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Abstract

Explicit formulas for the mean and variance of the solutions of linear stochastic differ-
ential equations are derived in terms of an exponential matrix. This result improved a
previous one by means of which the mean and variance are expressed in terms of a linear
combination of higher dimensional exponential matrices. The important role of the new
formulas for the system identification as well as numerical algorithms for their practical
implementation are pointed out.
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1. Introduction

Linear Stochastic Differential Equations (SDEs) define one of the more simple class of
equations frequently used for modeling a variety of random phenomena. Since long time
ago, they have been the focus of intensive researches resulting in a broad and deep knowl-
edge of the properties of their solutions. Among these properties, the mean and variance
of the solutions have been well studied. Specifically, the Ordinary Differential Equations
(ODEs) that describe the dynamics of the mean and variance are well know (see, e.g.,
[1]). However, since the explicit solutions of these ODEs were rarely available, numerical
solutions were required during some time. Typically, these approximate solutions were
computed by means of a numerical integrator for the differential equations or by a numer-
ical quadrature applied to the integral representation of the mean and variance (see, e.g.,
[17, 15]). Later, in addition to the explicit formulas for the mean and variance of the scalar
linear SDEs and for the multidimensional linear SDEs with diagonal drift and diffusion
coefficients, explicit formulas could be obtained as well for multidimensional linear SDEs
with additive noise. Indeed, by using the main result of [21], the mean and variance of
these equations could be expressed in terms of exponential matrices that, nowadays, can
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be accurate and efficiently computed (see, e.g., [18]). More recently, in [12, 13], explicit
formulas for the mean and variance of linear SDEs with multiplicative and/or additive
noises were derived in terms of a linear combination of seven exponential matrices. The
formulas were obtained as solution of the mentioned ODEs for the mean and variance by
using the main result of [21] as well. Apart from being of mathematical interest, these
explicit formulas have played a crucial role in the practical implementation of suboptimal
linear filters [12], Local Linearization filters [13] and approximate Innovation estimators
[14] for the identification of continuous-discrete state space models. In a variety of appli-
cations, these methods have shown high effectiveness and efficiency for the estimation of
unobserved components and unknown parameters of SDEs given a set of discrete observa-
tions. Remarkable is the identification, from actual data, of neurophysiological, financial
and molecular models among others (see, e.g., [2, 5, 9, 19, 20]). Therefore, a simplifi-
cation of the formulas for the mean and variance of linear SDEs might imply a sensible
reduction of the computational cost of the mentioned system identification methods and,
consequently, a positive impact in applications.

In this paper, simplified explicit formulas for the mean and variance of linear SDEs are
obtained in terms of just one exponential matrix of lower dimensionality. The formulas
are derived from the solution of the ODEs that describe the evolution of the mean and the
second moment of the SDEs. The variance is then obtained from the well-known formula
that involves the first two moments. The computational benefits of the simplified formulas
are pointed out.

2. Notation and Preliminaries

Let us consider the d-dimensional linear stochastic differential equation

dx(t) = (Ax(t)+a(t))dt +
m

∑
i=1

(Bix(t)+bi(t))dwi(t) (1)

for all t ∈ [t0,T ], where w = (w1, . . . ,wm) is an m-dimensional standard Wiener process,
A and Bi are d×d matrices, and a(t) = a0 +a1t and bi(t) = bi,0 +bi,1t are d-dimensional
vectors. Suppose that there exist the first two moments of x for all t ∈ [t0,T ].

The ordinary differential equations for the d-dimensional vector mean mt = E(x(t))
and the d×d matrix second moment Pt = E(x(t)xᵀ(t)) of x(t) are [16]

dmt

dt
= Amt +a(t)
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and
dPt

dt
= APt +PtAᵀ+

m

∑
i=1

BiPtBᵀ
i +B(t),

where

B(t) = a(t)mᵀ
t +mtaᵀ(t)+

m

∑
i=1

Bimtbᵀ
i (t)+bimᵀ

t Bᵀ
i (t)+bi(t)bᵀ

i (t). (2)

The solution of these equations can be written as [12, 10]

mt = m0 +LeC(t−t0)r (3)

and

vec(Pt) = eA (t−t0)(vec(P0)+

t−t0∫
0

e−A svec(B(s+ t0))ds), (4)

where m0 = E(x(t0)) and P0 = E(x(t0)xᵀ(t0)) are the first two moments of x at t0, and the
matrices C, L and r are defined as

