
 Scattering From an Infinite PEC Cylinder (Balanis 11.5 pp. 607-617) 

Formulation for zTM incidence 

To characterize the interaction of a plane wave with a cylindrical object, we must first represent the 
plane wave as a sum of cylindrical waves. 

Note that this is possible because both plane waves and cylindrical waves for a “complete set” of modes. 
Specifically, any fields may be written as either a series of plan waves or a series of cylindrical waves. 

For TMz incidence:  ( E field along axis of cylinder)   

 

                                                                                                                                                                  

                                                                                                                                           

                                                                                                           

 

            

                                                                                                                                                                              

                                                                                                                                                                                                                                                                  

  
The incident plane wave takes the form 
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The above is similar to a Fourier series in cylindrical coordinates. Specifically, we have, 
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Thus, the # of required modes is proportional to the electrical size (radius) of the cylinder. For very small 

cylinders ( )oρβ → , and we only need the 0n =  term. 

The total field in presence of the cylinder is the sum of the incident field plus the scattered field. 
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The scattered field can also be written as the sum of cylindrical waves: 

  

 

In this, the scattered fields are outward traveling. Also, cn are the coefficienst of each Hankel ( )
nH ρ . 

The Hankel functions can be expressed in terms of the 1st and 2nd kind. Bessel functions, viz. 
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This is exactly analogous to:  

 

cos sinj xe x j xβ β β+ = +    (traveling wave along x− ) 

cos sinj xe x j xβ β β− = −    (traveling wave along x+ ) 

Note that the Bessel and Handel functions are the only valid solutions of Maxwell’s equations in source 

free regions.  When multiplied by the appropriate angular dependence, i.e. jne φ  for 2D problems, we 
have the solutions 
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We can solve for scattered fields by applying the boundary conditions for the PEC cylinder, viz. 
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Since jne φ  are orthogonal in [ ]0,2φ π∈ , each “n” term must vanish independently. Enforcing this 

condition, we get 
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Therefore, we can write the scattered field, sE , as 
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Scattered fields look like far away from the cylinder (Far Fields) 

The Hankel functions have an asymptotic approximation forβρ →∞ , 
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This is a wave that travels outwards ( )ρ+ direction and decaying as 1
ρ

 , vi.z cylindrical wave. Using 

this asymptotic approximation for the Hankel fuction, sE becomes  
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Scattering from a PEC cylinder, zTE  incidence 

H  field parallel to cylinder’s axis  

 

 

 

 

 



 

As before, the incident plane wave in the series: 
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To enforce the boundary condition tan 0=E  on the cylinder’s surface, we proceed to evaluate E  . 
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Similarly, the scattered field can be expressed as:  

 

  

 

 

 

 

Enforcing the boundary conditions:   ( )tan 0t aρ = =E   

gives 
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Again, to enforce the boundary conditions, the individual summation terms must vanish. Enforcing this, 
gives  
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Therefore,  

 

 

for TE  incidence. 
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