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Abstract 
Photoplethysmography is a key sensing technology which is used in wearable devices such as 

smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor 

physiological parameters including heart rate and heart rhythm, and to track activities like sleep and 

exercise. Yet, wearable photoplethysmography has potential to provide much more information on 

health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions 

for research and development to realise the full potential of wearable photoplethysmography. Experts 

discuss key topics within the areas of sensor design, signal processing, clinical applications, and 

research directions. Their perspectives provide valuable guidance to researchers developing wearable 

photoplethysmography technology. 
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1. Introduction 
 

Author(s): Peter H. Charlton 
Institution(s): Department of Public Health and Primary Care, University of Cambridge, 
Cambridge, UK; Research Centre for Biomedical Engineering, City, University of London, 
London, UK. 
ORCiD(s): 0000-0003-3836-8655; 0000-0002-9531-0268 

 

The widespread use of wearable devices provides opportunity to monitor health unobtrusively and at 

scale in daily life. Wearables such as smartwatches and fitness trackers commonly use the optical 

sensing technology ‘photoplethysmography’ to acquire an arterial pulse wave signal, from which a 

wealth of physiological information can be derived. Several promising applications of wearable 

photoplethysmography are either being translated into clinical practice or in development, including 

detecting abnormal heart rhythms, monitoring blood pressure, and identifying sleep disorders. There 

is great potential for wearable photoplethysmography to improve health and wellbeing, meaning 

much further work is warranted to realise its full benefits. 

The field of wearable photoplethysmography is a highly attractive area for research and development. 

Photoplethysmography entered clinical use in the 1980s in the form of pulse oximeters, 

revolutionising the measurement of arterial blood oxygen saturation, and pulse oximeters remain 

widely used in many clinical settings. In the 2010s, photoplethysmography was incorporated into 

consumer wearables such as smartwatches and fitness trackers, which are now used by millions each 

day. The technology is simple enough to be widely understood: an optical sensor for measuring the 

blood pulse. And yet it is complex enough to capture the imagination of researchers worldwide: there 

is no consensus yet on the physiological origins of the photoplethysmogram signal (Section 24). The 

potential benefits have been the subject of high-impact publications: studies of multiple wearable 

photoplethysmography devices have found them to be a useful tool for detecting atrial fibrillation and 

prompting potentially life-saving treatments 1,2,3. It is deemed important enough for a researcher in 

the field to have been nominated for a Nobel Prize 4. Wearable photoplethysmography is convenient 

enough to facilitate unobtrusive health monitoring in millions of individuals 5,6. Nonetheless, 

"Convenience alone is insufficient. The approach has to work" (Section 21). In other words, to realise 

the full benefits of wearable photoplethysmography, the technology should be developed to provide 

extensive physiological information which can be reliably used in clinical decision making. 

Overview 

In this Roadmap, experts provide their perspectives on the future development of wearable 

photoplethysmography. The Roadmap is intended to help guide future research and development in 

the field. The Roadmap covers a range of key topics within the field of wearable 

photoplethysmography. The section on each topic provides a concise overview of the topic’s current 

status, the key challenges ahead, and the advances in science and technology which could address 

these challenges. The sections stand alone, so can be read individually. Topics lie within four areas, as 

illustrated in Figure 1: 

1. Sensor design: Innovative approaches to photoplethysmography sensor design are discussed, 

including flexible sensors, in-ear sensors (‘hearables’), and multi-wavelength 

photoplethysmography. 
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2. Signal processing: Advances in photoplethysmography signal processing for physiological 

monitoring are presented, including developments in blood pressure, respiratory and sleep 

monitoring. These are considered alongside strategies to handle low quality signals and 

motion artifact. 

3. Applications: Clinical and consumer applications of wearable photoplethysmography are 

discussed, ranging from established applications such as the detection of atrial fibrillation, to 

emerging applications such as mental health assessment. 

4. Research directions: Key directions for future research are highlighted, including developing 

and validating techniques for blood pressure monitoring, and investigating sources of 

inaccuracy in wearable photoplethysmography measurements. 

