Solutions of Maxwell’s equations in unbounded space
Which solution among

f(x) = Ae % 4 Be T (1)
f(x) = A'coskx+ B’ sinkx 2)

should we choose?

Both are equivalent forms of the same fundamental expressions since one can be obtained from
the other!

However, the boundary conditions to be imposed give us an avenue for selecting the most
convenient form.

In free space, the only boundary condition to use is that the field decays as it moves away from
the source.

Since k = P — jou (o0 > 0), if o0 £ 0, then decay is guaranteed.

Forx > 0,

fx) =47 = AP 0 a5x 5 oo

Must therefore set B = 0 since Be™/* — 0o a5 x — oo,

Forx < 0, _
f(x) = Bt
Thus, solution is
Ae ™ x>0
flx)= ¢ iy i
Bet™  x <0
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In deriving the above solution, the boundary condition that was imposed was

df( df(x)

+jk f(x) =

This is a form of the radiation condition for 1D outgoing waves (away from origin). For plane
waves traveling from infinity toward the origin, the appropriate radiation condition is

Y sy =0



For 3D (spherical coordinates), we already know that

— Jkr + jkr
S(r) =A% +B"
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To choose outgoing waves, the appropriate boundary condition is

i (% 170)] =0

In general, the radiation condition for vector fields is

li_}m [r(VxE=x jko? xE)] =0
F—yoo
(in which the plus sign corresponds to outgoing waves and the minus sign to incoming waves) or

lim r[+jkE+#x (VX E)| =

r—yeo
If we were to choose outgoing plane waves as our solution, then in general
E(x,y, Z) = éX(x) Y(y) Z(Z)
— é‘EOe—jkxx . e‘"jkyy , e*jkzz
— é\Ege*j(I’(x’y‘Z)
where
D(x,y,2) = kyx + kyy -+ k2

is the phase of the wave.
Let us stop for the moment and interpret the physical meaning/characteristics of this wave!

€(x,y,z;1) = éEp cos[ot — D(x,v,7)]

Setting wf — @ = const. gives

since f is a constant at some specific time t = #y. Thus, we have

kxx +kyy +k.z = const. (at a given time)



This is the equation of a plane and at different instants we graph this plane as shown below:
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These planes are referred to as phase fronts, and are the surfaces on which information traveling
through space arrive at the “same time.” Note the following statements:

e information arrives on phase front at the same time (phase <+ time delay)
¢ planar phase fronts — wave is called a plane wave

s normal 7 to the phase front is the direction that information or the wave travels through
space.

For plane waves
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The velocity of the wave is found as before for 1D waves. We can derive the velocity expression
by noting that the complete derivative of wt — @ must be zero since ¢ — ® == constant defines the
phase fronts (or information fronts). More specifically, we have

dlwt—®)=0 =

lodt —dP=0]

o> 9D b
H=—— — —
dP= - dxt 2 dy+ - de

=V®-[dx+Fdy+2dz]
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The velocity vy along x is found from

wdt— (VD -£)dx=0 —

dx—n— ® Q)
dt 7T VD2 k,

Similarly
dy N 0] )
dt 7 V®-§ ok

etc.
We can rewrite E = ée /%22 g5

E = 6Epe /XY = pEye Ihrthy i) L;L
r=xX+y+z2

Then, if we set

ko=kK =ketky+kz 2z '.

with
kfc = kycos@; sinB;
K, = ko sin ; sin 0;
kfz = kpcos6;

we get

E— é\EOemjkg(j:cosq)i sin0; -+ cosG; sinB;+Z cos 8;)

This is a plane wave traveling along the spherical direction (d;,8;). We will routinely use this
formula to write waves traveling along a given direction. So remember it and understand its pa-
ramerers.

Usually,
&= {E[;iEO or éiEo}

No # component appears in the polarization of plane waves since V - E 7 0 for an outgoing wave.
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