certain judicious choices for the interior ficlds of the
set-up in figure 4(b) or the exterior fields in figure 4(c) lead to formulations
which may involve a single surface equivalent current [Glisson, 1984]. An
alternative approach will be to eliminate the introduction of the equivalent
surface currents altogether and express the scattered fields in terms of the
tangential electric and magnetic fields at the dielectric interface. In this case,
the representation (3.18) may be used (or some other equivalent expression) to
set-up integral equations for the tangential fields upon invoking field continuity
at the interface. Nevertheless, below we shall consider the solution of the
scattered/radiated fields in the presence of a dielectric via the set-up in fig. 4
since this appears to be one of the most often used approaches.

The introduced equivalent current illustrated in fig. 4 can be substituted
into (3.13) to obtain integral expressions for the exterior and interior fields
upon changing the volume integral to one over the closed surface S;. However
before doing so, it is important to note that by enforcing the tangential field
continuity equations

i X El = fq X Ez, ﬁl X Hl = ﬁl X HQ (327)

(711 denotes the unit normal pointing away from Sy) across the surface Sy, it
follows that

J]V == —Jg = J, Ml - —Mg - '—M (328)
In arriving at (3.28) we could have also implied that (see section 1.10)

Ji = ﬁl X Hl, M, = Mﬁ,]_ X El
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(3.29)

Jy = ﬁgXHgZ-—?”\L‘LXHg MgzgﬁQXEgzﬁ,lXEQ
However, 1t is not necessary to introduce these expressions since the surface
fields are unknown and it is thus more convenient to retain (J,M) as the
variable functions to be determined by enforcing the boundary conditions as-

sociated with problems defined in Figure 3.4. From Figure 3.4a, since the
interior fields have been set to zero, we have that on S; (actually just inside

Sd)
fir x By = 0
(3.30)
nmxH = 0

By defining the total fields (E;, H) to be the sum of the source fields and
those radiated by (J, M) we may rewrite {3.30) as

ffL.l )(E:':—'ﬁ,] XE?
(3.31a)
fiy x HY = —fy; x 2
where
B = #’Sd [M(r’) X VG1(r,7) = jkoZopin, J(x' )G (r, 1)
—j fﬂ v, -J(r')val(r,r')]ds’ (3.318)
abry
H = )., [ = 3(F) X VG(r,1') = G, Yoer, MG 1)
_ jkiv; - M(r') VG, r’)] ds’ (3.31¢)
Opu'r']

In these k,, Z,, Y, are the free space wavenumber impedance and admittance,
respectively, whereas €., and p, are the relative material constants of the
exterior medium and are usually unity. Also,

eI ke ETEIE-T]

! —_— o
Gilr,r') = dm|r — /| 4l — '] (3.32)
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is the Green’s function associated with the exterior region. The fields (Ef, HJ)
are customarily referred to as those scattered by the dielectric body due to the
excitation (E’, IT%). Instead of repeatedly using the explicit integral represen-
tation (3.31) it is convenient to define the operators

Lip, (M) = "SM(r’) X VG (r,1')ds’ (3.33)
d

Yo
Ly, (M) = _#Sd ljkoYoeﬁM(r')Gl(r, r') -+ J Vi M) VG (r, r’)}ds’

ka.u'r'l
(3.34)
Z)
Lig, (X)) = ——#Sd {jkﬂZourgJ(r’)G]_(r,r') + kje V.- I YWVG, (rjr’)] ds’
: ‘ otrl
(3.35)
Liw (3) = — #SJ(r’) X VG (r, 1) ds' (3.36)
d
Then, since [Van Bladel, 1985 (p. 254), Miiller, 1969|
1
fip X @SdA(r') X VG'l(I'Oi, I'!)dS, = $§A(I'U)
Ly % #SA(I") X VG, (ro,1')ds' (3.37)
d

where r¥ implies that the observation point is just exterior (+) or interior (-)
to Sy, we can rewrite (3.31) more explicitly as
1 .
*Q“M(I') — iy X LlEm (M) — ’.’A?,]_ X Ll.f,'}g (J) = TA?,]_ x E*
(3.38)
1 .
+§J(I') — T'Ail X LlHe (J) - ﬁ,;_ X L]HW(M) = ﬁl x H
valid for r on S;. We note that (3.37) can be proven by following a similar
procedure to that employed for the derivation of (3.9).
Another set of equations to be coupled with (3.38) can be obtained by
enforcing the boundary conditions on (Eq, Hy). Irom Fig. 3.4(b) we have that
on Sy (actually just outside Sy)