C =

 A a1 Am0 +a(t0)
0 0 1
0 0 0

 ∈ℜ
(d+2)×(d+2), (5)

L =
[

Id 0d×2
]

and rᵀ =
[

01×(d+1) 1
]

for non-autonomous equations (i.e., with non
zero a1, bi,1); and as

C =

[
A Am0 +a(t0)
0 0

]
∈ℜ

(d+1)×(d+1), (6)

L =
[

Id 0d×1
]

and rᵀ =
[

01×d 1
]

for autonomous equations (i.e., with a1 = bi,1 =
0). Here,

A = A⊕A+
m

∑
i=1

Bi⊗Bᵀ
i (7)

is a d2× d2 matrix, and Id is the d-dimensional identity matrix. The symbols vec, ⊕ and
⊗ denote the vectorization operator, the Kronecker sum and product, respectively.

The following lemma provides simple expressions to computing multiple integrals in-
volving matrix exponentials such those appearing in (4).
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Lemma 1. ([21]) Let A1, A2, A3 and A4 be square matrices, n1, n2, n3 and n4 be positive
integers, and set m to be their sum. If the m×m block triangular matrix M is defined by

M =


A1 B1 C1 D1
0 A2 B2 C2
0 0 A3 B3
0 0 0 A4


} n1
} n2
} n3
} n4

,

then for s≥ 0 
F1(s) G1(s) H1(s) K1(s)

0 F2(s) G2(s) H2(s)
0 0 F3(s) G3(s)
0 0 0 F4(s)

= exp(sM),

where

F j(s)≡ exp(A js), for j = 1,2,3,4

G j(s)≡
s∫

0

exp(A j(s−u))B j exp(A j+1u)du, for j = 1,2,3

H j(s)≡
s∫

0

exp(A j(s−u))C j exp(A j+2u)du

+

s∫
0

u∫
0

exp(A j(s−u))B j exp(A j+1(u− r))B j+1 exp(A j+2r)drdu

K1(s)≡
s∫

0

exp(A1(s−u))D1 exp(A4u)du

+

s∫
0

u∫
0

exp(A1(s−u))[C1 exp(A3(u− r))B3 +B1 exp(A2(u− r))C2]exp(A4r)drdu.

+

s∫
0

u∫
0

r∫
0

exp(A1(s−u))B1 exp(A2(u− r))B2 exp(A3(r−w))B3 exp(A4w)dwdrdu.

A generalization of the above lemma for integrals with higher multiplicity is given by
the following theorem.
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Theorem 2. ([4]) Let d1,d2, ...,dn, be positive integers. If the n×n block triangular matrix
A =[(Al j)]l, j=1:n is defined by

A =


A11 A12 ... A1n

0 A22 ... A2n

0 0 . . . ...
0 0 0 Ann

 ,

where (Al j), l, j = 1, ...,n are dl×d j matrices such that dl = d j for l = j. Then for t > 0

eAt=


B11(t) B12(t) ... B1n(t)

0 B22(t) ... B2n(t)

0 0 . . . ...
0 0 0 Bnn(t)

 ,

with

Bll(t) = eAllt , l = 1, ...,n

Bl j(t) =

t∫
0

M(l, j)(t,s1)ds1

+
j−l−1

∑
k=1

t∫
0

s1∫
0

...

sk∫
0

∑
l<i1<...<ik< j

M(l,i1,...,ik, j)(t,s1, ...,sk+1)dsk+1...ds1,

l = 1, ...,n−1, j = l +1, ...,n,

where for any multi-index (i1, ..., ik)∈Nk and vector (s1, ...,sk)∈Rk the matrices M(i1,...,ik)(s1, ...,sk)
are defined by

M(i1,...,ik)(s1, ...,sk) =

(
k−1

∏
r=1

eAir ir (sr−sr+1)Airir+1

)
eAikik sk .

