Time harmonic fields

(plane, spherical and cylindrical waves; solution of wave equation or radiation condition; wave
velocity; Poynting theorem)

Hereon we will concentrate on time harmonic fields (i.e., sinusoidal) of the form
cos(er — kx), sin(@r — ky), cos(wf — kr) or sin(@t —kp) (cylindrical), etc.
If the field 1s not 1n this form, we can invoke Fourier Series to rewrite the given field as
E(t,x=0) = Z(A” cosnwot -+ By, sinnwgt) = Z e, e

where wy = the fundamental frequency. Thus, any time-domain field can be represented as a super-
position of harmonics, and for our analysis we can consider each harmonic component separately.
That 1s, we can instead deal with phasor quantities as done in circuits.

In general, we can express E as

E(x,y,7;1) = Re (of Im) {E(x,y,z) ej(m}

Note that we are adopting the e™ convention (although in many physics books the e=7% con-
vention is used). This representation should be compared to

V(1) = Re {Vohagore'™ }

Here, the phasor will be the field components, viz.

E;(xay,z, 1) = Re {or Im) {Eﬁﬁ(x% 2) ejmr}
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Thus, the general form (hereon Re{ } and ¢/® conventions will be adopted) will be

E(x,y,2,1) or €(x,y,2,1) = Re {E(x,y,2) ¢/}
= £Ex cos(0t + Ox) -+ FE o cos(f + 0,) + 20 cos(i + ¢;)

(see p. 15 of Harrington). The coefficients Eyp, Eyo, Ey tepresent peak values of the harmonic
field. Harrington instead considers Ey, Eyo, En to be RMS values. This difference will simply
impact the formulas for the time-average power/energy.



Example: (see p. 22 of Harrington)

1
3 f / f o|E|* dv average power dissipated in V (no % in Harrington)
V

1 S
1 / ] / £0&r|E|? dv average electric energy stored in V (% instead of zl; in Harrington)
Jv

We can readily rewrite Maxwell’s equations in phasor form by noting that
dE

= =0 E(x,y,z,t) = jo E(r)

where r — x£ -+ y¥ + 72 is the spherical or position vector.
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Basically, we set
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when dealing with sinusoidal/phasor quantities.

VxE=joH VxE=—-M-—jouH (M - V/m?)
VxH=J— jweE | VxH=J+ joeE (J — A/m?)
V-J=—jop V-I=—jop

V-M=—jopm {(pm = magn. charges)
V- (uH) =0 V-uH=ppn  (pm — Wb/m>)
V.-(eE)=p V-eE=p (p— C/m)
D=¢E D=¢E (D-+C/m?)
B=uH B=uH (B Wb/m?)

Magnetic Current

For mathematical convenience we may also assume the presence of magnetic currents as added
sources. That is, we accept the possibility that the south and north poles of a magnet can exist in
isolation. If magnetic charges exist (caused by electron spins) than

ffB-ds://fpmdv & V-B=py or V-uH=py
Vv

The corresponding continuity equation for magnetic charges is
V-M= —jopnm
and the modified Maxwell’s equation is
VxE=—-M— jouH

such that

VA(VxE)=0=-V-M— joV-uH
satisfies the continuity relation. In practice, magnetic curtents are useful for modeling and repre-
senting jumps in the electric field.



Complex permittivity
e Goal is to incorporate G into €
Taking a Iook at Ampere’s Law, we have

VxH= Jj‘l‘@"{‘jﬁ)ﬁE

Je
We see that we can rewrite this as
VxH=]i+(0+ joe)E
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VxH=J+ jotE
] G !/ . { .
E=¢ct+—=¢—j¢' =¢€(1 - jtand
+J.(D j (1— jtande)

i

tan &, = loss tangent — o

tand. =0 < lossless media (non-conducting)
tand, # 0 < lossy media (o £ 0)

Hereon, we will simply write Ampere’s Law as
VxH=};+ joek

and drop the “” over €. Thus, whenever we write £ in a time harmonic/phasor equation, we will
imply that it has real and imaginary parts

e=¢ —j¢’ - (¢,&") are given
=¢/(1— jtand,) (¢/,8.) are given
) )
= Ereql + _]_(1) (Ez'cab G) given
(Any of these combinations can be given.) Similarly,

£ , . L
== el — je! (complex relative permittivity)
0

= (&)l +
= \%r/real ] ey
Likewise for magnetic material
p=u = ju’
=4 (1— jtandy) 8m : magnetic loss tangent
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| Final Equations for Time Harmonic Fields | Boundary Conditions |

VX E = ~M; — jouH Aix (E; —Fz) = —M, (impressed
VxH=J+ jocE Ax (H;—Hy)=+Js surface charges)
V-Ji= —jop
V. Mi - "“j(me
V-eE=p fi- (D1 —D2) =py
V.uH =pp fi-(B1=By) = pmg
A (E'laHl)
n A,
B = uH (&1,14) e’
D = ¢E i (o)
e=¢ —j&" = €(1—jtanG,) .
= frn+0/ Special Cases
/ s M ! :
u=p =gt = (1 jan Sm) 1. Medium #2 is perfect (clectric) conductor
= Ureal + Om/ jO
O, = electric loss tangent AxHy =)
dm = magnetic loss tangent AxE; =0
A-B=10
A-D=pgy

2. Medium #2 is perfect magnetic conductor
(PMC)

AxH =0
'Blzpms
D=0
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Wave Equations
Zy =/ w/e, k= ooeo
E VE;
V x (V a ) —k{%ErE: —jkoZ{}Ji—V X (—)
He Hr
or

1 M;
}—VxVxEmkéereqV(—) X VX E = —jkyZoJi— V x (——1)
Hr My Hr

For homogeneous media: V?E—V(V - E)+ k%enurE = jkoZopr i -+ V x M;
Homogeneous and source-free: V°F + kﬁer,urE = jkoZouJi +V x M
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