Two-Dimensional Green’s Function

Consider the parallel plate wavegnide excited by a line source at (', y'):
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We are interested in finding the Green’s function of this configuration subject to the boundary conditions
G =0 at y =0, b and the radiation conditions at x — Z-eo,

We have
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and we propose the solution (by invoking separation of variables)
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As done for the one-dimensional case we may choose (this sum is most appropriate for G|, since y,, will be
sinusoidal and not decaying exponentials)
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It follows that
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Note that y,(y) are the eigenfunctions and [3,, are the associated eigenvalues of the problem.
We have chosen A so that
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i.e., yr, are orthonormal eigenfunctions.

Then
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Substituting this into the D.E, satisfied by G gives
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Next we multiply both sides by W, and integrate with respect to y to get (this step elininates 8(y —y') and

the y dependence)
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This leads to
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Clearly, we have now reduced the 2D problem down to a corresponding 1D problem.
The solution of this latter D.E. was already given earlier and we have (since only the radiation condition
need be satisfied)
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Returning back to G, we now have
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when Py = 0 (static case), it follows that
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and as expected G decays in the direction of -tx, since there is no propagation at DC.
Each of the summands in the expression for G corresponds to a mode. The specific modal functions or

eigenfunctions are given by
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These modes propagate in the +x direction, and since ¢, = 0 at y = 0,5 (on the PEC surfaces), they can
represent the electrc field component E; (TE wave) or E, (TM). The mode phase velocity is
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in which ¢ is the speed of light. Note that v, is mode dependent and frequency dependent (i.e., the
waveguide is dispersive). Also,
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This is the basis for designing microwave lenses.
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Because the phase velocity in each guide formed by a pair of plates is greater than Vo, for a propagating
mode (say TE;), a cylindrical wave (or a beam) may exit as a plane wave on the right side.
Whether a mode propagates or attenuates as it travels along the x direction, this depends on the value of

the propagation constant
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For 3y > B, the propagation factor is

and for B, > By we have
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The transition from a propagating to an attenuating mode occurs when
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A cutoff frequency for the nth mode

2b /i

That is, if the excitation frequency is below fo. (f < fo.) the nth mode will not propagate. The associated
cutoff wavelength is
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The wavelength of the mode in the guide is




Group velocity

Each mode in the guide can be rewritten as
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This constitutes the superposition of two plane waves ¢, and ¢, where
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Recalling the typical plane wave expression

G ~ e—jﬁu(xcosquhysimp)

we introduce the substitutions
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The energy or group velocity for this mode/wave is given by
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which is also a function of the excitation frequency. Note that in general
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where B or By, is the propagation constant of the guided wave. Since
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This expression agrees with the above, which was derived geometrically.
If N = \/juc€; is also a function of @ (material dispersion), then (note wiue = B3 and ue = N?/c2)
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