3. Simplified formulas for the first two moments

In this section simplified formulas for the first two moments of the linear SDE (1) and
two of their special forms are derived. Equations with multiplicative and additive noises as
well autonomous and nonautonomous equations are distinguished.
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3.1. Equations with multiplicative and/or additive noises
Lemma 3.

vec(B(s+ t0)) = B1 +B2s+B3s2 +B4eCsr+ sB5eCsr, (8)

for all s ≥ 0, where the vectors B1 = vec(β1)+β4m0, B2 = vec(β2)+β5m0 and B3 =
vec(β3), and the matrices B4 = β4L and B5 = β5L are defined in terms of the matrices

β1 =
m

∑
i=1

(bi,0 +bi,1t0)(bi,0 +bi,1t0)ᵀ

β2 =
m

∑
i=1

(bi,0 +bi,1t0)bᵀ
i,1 +bi,1(bi,0 +bi,1t0)ᵀ

β3 =
m

∑
i=1

bi,1bᵀ
i,1

β4 = (a0 +a1t0)⊕ (a0 +a1t0)+
m

∑
i=1

(bi,0 +bi,1t0)⊗Bi +Bi⊗ (bi,0 +bi,1t0)

β5 = a1⊕a1 +
m

∑
i=1

bi,1⊗Bi +Bi⊗bi,1.

Proof. The formula for vec(B(s+ t0)) is directly obtained by substituting (3) in (2) with
t = s+ t0.

The main result of this paper is the following.

Theorem 4. Let x be the solution of the linear SDE (1) with moments m0 = E(x(t0)) and
P0 = E(x(t0)xᵀ(t0)) at t0. Then, the first two moments of x can be computed as

mt = m0 +L2eM(t−t0)u

and
vec(Pt) = L1eM(t−t0)u

for all t ∈ [t0,T ], where the (d2 +2d +7)−dimensional vector u and the matrices M, L1,
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L2 are defined as

M =


A B5 B4 B3 B2 B1
0 C Id+2 0 0 0
0 0 C 0 0 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 0

 , u =


vec(P0)

0
r
0
0
1


and

L2 =
[

0d×(d2+d+2) Id 0d×5
]

, L1 =
[

Id2 0d2×(2d+7)
]

,

with Bi defined as in Lemma 3, C, r in (5), and A in (7).

Proof. From (4) and (8) follows that

vec(Pt) = F1vec(P0)+K1 +H1r

where
F1 = eA (t−t0),

K1 =

t−t0∫
0

eA (t−t0−s)B1ds+

t−t0∫
0

s∫
0

eA (t−t0−s)B2duds+2
t−t0∫
0

s∫
0

u∫
0

eA (t−t0−s)B3drduds

and

H1 =

t−t0∫
0

eA (t−t0−s)B4eCsds+

t−t0∫
0

s∫
0

eA (t−t0−s)B5eCsduds.

Further, with F3 = eC(t−t0), (3) can be written as

mt = m0 +LF3r,

where the matrices L, C, r are defined as in (5). Thus, by a direct application of Theorem
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2 (alternatively, Lemma 1 for F1, F3 and H1 can be used by simplicity) follows that
F1 − H1 − − K1
0 − − − − −
0 0 F3 − − 0
0 0 0 − − −
0 0 0 0 − −
0 0 0 0 0 −

= eM(t−t0) with M =


A B5 B4 B3 B2 B1
0 C Id+2 0 0 0
0 0 C 0 0 0
0 0 0 0 2 0
0 0 0 0 0 1
0 0 0 0 0 0

 ,

where Bi are defined as in Lemma 3, and A in (7). This implies that

mt = m0 +Lv2

and
vec(Pt) = v1,

where the d2-dimensional vector v1 and the d-dimensional vector v2 are defined as
v1
−
v2
−
−
−

= eM(t−t0)u with u =


vec(P0)

0
r
0
0
1

 .

Proof concludes by verifying that Lv2 = L2v and v1 = L1v, where vᵀ = [v1,−,v2,−−−],
L2 =

[
0d×(d2+d+2) L 0d×3

]
and L1 =

[
Id2 0d2×(2d+7)

]
.

For autonomous equations with multiplicative and/or additive noises the formulas of
the previous theorem can be simplified as follows.

Theorem 5. Let x be the solution of the linear SDE (1) with a1 = bi,1 = 0. Let m0 =
E(x(t0)) and P0 = E(x(t0)xᵀ(t0)) be moments of x at t0. Then, the first two moments of x
can be computed as

mt = m0 +L2eM(t−t0)u

and
vec(Pt) = L1eM(t−t0)u

for all t ∈ [t0,T ], where the (d2 + d + 2)−dimensional vector u and the matrices M1, L1
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are defined as

M =

 A B1 B4
0 0 0
0 0 C

 , u =

 vec(P0)
1
r


and

L2 =
[

0d×(d2+1) Id 0d×1
]

, L1 =
[

Id2 0d2×(d+2)
]

with B1 and B4 defined as in Lemma 3, C, r in (6), and A in (7).

