HW Assignment Solution for EML 4806 CH 9

Problem 3:

$$x(t) = 4(1+t)e^{-t}$$

Problem 12:

Shaft appears stiffer due to gears:

$$K = 500 \times 8^2 = 32000;$$
 $W_{RES} = \sqrt{32000/1}$
= 178.88 rad/sec $\cong \boxed{28.47 \text{ Hz}}$

Problem 22:

Closed loop system is:

$$m\ddot{x} + b'\dot{x} + k'x = 0$$
 (9.38)

where $b' = b + k_v$ and $k' = k + k_p$. Critical damping requires that $b' = 2\sqrt{mk'}$.

Using rule (9.72), if $\omega_{\rm res} = 6$ rad/sec then we should design the servo to have $\omega_n = 3$ rad/sec. From (9.20) $\omega_n = \sqrt{k/m}$ (in our case k') so,

$$3 = \sqrt{k'/m};$$
 $k' = 18$
 $k_p = k' - k = 18 - 8 = 10$
 $b' = 2\sqrt{mk'} = 2\sqrt{36} = 12;$ $k_v = b' - b = 12 - 3 = 9$