 

 

Themes 

Several key themes emerge from the Roadmap which could inform overall strategies for research and 

development: 

• Expanding functionality: Much research is focused on expanding the functionality of wearable 

photoplethysmography devices, such as developing and validating techniques to monitor 

novel parameters such as blood pressure, oxygen saturation, and even detailed respiratory 

metrics such as inhalation and exhalation times. The expanding functionality of devices will 

enable detailed physiological assessments to be performed unobtrusively in daily life, which 

otherwise could only be performed in clinical settings. 

♡
79

Figure 1. The four areas of wearable photoplethysmography covered in this Roadmap. 

Sources: The ‘Sensor design’ panel is adapted from: Marozas & Charlton, ‘Wearable photoplethysmography devices’, Zenodo, 2021, 

https://doi.org/10.5281/zenodo.4601548 (CC BY 4.0). The ‘Research directions’ panel is adapted from: Charlton, ‘Presentation of: An 

assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram’, Zenodo, 2016, 

https://doi.org/10.5281/zenodo.6402455 (CC BY 4.0). 
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• Optimising sensor design: The design of photoplethysmography sensors strongly affects both 

the quality of the acquired signals, and the physiological information contained within them. 

Key design decisions include: the anatomical site of the sensor (noting that the wrist is not 

ideal for many applications), the mode of sensor attachment, and the wavelength(s) of light 

to be used. These decisions can all influence PPG pulse wave morphology and resulting 

measurements. Decisions are often a compromise between making wearable 

photoplethysmography devices as unobtrusive and as accurate as possible. 

• Approaches to signal processing: A range of approaches have been proposed to process 

photoplethysmography signals, and it is not yet clear which provide the best performance, 

nor whether different approaches are best suited to different applications. Approaches 

include traditional pulse wave analysis, and more recently pulse wave decomposition and 

deep learning. 

• Identifying potential applications: New potential applications for wearable 

photoplethysmography will emerge as the functionality of the technology expands. In 

particular, the ability to reliably monitor blood pressure and oxygen saturation would open 

new opportunities. There is potential for data-driven health interventions and services, as well 

as applications in resource-constrained settings. 

• Gaining trust: The successful use of wearable photoplethysmography devices to improve 

health and well-being will require the trust of multiple stakeholders including clinicians, policy 

makers, and most importantly device users. Important approaches to gain trust include 

ensuring that applications are supported by a strong evidence-base, and that personal data 

are handled appropriately. 

Challenges and solutions 

Several key challenges and potential solutions emerge from the Roadmap: 

• Signal quality: The photoplethysmogram signal is highly susceptible to noise caused by motion 

artifact and other sources. Different approaches have been proposed to identify and handle 

low quality signals, ranging from optimising sensor design, to developing signal processing 

techniques to delineate low quality periods and recover noise-free signals. 

• Signal processing resources: The development of signal processing algorithms is greatly aided 

by open datasets, and open code for existing algorithms. The acquisition of datasets in daily 

life, from patients with diseases of interest, can be facilitated by devices which provide the 

raw photoplethysmogram signal. 

• Validating devices: Processes for validating devices should be carefully designed to provide a 

comprehensive understanding of real-world performance across subjects with different 

characteristics. Work has begun on creating standards and recommended protocols to guide 

robust validation studies. 

• Sources of inaccuracy: Studies have identified several potential sources of inaccuracy of 

wearable photoplethysmography devices. Work is ongoing to identify further sources, and to 

mitigate against them. 

• Equity: When developing wearable photoplethysmography devices, it is important to be 

mindful of the equity of access to devices and their performance. Key considerations are the 

cost of devices, and the performance of devices in subjects with different characteristics (most 

notably, subjects with different skin types). 
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• Establishing best practices: It may be beneficial to establish best practices in wearable 

photoplethysmography across several areas, including: sensor design; signal quality 

assessment; signal processing algorithms; benchmark datasets; measurement protocols; and 

standardising evaluation protocols. 

Outlook 

Wearable photoplethysmography is a valuable tool for unobtrusive physiological monitoring. Despite 

having entered the consumer market only a decade ago, it is already being used to guide clinical 

decision making in selected applications. There is potential for wearable photoplethysmography to be 

used for many more health and wellbeing applications. High quality, patient-centred research and 

development is required to realise this potential for the benefit of society. 