Proof. Since a1 = bi,1 = 0, B2 = B3 = B5 = 0. Thus, from (4) and (8) follows that

vec(Pt) = F1vec(P0)+G1 +H1r,

where
F1 = eA (t−t0),

G1 =

t−t0∫
0

eA (t−t0−s)B1ds

and

H1 =

t−t0∫
0

eA (t−t0−s)B4eCsds.

By a direct application of Lemma 1 follows that

mt = m0 +LF3r

and
vec(Pt) = F1vec(P0)+G1 +H1r,

where the matrices F1, F3, K1, and H1 are defined as F1 G1 H1
0 − −
0 0 F3

= eM(t−t0) with M =

 A B1 B4
0 0 0
0 0 C

 ,
with B1 and B4 defined as in Lemma 3, C, r in (6), and A in (7). This implies that

mt = m0 +Lv2
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and
vec(Pt) = v1,

where the d2-dimensional vector v1 and the d-dimensional vector v2 are defined as v1
−
v2

= eM(t−t0)u with u =

 vec(P0)
1
r

 .
Proof concludes by verifying that Lv2 = L2v and v1 = L1v, where vᵀ = [v1,−,v2], L2 =[

0d×(d2+1) L
]

and L1 =
[

Id2 0d2×(d+2)
]
.

3.2. Equations with additive noise
For autonomous SDEs with additive noise an additional simplification of the explicit

formulas for the first two moments can be archived.

Theorem 6. Let x be the solution of the linear SDE (1) with Bi = 0 and a1 = bi,1 = 0. Let
m0 = E(x(t0)) and P0 = E(x(t0)xᵀ(t0)) be moments of x at t0. Then, the first two moments
of x can be computed as

mt = m0 +k1

and
Pt = F1P0Fᵀ

1 +H1Fᵀ
1 +F1Hᵀ

1

for all t ∈ [t0,T ], where the matrices F1, H1, and k1 are defined as
F1 − H1 k1
0 − − −
0 0 − −
0 0 0 −

= eM(t−t0),

being

M =


A a0 a0mᵀ

0 +
1
2

m
∑

i=1
bi,0bᵀ

i,0 Am0 +a0

0 0 (Am0 +a0)
ᵀ 0

0 0 −Aᵀ 0
0 0 0 0

 .
a (2d +2)× (2d +2) matrix.

Proof. Thanks to Bi = 0, a1 = bi,1 = 0, the commutation of the matrices (I⊗A) and
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(A⊗ I), and by using expressions (4) and (2) it is obtained that

Pt = eA(t−t0)P0eAᵀ(t−t0)+

t−t0∫
0

eA(t−t0−s)B(s+ t0)eAᵀ(t−t0−s)ds,

where now B(s+ t0) reduces to

B(s+ t0) = a0mᵀ
s+t0 +ms+t0aᵀ0 +

m

∑
i=1

bi,0bᵀ
i,0.

Taking into account that ms+t0 can be rewritten as [12]

ms+t0 = m0 +k1,

with

k1 =

s∫
0

eA(s−u)(Am0 +a0)du

we have that

a0mᵀ
s+t0 = a0mᵀ

0 +a0(Am0 +a0)
ᵀ

s∫
0

eAᵀ(s−u)du,

and so Pt can be rewritten as

Pt = F1P0Fᵀ
1 +H1Fᵀ

1 +F1Hᵀ
1,

where
F1 = eA(t−t0)

and

H1 =

t−t0∫
0

eA(t−t0−s)(a0mᵀ
0 +

1
2

m

∑
i=1

bi,0bᵀ
i,0)e

−Aᵀsds

+

t−t0∫
0

eA(t−t0−s)a0(Am0 +a0)
ᵀ

s∫
0

e−Aᵀududs.

Proof concludes by a direct application of Lemma 1

11



Note that Theorem 6 provides an explicit formula for the first two moments of au-
tonomous linear equations with additive noise in terms of just one exponential matrix.
This new result complements both, the well known formulas for the mean and variance
of these equations that can be straightforward obtained from Theorem 1 in [21] (Lemma
1 here) in terms of two exponential matrices of dimensions d + 1 and 2d, and the formu-
las for the mean and variance obtained in [3] in terms of just one exponential matrix of
dimension 2d +2.