ﬁlXEz:ﬁqXE; = 0
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(3.39)
ﬁ1XH2:‘fL1XH; = 0
and upon making use of (3.37) these can be more explicitly written as
1
—§M(I') — Tip X LZEm (*M) - ﬁl x L‘ZEE (—J) =0
(3.40a)

1
+§J(I‘) — ﬁl s LZHF (*J) — ’f.’,l X Lgﬂm (—M) =10

In these, the integral operators Loy, Log,, Lo, and Log,_ are identical to
those defined in (3.33) - (3.36) provided ¢, and p,, are replaced by €., and
Ur,, respectively. By inspection, it is also seen that the minus sign in the
argument of the operators can be factored out giving
1
aM(I') - 'I?L] X LZEm (M) — 17 X LQEE (J) =0
(3.40b)

1 . .
—EJ(I') — N X LQHE (J) — T X Lgﬂm (M) =0

valid for v on S,.

It is apparent that (3.38) and (3.40) are four integral equations involving
only two unknowns. This is because we had initially enforced the continuity
conditions (3.27) to relate the equivalent currents introduced for representing
the exterior and interior fields. It is also a consequence of the fact that only
the tangential electric or magnetic fields are needed over a closed surface for
determining the fields away from S;. Thus, we are essentially free to use one
from each set of equations (3.38) and (3.40) to obtain a pair of them to be
solved (usually numerically, and this will be discussed later) for (J,M). For
example, we could select the equation resulting from the pair of conditions

fir X Bf = —y x ES
(3.41a)
il x By =0
or from
fiy x H = —f; x H?
(3.41b)

Ay x H = 0
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The integral equations resulting from (3.41a) are usually referred to as the
electric field integrol equations (EFIE) whereas those implied by (3.41b) are
referred as the magnetic field integral equations (MFIE).

3.1.4 Integral Equations for Metallic Bodies

When S, encloses a conducting surface (i.e. ¢, —» 1 — joo) we may then set
M = 0 (see sections 1.4 and 1.10) and in that case the first of (3.41a) gives

e 1
ko ZopimiPrn X 5@@ J()Gh (e, 1) + V- J)VG (r, 1) | ds'
d k2 pip1 €01
=y x E (3.42a)
whereas from the first of (3.41b) we have
1 T .
ST + i # J() x VGi(r,v')ds’ =y x I (3.420)
S

These are, respectively, the well known EFIE and MFIE for perfectly con-
ducting surfaces. This MFIE is also known as Maue’s integral equation and is
the most common for solving the fields scattered by a closed conducting sur-
face. It will be shown later that Maue’s MFIE leads to a better conditioned
matrix than (3.42a), and this is a primary reason for its popularity in simu-
lating closed conducting surfaces. An EFIE which is of the same form as the
MFIE (3.42b), can however be derived from (3.41a) by invoking image theory
to eliminate the electric currents (since Sy is perfectly conducting). This gives

1 .

5M(r) + Ay X 4 M(r') x VG (r,v")ds’ = —ny x B (3.42¢)
SIS,

which is clearly the dual of (3.42b). Since (3.42¢) and (3.42b) simulate the

same metallic surface, it is not surprising that one can be derived from the

other. Specifically, (3.42b) can be derived from (3.42¢) by taking the curl of

the last and making use of the equivalence relation (see (1.111))

_VxM

J == .
JWftofe1
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The fact that (3.42b) and (3.42¢) are equivalent (i.e. they predict the same
scattered flelds) is a vivid demonstration that in the case of perfectly conduct-
ing surfaces, one could formulate the fields in terms of electric or magnetic
currents.

We should remark that neither of {3.42) are valid for open conducting
surfaces such as a metallic flat or curved plate (see figure 3.5). This is because

Figure 3.5: Piecewise homogencous dielectric body.

the surface equivalence principle was used to introduce the equivalent surface
currents. ‘To construct an integral equation for the surface currents on a curved
plate we may return to the original integral expression (2.52a) or {2.147) and
set M = 0. Then upon enforcing the boundary condition # x (E* + E*) = 0,
we obtain the integral equation (also an EFIE)

1

mJ(I‘I) : VVGl(I', I',) dS,

i ko Zopint X // [J(r')Gl(r,r'}Jr
3

=axBE  (3.43)

In contrast to the current appearing in (3.42}, the one in this integral equation
should be interpreted to represent the net flow between the top and bottom
surfaces of the plate as illustrated in figure 3.3. With this interpretation of J
and from the discussion in section 3.1.2, it is then seen that {3.43) is equivalent
to (3.42a). Nevertheless, {3.43) is more difficult to implement than (3.42a)
because of its higher kernel singularity.