Further reading 

This Roadmap provides a concise overview of several topics in the field of wearable 

photoplethysmography, focusing on directions for future work. For further information on selected 

topics, please see the references in Table 1. 

 

Table 1. Further reading on wearable photoplethysmography 

Topic Reference 

Wearable photoplethysmography: an overview 7 

Skin-compatible wearable photoplethysmography sensors 8 

Hearables 9 

Multiwavelength photoplethysmography 10 

Pulse rate variability 11 

Respiratory rate 12 

Wearable pulse oximetry 13 

Signal quality assessment 14 

Motion artifact 15 

Applications 16 

Atrial fibrillation detection 17 

Pulse oximetry biomarkers 18 

Mental health assessment 19 

Cuffless blood pressure 20 

Vascular age assessment 21 

Sources of inaccuracy 22 

Alternative sensing technologies 23 

Establishing best practices 24 
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SENSOR DESIGN 
 

2. Photoplethysmography with emerging materials and sensors 
 
Author(s): Munia Ferdoushia,b, Md Farhad Hassana,b, Yasser Khana,b,* 
Institution(s): a Department of Electrical and Computer Engineering, University of Southern 
California, Los Angeles, CA 90089; b The Institute for Technology and Medical Systems 
(ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 
ORCiD(s):  0000-0003-2290-0854* 

 

Status 

In the last decade, PPG sensors have transcended their necessity in the health sector as they entered 

the burgeoning industry of wearable technology being an integral part of fitness tracking gadgets like 

smartwatches or wristbands. Most commercial PPG sensors in such wearable devices utilize 

traditional LEDs (inorganic III-V compound semiconductor-based LEDs) as light source and silicon 

photodiodes as the photodetector, which are limited by their rigidity, bulky nature, and high expense 

associated with scalable fabrication. To tackle these issues, researchers have been working on 

developing new types of flexible PPG sensors based on various emerging material technologies which 

can ensure skin conformability, the versatility of design, lower power consumption, mass-production 

scalability, and an overall improved user experience. Such flexibility is of great importance in neo-natal 

and infant care where inconspicuous and flexible sensors can significantly aid in monitoring vital signs 

of the delicate organs which could otherwise be discomforted by rigid electronic components. Organic 

materials are particularly relevant in this regard due to their inherent mechanical softness enabling 

the formation of flexible, lightweight organic optoelectronic devices prepared with solution 

processing, printing, or coating techniques that allow freedom in design. Figure 2 (a) and (b) represent 

the device structure of PPG sensors with organic and inorganic constituents along with the chemical 

structure of commonly used organic compounds in recent devices. 

The first all-organic transmission mode PPG sensor with an organic photodiode (OPD) and Organic 

LEDs (OLED) was reported by  Lochner et al. (2014). For their pioneering device, they used bulk 

heterojunction solution-processed OPD consisting of PTB7:PC71BM, and polyfluorene-based printed 

green and red OLEDs having emission peaks at 510 nm and 632 nm, respectively. Bansal et al. (2015) 

demonstrated a reflective organic PPG sensor using an alternative approach with a single OLED that 

emits in both red and near-infrared regions, and two OPDs with filters that distinguish between the 

two relevant spectra. Subsequently, researchers worked on making the sensor more skin conformable 

by reducing thickness, eliminating bulky electronic interfaces, improving the efficiency of the device, 

or enabling the use of near-infrared (NIR) LEDs.  