4. Computational issues and numerical simulations

Theorem 4 provides explicit formulas for the first two moments of the linear SDE (1)
in terms of an exponential matrix of dimension d2 + 2d + 7. By using the well-known
expression

var(z) = E(zzᵀ)−E(z)E(zᵀ)

for the variance var(z) of a random variable z, the variance var(x) of x solution of (1) can
be straightforward computed as

var(x(t)) = Pt−mtmᵀ
t

for all t ∈ [t0,T ], where mt and Pt are given as in Theorem 4.
By taking into account that the explicit formulas for the mean and variance of (1)

obtained in [12, 13] involve the computation of seven exponential matrices of different
dimensions up to a maximum of 3d2 +4d +4, it is obvious the remarkable benefits of the
new simplified formulas. From a computational viewpoint, this includes a considerable
reduction of the computer storage capacity and the computational time required for their
evaluations through the well known Padé method [18, 11] for exponential matrices. But, in
addition, the new formulas allow the efficient computation of the mean and variance of high
dimensional systems of the linear SDEs by means of the Krylov subspace method [18, 11]
for exponential matrices, which is crucial in many practical situations. Other advantage
of the exponential form of these formulas is the flow property the exponential operator,
which allows an extra reduction of the computational time when the mean and variance of
(1) are required on consecutive time instants with multiplicity. In this case, the firsts two
conditional moments at the first time instant after the initial one is computed through the
exponential matrix of Theorem 4, whereas the others at the remainder times are computed
by simple multiplications of the exponential matrix just mentioned.

Theorems 5 and 6 provide explicit formulas for the first two moments of autonomous
linear SDEs, which involve an exponential matrix of lower dimensionality: d2 + d + 2
for equation with multiplicative noise, and 2d + 2 for equations with additive noise. This
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yields extra advantages in a number of important applications.

Type of SDE / dimension 2 8
Non Autonomous, with Multiplicative Noise 0.457 0.036
Autonomous, with Multiplicative Noise 0.322 0.021
Autonomous, with Additive Noise 0.072 0.001

Table I: Relative computational time between the new and old formulas for the moments of
linear SDEs.

As illustration, the performance of the new and old formulas are compared for three
types of linear equations. In particular, the equations

dx(t) = (−Hx(t)+1t)dt +Hx(t)dw(t),
dx(t) =−Hx(t)dt +Hx(t)dw(t),

and
dx(t) =−Hx(t)dt +1dw(t)

with t ∈ [0,1] and initial conditions E(x(0)) = 1, E(x(0)xᵀ(0)) = 11ᵀ were considered,
where H denotes the d× d Hilbert matrix and 1 the d-dimensional unit vector. The for-
mulas of the Theorems 4, 5 and 6 were used to compute the moments of the first, second
and third equation, respectively, at t = 1. With the same purpose, the formulas of Theorem
3 in [13] were used for the three SDEs. For equations with dimensions d = 2 and d = 8,
Table I presents the relative computational time between the new and old formulas, which
is calculated as the ratio of the CPU time consumed for these formulas in each equation.
Observe as, in all the cases, the new formulas exhibit a substantial reduction of the compu-
tational cost. As it was expected, this reduction clearly increases with the dimensionality
and the simplicity of the equation.

Finally, it is worth noting that the simplified formulas derived here have allowed a
computationally efficient implementation of the approximate filters and estimators recently
proposed in [6], [7] and [8] for the identification of diffusion processes from a reduced
number of discrete observations distant in time.

5. Conclusions

In this paper, explicit formulas for the mean and variance of linear stochastic differen-
tial equations were derived in terms of an exponential matrix. With respect to the formulas
proposed in a previous paper the new ones have a number of clear advantages: 1) they
involve the computation of just one exponential matrix of lower dimensionality; 2) for
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high dimensional SDEs, they can be straightforward computed though the Krylov sub-
space method; 3) for consecutive time instants with multiplicity, their flow property can
be used; and 4) they reduces to simpler forms for autonomous SDEs and for equations
with additive noise. From numerical viewpoint, this implies a significant reduction of the
computer storage capacity and the computational time.

Acknowledgement: The author thanks to Prof. A. Yoshimoto for his invitation to the
Institute of Statistical Mathematics, Japan, where the manuscript was completed.
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