Integral form of Maxwell’s equations

Faraday’s Law
e Faraday’s Law is the basic principle for electric machines (motors and generators).
e [t provides the basic relation between electric and magnetic fields.

e Faraday’s Law states that changing magnetic field causes a rise of potential across the con-
ductor terminals (generator), '

e emf around the closed path C = neg. rate of change of magnetic flux through the surface

enclosed by C.
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where E is the electric field in volts/meter and B is the magnetic flux density in web/m?.
Applicable relationship between C and §

=

e Note that § 15 open and C bounds the surface §.



Faraday’s Law example

Basic principles of motors and generators
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e A potential ¥ is seen across these rings due to the rotating loop in a B (static or dynamic)
field. This B is due to an externally applied field from the stator magnet, for example.
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\% holds for constant B only
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e Since the loop is rotating, 74 is dependent on time. At¢ =0, #=Zand /i ds = % dx dy. But at

some time ¢, then
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Thus,
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If we assume that B = £B,, then

V:—Bx% (//ﬁ-ﬁds) :—Bx% (—sinmrf ds)

= +(Bywcosmr) x (Area of loop)
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If N loops form the winding, then
vV = NoB,A cos ot

Note that the approach is valid even when B is time-varying, i.e., if B = £cosayr as is
usually the case. Note also that larger area, higher ® or @y, more turns and higher B, all lead
to higher voltages. Thus, we can use these parameters for design.

Ampére’s Law example

mmf—fl-l-dl:]/ J-Ads
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in which H is the magnetic field in A/m, dl = [ dI, and J is the current density in A/m?.
In words: mmf around a closed path C equals the current through the surface enclosed by C.

Note:
/ J-Ads= Lenclosed
Ay

where Iunelosea 1S the total current through S;.
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If J 1s assumed constant through S», then
(J : ﬁ) npz = lenci - Jp=J7= one
o ‘ np>
Ju=1;
When p = a, it follows that
Iwire
J =
© ma?

For time-varying fields, Maxwell supplemented Ampére’s equation (and made it to read similarly
to Faraday’s Law) as follows:"
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where D) is the electric flux density in C/m?. Maxwell called the quantity
1),

—— = displacement current

ot



since it has the same mathematical effect as the current density J. This becomes obvious when we
rewrite Ampere-Maxwell’s Law as

j{jH-dIz][S(Jﬁ-%g)-ﬁds

Continuity Equation

A third independent equation to be added to the above two equations is the “charge conservation
d
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law”:
where p is the charge density in C/m>.
e This is a generalization of the known relation

Y
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from circuit theory.
e Charge conservation provides the relation between moving charges and current.
s Its physical meaning is that: charge is neither created nor destroyed, or

(neg) time rate of change of charge in V equals the current flowing out of V.
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