An ultra-flexible photonic PPG sensor with only 3μm thickness and capable of withstanding high 

compressive strain was developed by researchers at Tokyo University using green and red Polymer 

LEDs (PLEDs) (Yokota et al., 2016).  Later they demonstrated a PPG sensor using near-infrared (IR) 

OPDs based on narrow-bandgap PIPCP polymer (Park et al., 2018). A self-powered PPG sensor has 

been demonstrated recently by their group that uses an organic photovoltaic (OPV) module to power 

a single PLED emitting in the green/yellow region of the spectrum with the polymer Super yellow as 

the emission layer (Jinno et al., 2021).  
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In order to achieve flexibility, J. A. Rogers' team focused on miniaturizing the inorganic sensor rather 

than using soft mechanics as they developed a Near Field Communication (NFC) enabled wireless 

optoelectronic system for PPG monitoring (Kim et al., 2017). The use of NFC technology for power 

delivery and data transmission along with serpentine interconnects allowed them to achieve flexibility 

while maintaining small form factors due to the absence of bulky electronic interfaces as used in 

previous organic PPG sensors. Li et al. (2017)  demonstrated a flexible inorganic pulse oximeter using 

specific strain-isolation design, nanodiamond thinning, and hybrid transfer printing of LEDs, PDs, and 

interconnects.  

Arias and coworkers leveraged the scalability of organic sensors to create a 2D oxygenation map of an 

organ using an organic reflectance oximeter array (Khan et al., 2018) and later developed a PPG sensor 

that can utilize ambient light, thus eliminating the need for OLEDs and their driving circuitry (Han et 

al., 2020). 

Due to the design versatility of OLEDs and OPDs, researchers can explore various sensor configurations 

to find the combination that uses the least amount of power and has the best signal-to-noise ratio. 

Such design freedom was utilized by Lee et al. (2018) to develop a wrap-around OPD layout in which 

an '8' shaped OPD surrounded the LEDs, ensuring the complete utilization of the light from OLEDs and 

thereby obtaining highly efficient operation with less than 50μW power consumption. Recently their 

group utilized a hybrid sensor by combining inorganic LEDs with OPDs that consumed below 35μW 

power and maintained stable operation for more than 40 days (Lee et al., 2021). 

 

 

 

 

Figure 2. Device structure and constituent materials of inorganic and emerging organic PPG sensors. (a) Image of an inorganic PPG 

sensor and conventional structure of inorganic LEDs and PDs. (b) Schematic of a representative organic PPG sensor and device structure 

of OLEDs and OPDs along with commonly used materials for various layers (Ir(ppy)3: green light emitting material, B3PyPB: electron-

transport/Hole blocking material, TCTA: hole-transport and hole-injection material, PEDOT:PSS: hole transport material, PTB7: Active 

Layer of OPD, TAPC: hole-transport material, Ir(MDQ)2(acac): orange-red light emitting material, Super Yellow: light emitting material, 

PIPCP: active layer in near-IR.  detector, HATCN:  hole-injection material). 

Sources: (a) is adapted from (Kim et al., 2017) with permission (Copyright 2016, John Wiley and Sons); (b) is adapted from (Lee et al., 

2018) (CC BY-NC 4.0). 
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Current and Future Challenges 

PPG sensors using emerging and organic materials are still at the research stage. Various aspects of 

these sensors need to be addressed for their widespread commercialization. Some such challenges 

hindering their growth are discussed in this section and illustrated in Figure 3. 

Ensuring Stable Operation 

A significant obstacle to the long-term usage of flexible PPG sensors is their insufficient operational 

stability under ambient conditions. Due to the reaction of constituent organic molecules in LEDs and 

PDs with water and oxygen molecules in the air, particularly at the electrode interface, the PPG signal 

quality can significantly deteriorate over time (Figure 3a). Yokota et al. (2016) used a passivation layer 

consisting of SiON and Parylene in their photonic sensor that showed stable operation for up to 4 days. 

This duration is still very low compared to inorganic PPG sensors. Particularly for OLEDs, the 

degradation is accelerated by high-brightness operation.  

Noise Reduction 

Skin-conformable PPG sensors suffer from various degrees of noise, such as electrical, optical, and 

mechanical noise due to poor contact between sensors and substrates during deformation, thermal 

noise due to body heat, electromagnetic interference, and motion artifacts (Figure 3b). Frequencies 

in a typical PPG waveform range from 0.5 to 4 Hz, hence a suitable bandpass filter can be used to 

remove high-frequency noises beyond this range, such as thermal or electrical noise. The frequency 

band of motion artifacts caused by organ movement or sensor displacement overlaps with the PPG 

signal as they range from 0.1 to 10 Hz. Filtering, therefore, fails to effectively eliminate motion 

distortions from the measured signal. Baseline wandering is another source of error in the 

measurement of the AC component of the PPG signal caused by respiration, sympathetic nervous 

system activities, and thermoregulation. Parasitic current in the OPD due to ambient light also 

interferes with PPG measurement. Eliminating these noises to improve the SNR of the PPG signal is 

necessary to establish the reliability of measurement.  

