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FIGURE 1-6 General form of the equivalence theorem: (a) original problem and
(b) equivalence problem.

These will now generate the field (E, H) exterior to Sc and the field (Ec, Hc) interior
to Sc.

1.11 RECIPROCITY AND REACTION
THEOREMS

The reciprocity theorem for electromagnetics parallels the familiar theorem in circuit
theory. It simply states that the fields and sources can be interchanged in a given
problem or set-up without affecting the system’s response. This implies that the
transmitting and receiving antenna patterns are the same, even though in the first
case the source was at the feed whereas for the receiving antenna the source is at
infinity. Another example refers to the case of plane wave scattering illustrated in
Figure 1-7. Let us assume that the far-zone scattered field Es is measured along r̂ and
is caused by a plane wave excitation Ei incident along r̂ i . Based on the reciprocity
theorem, one can then state that the scattered field is unchanged when we let r̂ i → −r̂
and r̂ → −r̂ i .

To derive a mathematical statement of the reciprocity theorem, we assume the
existence of two sets of fields caused by two different sets of sources radiating in the
same environment. In particular, suppose that the field (E1, H1) are associated with
the sources (J1, M1), whereas the fields (E2, H2) are due to the sources (J2, M2).
Each set of these fields and sources will then satisfy the equations
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FIGURE 1-7
Illustration of
reciprocity for
plane wave
incidence and
far-zone
observation.
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and

∇ × H 1
2

= jωεE 1
2
− J 1

2
. (1.118b)

By invoking the identity

∇ · (A × B) = B · ∇ × A − A · ∇ × B (1.119)

we then have

∇ · (E1 × H2 − E2 × H1) = H2 · ∇ × E1 − E1 · ∇ × H2

− H1 · ∇ × E2 + E2 · ∇ × H1. (1.120)

This can be simplified by introducing (1.118a), giving, for example,

H2 · ∇ × E1 = H2 · (− jωμH1 − M1) = − jωμH1 · H2 − M1 · H2

−H1 · ∇ × E2 = −H1 · (− jωμH2 − M2) = jωμH1 · H2 + M2 · H1

which upon substitution into (1.120) yield

−∇ · (E1 × H2 − E2 × H1) = E1 · J2 + H2 · M1 − E2 · J1 − H1 · M2.

(1.121)

Integrating both sides of this equation over a volume V enclosed by the surface Sc,
and applying the divergence theorem, it is further deduced that

−
∫∫
©Sc

(E1 × H2 − E2 × H1) · n̂ ds =
∫∫∫

V
(E1 · J2 + H2 · M1

− E2 · J1 − H1 · M2) dv. (1.122)

It will be shown in the next chapter that in the far field (let Sc become an infinite
circle),

E = −Zor̂ × H and H = 1

Zo
r̂ × E

where Zo = √
μo/εo is the free-space intrinsic impedance, and thus

E1 × H2 = E1 × (r̂ × E2)

Zo
= 1

Zo
[(E1 · E2)r̂ − (E1 · r̂)E2] = 1

Zo
(E1 · E2)r̂

E2 × H1 = E2 × (r̂ × E1)

Zo
= 1

Zo
[(E2 · E1)r̂ − (E1 · r̂)E1] = 1

Zo
(E2 · E1)r̂

implying that the surface integral in (1.122) vanishes when Sc is a sphere of infinite
radius. Consequently, we conclude that∫∫∫

V
(E1 · J2 − H1 · M2) dv =

∫∫∫
V
(E2 · J1 − H2 · M1) dv (1.123)

which is a mathematical statement of the reciprocity theorem (special case of the
Lorentz reciprocity theorem given by (1.122)). It states that the fields and sources



Volakis-7200025 book ISBN : 9781891121937 August 8, 2011 9:6 21

1.11 Reciprocity and Reaction Theorems 21

I2
V2 V2

(E1, H1) (E1, H1)+

−

−

(a)

M2

(b)

+

FIGURE 1-8
Illustration of
circuit source:
(a) current source
and (b) voltage
source.

can be interchanged without altering the outcome of (1.123). Integrals of the type in
(1.123) are also referred to as reactions of one set of sources with the fields caused
by another set of sources. Based on this reasoning, (1.123) is often written as

〈1, 2〉 = 〈2, 1〉 (1.124)

where

〈1, 2〉 =
∫∫∫

V
(E1 · J2 − H1 · M2) dv. (1.125)

The symbolism 〈1, 2〉 denotes the reaction of fields (E1, H1) with the sources
(J2, M2) and (1.125) is often referred to as the reaction theorem. If J2 represents a
linear source of strength I2 (i.e., J2 dv = I2�̂ d�) and M2 = 0, (1.125) reduces to

〈1, 2〉 =
∫∫∫

V
E1 · J2 dv = I2

∫
E1 · �̂ d� = −I2V (1)

2 (1.126)

where V (1)
2 is the voltage across the terminals of source 2 due to some unspecified

source 1. Similarly, across the terminals of a magnetic source M = K �̂ (current
loop), shown in Figure 1-8, V = −K , and if we set M2 dv = K2�̂ d� and J2 = 0,
(1.125) gives

〈1, 2〉 = −
∫∫∫

H1 · M2 dv = −K2

∫
H1 · �̂ d� = +V2 I (1)

2 (1.127)

where I (1)
2 is now the current flowing to the terminal of source 2 due to the field

excitation H1 from some unspecified source 1.
To illustrate the application of the reciprocity theorem in electromagnetics,

we consider the radiation of two antenna elements in free space as illustrated in
Figure 1-9. Each of these radiates the fields (E1, H1) and (E2, H2), respectively, and
their equivalent circuit parameters can be characterized by the usual system

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1

I2

]
(1.128)
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FIGURE 1-9
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which is identical to that for a two-port network in circuit theory. Reciprocity and
the reaction theorem will now prove useful in determining the elements Zij of the
impedance matrix. These elements can be easily determined by shorting or open-
circuiting the antennas one at a time. Setting I2 = 0, gives

Z21 = V (1)
2

I1

and by referring to (1.126) we may express Z21 as

Z21 = −〈1, 2〉
I1 I2

. (1.129)

By invoking the reciprocity theorem (1.123), we also have Z12 = Z21 and in general

Zi j = −〈 j, i〉
Ii I j

. (1.130)

This expression is valid for computing the self-impedance elements Zii as well and
is useful in numerical simulations of antenna and scattering problems.

1.12 APPROXIMATE BOUNDARY CONDITIONS

In Section 1.4, we discussed the boundary conditions that must be imposed on
material interfaces. These are the usual natural or exact boundary conditions. How-
ever, in many cases, it is possible to employ approximate boundary conditions that
effectively account for the presence of some inhomogeneous interface, a material
coating on a conductor, or a dielectric layer without actually having to include their
geometry explicitly in the analysis.

1.12.1 Impedance Boundary Conditions

The most common approximate boundary condition (ABC) is the impedance bound-
ary condition attributed to Leontovich (1948), which often carries his name in the
literature. It can be derived by considering the simple problem of a plane wave inci-
dence on a material half space. Choosing the interface to be the plane y = 0 with the
y axis directed out of the half space, the Leontovich impedance boundary condition
takes the form

Ez = −ηZo Hx , Ex = ηZo Hz (1.131)