3.1.5 Combined Field Integral Equations

Returning now to the original integral equation for the dielectric body we must
address their uniqueness. Since they were formulated by assuming a null field



144CHAPTER 3. INTEGRAL EQUATIONS AND OTHER FIELD REPRESENTATIONS

within certain enclosed volumes, in accordance with the uniqueness theorem
(3.41) or (3.42) will fail at those frequencies associated with a resonant mode
within S;. Fortunately, the EFIE is associated with different resonant modes
than the MIIE and this has been exploited to construct sets of equations
which yield a unique solution. The most obvious approach is to consider
various linear combinations of (3.41). For example, we could consider the
combination {Mautz and Harrington, 197§]

flg X [Ei + O’E;] = —fi % E
(3.44)
fu X [H] + 8H5] = —A; x H

where o and 3 are arbitrary non-zero scalars. If we set o = 5 = 1 we ob-
tain the PMCHW formulation [Poggio and Miller, 1973] while the choice of
o = —€,/€, and § = —p,, /iy, leads to the Miieller formulation. Another
combination which was proposed [Govind and Wilton, 1979] is

~ 8 84 3— ~ H o 2
1 X [Hl -+ Z_1E1_ = —ny X I:Hl -+ ZE]
(3.45)
fy X |Hj — —@-—ES- = 0
2 Z2 2—

in which Zy = Zy\/ iy, /€r,, Zo = Zp/ v /€, whereas « and 3 are again arbi-
trary scalars. Finally, a third coupled set of integral was proposed by Yagjian
[1981] who noted that the confinuity equations are not nccessarily satisfied
when resonant modes are present. On this basis, the continuity equations can
be combined with (3.41) or (3.42) to yield the conditions

V,-J ‘
Bl tA—— = _E
Wty
(3.46)
H At
—JW g fpy

From these we can readily derive integral equations for (J, M) npon substi-
tuting for the fields as given in (3.31). The integral equations based on (3.44)
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or (3.45) are generally referred to the literature as the combined field integral
equations (CFIE) whereas the integral equations resulting from (3.46) is re-
ferred to as the augmented field integral equations (AFIE). They have all been
used primarily for scattering computations and their solution will be consid-
ered later. The CFIE have also been used for radiation problems relating to
various types of cavity antennas. As can be expected, the CFIE cannot yield
unique solutions at those frequencies where the clectric and magnetic field in-
tegral equations fall concurrently. In addition, for very large structures the
spurions resonant modes of Sy are congruent leading to inaccuracies in the
solution of CFIE. Further, it has been noted that the AFIE does not ensure
the removal of all spurious resonances and later we will discuss other remedies
which can ensure uniqueness at the resonant frequencies of the cavity enclosed

by Sd.

3.1.6 Integral Equations for Piecewise Homogeneous Di-
electrics

The formulation presented in the previous section for treating homogeneous
dielectrics can be readily extended to bodies composed of various homogeneous
dielectric sections as shown in Figure 3.5. Let us for example consider the
structure in Figure 3.6 consisting of a dielectric and a perfectly conducting
section. We shall denote the surface of the conducting section which borders
the exterior region (region #1) as Sy, and that which borders the dielectric
region of the body (region #2) as Sy.,. Also, the surface of the dielectric
which borders the exterior regions will be denoted as Sg.. The exterior region
has relative dielectric constants (., jr, ) and a characteristic impedance 7, =
Zo\/g . Correspondingly, the interior dielectric region has relative dielectric

constants (&, fr,) and a characteristic impedance 7, = 7,, /22, We shall
T2

assume that the excitation fields (E’, H') will be in the exterior region although
they can also be placed within the interior dielectric region as is likely the case
with cavity type antennas [Arvas, etc., 1991; Shafai, etc., 1991].

Following the formulation presented in the previous section, we refer to Fig.
3.5 and introduce the equivalent currents J., and J., on the conducting sur-
faces Sg., and Sq.,, respectively. Since Sy, and Sy, border perfect conductors
we choose to retain only the electric equivalent currents although one could
also choose to formulate the fields in terms of magnetic currents as discussed in