Biosafety and Durability 

It is necessary to ensure that continuous long-term use of the sensors does not cause irritation, 

inflammation, or discomfort and that the sensors are protected from degradation due to the 

accumulation of skin cells and are water-resistant. The heating of the body part during the operation 

of the sensor must also be minimized. Optimal placement of sensors to ensure minimal discomfort 

while maximizing signal quality is a major challenge (Figure 3c).   

Need for flexible Interface 

Most of the organic PPG sensors developed till now require an analog front end for driving the LEDs, 

data acquisition, and a battery system for power delivery along with hard-wired connections. These 

are made of rigid inorganic components, which ultimately limit the form-factor minimization of 

organic sensors. Depending on the driving cycle and device active area the driving current of OLEDs 

and PLEDs can significantly vary within 0.5~10 mA/cm2. The driving voltage usually lies between 1.5 

to 9 V with its nominal value being around 5 V. Efficient and flexible circuitry compatible with the high 

drive current and voltage requirements of organic electronics is necessary to truly achieve the 

advantages of emerging materials in PPG sensors (Figure 3d).   

Improving Power Conversion efficiency 

To reduce heat production and eliminate the requirement for a large inorganic battery, which restricts 

the size and form factor of PPG sensors, operational power must be reduced and leakage power must 
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be minimized during standby mode. Self-powered PPG sensors with built-in photovoltaic cells can help 

in this regard (Figure 3e). The utilization of PPG sensors for continuous PPG monitoring ultimately 

depends on achieving improved efficiency of the constituent LEDs and PDs, which requires innovations 

in design parameters such as sensor dimension and geometry as shown in Figure 3f and Figure 3g. 

Ensuring desired spectral response from the designed LEDs and PDs to maximize power utilization is 

another important challenge to be considered (Figure 3h). 

 

 

Advances in Science and Technology to Meet Challenges 

Considering the aforementioned challenges, innovative measures need to be taken for long-term, 

widespread use of PPG sensors, which are summarized below. 

1. The formation of a thin and high-quality passivation layer on a flexible substrate is an essential 

requirement to improve the stability of PPG sensors. Suitable encapsulation technologies that 

Figure 3.  Potential aspects and issues addressed through the incorporation of emerging materials in PPG sensors- (a) Choice of 

suitable light source considering the extinction properties of blood and organs. (b) Mode of powering such as wireless power 

transmission or organic battery technology. (c) Optimization of dimensional parameters such as distance between source and 

detector. (d) Design of flexible control circuits. (e) Innovation in geometry to maximize efficiency. (f) Addressing motion artifact-

related noise in PPG signal. (g) Ensuring stable operation through the elimination of environment-caused degradation. (h) Effect of 

placement of the sensor to optimize user convenience and sensor performance. 

Sources: (a) Reproduced with permission, [Khan et al., 2018] Copyright 2018, National Academy of Sciences. (b) Adapted from [Kim et 

al., 2016] (CC BY-NC 4.0). (c) Adapted from [Lee et al., 2021] Copyright 2021, AAAS; and [Khan et al., 2019] (CC BY 4.0). (d) Reproduced 

from [Kim et al., 2017] Copyright 2016, John Wiley and Sons. (e) Reproduced from [Lee et al., 2021] Copyright 2021, AAAS; [Lee et al., 

2018] (CC BY-NC 4.0); and [Khan et al., 2019] (CC BY 4.0). (g) Reproduced from [Lee et al., 2021] Copyright 2021, AAAS. (h) Reproduced 

from [Khan et al., 2019] (CC BY 4.0); and [Kim et al., 2017] Copyright 2016, John Wiley and Sons. [Khan et al., 2019] refers to: Khan et 

al., ‘Organic multi-channel optoelectronic sensors for wearable health monitoring’, IEEE Access, 2019, 

https://doi.org/10.1109/ACCESS.2019.2939798 (CC BY 4.0). 
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can protect the organic devices from ambient air and moisture while not blocking sweat 

glands can also lead to stable operation. Yokota et al., (2016) recently reported an inverted 

PLED with a novel electron injection layer that significantly improved stability in ambient light 

without requiring any passivation layer. Development in such material technologies can 

further contribute to stability enhancement. Other approaches to tackle the stability issue can 

be the usage of inorganic LEDs or ambient light sources instead of the OLEDs, which are the 

main bottleneck for prolonged operation. 

