SIMPLIFIED EXPRESSIONS FOR Z-PROPAGATING WAVES

Assume
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where from Maxwell’s equations (“g” refers to guided wave)
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Expanding these we have
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which can be further manipulated to express the r and y components in terms of the z

components. We obtain
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NOTE: Zrm = E./H, = —EB,/H, = v/jwe = wave impedance £ n = Z = \/u/e . Also,
H = (1/Z7twm )2 x E (for the transverse components only).



TE Waves (E, = 0)

v OH. o~ [} ,
[—[m:m_./“aHzm—uL 1_ Ey:—.ﬁ} E,
W de R\ Jwu Jup

| v 0H,
H = ——
TRy
B = e QH’f
Wty
o Jwu OH,
B, ===
TR By

NOTE: Zng = by [ H, = B[, = jupfy = wave impedance £ 7= 7 = /p/¢ . Also for
the transverse corponents E = ~Zg(z x Hj,



E Waves and H Waves in Cartesian Coordinates

Consider a time-harmonic field in a source-free homogeneous region. Let
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Then it is convenient to use £ and H; as generating functions to determine the other field compo-
nents as follows. Let
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A more general field can be expressed as the sum of an E wave and an H wave. Still more generality
is obtained by considering the field to be the sum or integral of £ and H waves having different
values of v.

Some of the solutions of (1) are:
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where v= jB,.
If the field does not satisfy (1), the Fourier transform may be applied to express the field as
a spectrum of waves that do satisfy (1). Thus, the field in a homogeneous source-free region is

determined by £, and H,. However, uniqueness is spoiled by the possible existence of TEM waves
having K. =0 and H, = 0.



SIMPLIFIED EXPRESSIONS FOR X-PROPAGATING WAVES

Assume

Eg = E(xg) e
=H(xpe ™

(“g” indicates a guided wave) where from Maxwell’s equations
VxEg=—jouly,  VxH,= joek,

Expanding these we have
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These can be further manipulated to express the z and y components in terms of the x components.
We obtain
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TE and TM Fields Separabile in the Cylindrical
Coordinate System

The harmonic electromagnetic fields listed below satisfy Maxwell’s equations in a homogeneous
source-free region.

TE Fields TM Fields
. 14y
Ey= 1™ p”ch’ E, = CR'®Z'

1
Ey = CjouR' ®Z Ey= CBRCI)"Z’
E,=0 E, = CP*R®Z
M, = CR'®Z H,= C!%JER(I) z
1

Hy = CERCI)’Z’ Hy = —joeCR'®Z
H, = CB*R®Z H.=0

C denotes an arbitrary constant. The time dependence ¢/ is understood. R is a function of p only,
@ is a function of ¢ only, and Z is a function of z only. Primes indicate differentiation with respect
to p, ¢ or z. The functions satisfy the following differential equations:
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where
ks +B% = 0’ue
and kp and & are constants. Note:
R = kp (kpp) ifRMJm(kpp)
R =koNy(kop)  if R= Nyu(kpp) = Nim(kpp)
R = koHl(kop) if R = Hyn(kop)

Some solutions of these differential equations are lisied below.
R(p) = Jm(kpp) ® () = cos(md) Z(z) = cos(B.z)
Non(kpp) sin{mo) sin(pB;z)
HY (kop) el o IP
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If B =0, the radial function is R(p) = p™
Note the definitions:

Bessel function of order m

Neumann function of order m

()=
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Hy’ (+) = mth order Hankel function of the 1st kind
()=

mth order Hankel function of the 2nd kind
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