2. High-frequency noise in PPG signals can be eliminated using suitable filtering algorithms. 

Using black ink on LED walls can eliminate the noise due to the direct coupling of OLED and 

OPD. Adding redundancy to measurements with the multi-channel operation (Khan et al., 

2019) or using utilizing the polarizability of scattered light (Hwang Lee et al., 2022) are some 

of the hardware-based approaches in motion-artifact reduction. Various signal processing 

algorithms such as adaptive filtering, independent component analysis, or wavelet-based 

techniques are also being employed to denoise PPG signals from motion artifacts.  Baseline 

drift can be attenuated with estimation techniques, high pass filtering, or interpolation 

methods. The accuracy of these methods along with their computation complexity poses a 

major challenge for the research community. 

3. Development in material and encapsulation technology is required to ensure sensors that do 

not cause irritation or discomfort to the user. Optimized power utilization also needs to be 

ensured to reduce thermal discomfort. It is also necessary to ensure consistent sensor 

performance for different demographics irrespective of their color, race, or physique. 

4. The efficiency of emerging PPG sensors can be improved through the effective use of light by 

utilizing innovative geometry of the LEDs and OPDs such as bracket, annular, or '8' shaped 

wrap-around geometry. Optimization of device dimension, shape, OLED-OPD distance, the 

effect of placement, and other aspects of power consumption provides a wide-ranging area 

for future study. Furthermore, by utilizing ambient light from the sun or conventional light 

sources with spectrally selective OPDs, the need for LEDs and associated power to drive them 

can be eliminated, as demonstrated by Han et al. However, their ambient light PPG sensor 

had restricted usage compared to conventional sensors which must be addressed in future 

research.  

5. Development of flexible, compact, and lightweight interconnects, ICs, batteries, and voltage 

regulators are required to utilize organic sensors' form factor advantage to the full. Wireless 

NFC-enabled transceivers and power delivery systems, self-powered devices with organic PV, 

and body-coupled energy harvesting could represent potential approaches to facilitate PPG 

sensors with overall compact form factors. 

6. By utilizing novel material technologies for LEDs and Photodiodes, PPG sensor design can be 

improved. Perovskite LEDs, in contrast to organic semiconductors, constitute a low-cost 

strategy because of their inexpensive solution processability (Tan et al., 2014). However, 

further improvement in their electroluminescence efficiency is needed to obtain a viable 

signal which could be utilized in PPG applications. Colloidal Quantum dot LEDs have the added 

advantages of bandgap tunability and high external quantum efficiency (Shirasaki et al. 2013), 

which make them ideal for multi-wavelength PPG applications. The detection of PPG signals 

over a wide range of wavelengths can be greatly improved by photodetectors with enhanced 

photo-response achieved by using plasmonic nanoparticles (Liu et al. 2011). Further research 
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into the use of graphene and other 2-D semiconductors in these PDs is needed to enhance the 

photo-response and subsequently the quality of the PPG signal. 

Concluding Remarks 

To summarize, the opportunity to obtain a stable, highly efficient, ultra-flexible PPG sensor that can 

be seamlessly integrated into daily life requires further comprehensive research. Innovation in LEDs, 

photodiodes, and control circuitry through new material technology and efficient circuit design can 

significantly aid in achieving the final goal. 
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3. In-ear photoplethysmography for respiratory monitoring 
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Status 

In the past decade, so called hearables have been introduced as an alternative to conventional wrist-

worn wearables, with the functionality of several physiological recording modalities from 

electroencephalography (EEG) and electrocardiography (ECG) to photoplethysmography (PPG). In-ear 

PPG, introduced in the literature as a measurement site in 2007 (Vogel et al 2007), and the 

corresponding blood oxygen estimates (SpO2), offer many advantages over conventional wrist and 

finger recording sites. A major obstacle to wearable PPG is constriction of peripheral blood flow that 

occurs with low temperatures, but in-ear PPG has been shown to be resistant to these effects due to 

the characteristic of the ear canal (Budidha and Kyriacou 2018). Moreover, in-ear SpO2 has shown high 

accuracy in the detection of hypoxia (Venema et al 2012), while the proximity to the carotid artery 

which supplies the brain with oxygenated blood enables in-ear probes to measure oxygen at minimal 

delay when compared with finger based SpO2 probes (Davies et al 2020). Importantly, in-ear PPG has 

been shown to have stronger respiration induced intensity variations than the finger by an order of 

magnitude (Budidha and Kyriacou 2018) (Davies et al 2022) together with stronger respiratory pulse 

amplitude variations (Davies et al 2022). These properties are likely due to the high density of 

vasculature at the ear, which similarly enables the use of miniaturised low power PPG chips. 

 

 

 

 

Figure 4. The in-ear PPG sensor with positioning highlighted and sample respiratory modulations shown. (a) A zoom in of the in-ear 

PPG sensor. (b) The placement of the sensor within the ear canal with arteries supplying the brain highlighted in red. (c) Exemplar in-

ear PPG waveforms with 1:3 inspiration to expiration, with the raw in-ear PPG in blue, the conditioned respiratory waveform in red 

and the reference spirometry flow in grey. Adapted from: (Davies et al 2020) and (Davies et al 2022) 
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Current and Future Challenges 

Leveraging the detailed respiratory variations that can be recorded from in-ear PPG has enabled the 

classification of chronic obstructive pulmonary disorder (COPD) against non-obstructive respiratory 

diseases, and healthy controls, both older and younger (Davies et al 2022). This was achieved by 

measuring the imbalance between inspiration and expiration that occurs with obstructive lung 

disease, given the exaggerated effect of obstruction on expiration. Whilst respiratory information 

from PPG tends to focus on respiration rate and thus peak timing, this discovery goes a step further 

by treating inspiration and expiration as two separate entities both in timing and amplitude. A 

significant limitation of this method, however, is the impact of motion artefacts. Although motion 

artefacts also impact heart rate and respiratory rate estimation, recovering peak timing in the 

presence of motion is more straightforward than the amplitude or specific waveform characteristics. 

For this reason, classification of COPD from in-ear PPG only works well when the subject is still, and 

the same applies more broadly to recordings of in-ear SpO2.  

Truly wearable monitoring of respiratory diseases requires both accurate and sensitive oxygen 

measures and respiratory information that can be recorded consistently during movement, rather 

than just at rest. This is particularly important in the case of severe respiratory diseases, where oxygen 

levels can decrease during movement and their detection can inform key decisions around patient 

treatment. Similarly, combining oxygen desaturation measures with detailed PPG derived respiratory 

waveforms would likely increase classification accuracy and value to clinicians. Current in-ear probes 

somewhat address this issue with different sized ear buds to ensure a good fit in all ear canals, but 

much future work needs to be accomplished to enable truly 24/7 wearable monitoring of in-ear PPG. 

Advances in Science and Technology to Meet Challenges 

To achieve stable continuous in-ear PPG in the presence of artefacts, significant advances are needed 

in both hardware and signal processing to preserve the exact pulse and respiration induced intensity 

variation waveforms. Given this, key directions for the future development of in-ear PPG include the 

stabilisation of hardware within the ear canal, and the online removal of artefacts via an appropriate 

reference signal that is highly correlated with the artefacts. Stabilising the PPG sensor with respect to 

the skin is straightforward with an adhesive outside of the ear canal, but within the ear canal this 

method becomes impractical. Rather than stabilising a single sensor, one potential avenue involves 

the combination of many light emitting diodes and photodetectors on a single ear bud, allowing 

algorithms to dynamically select channels with the best contact at any given time point. A viable 

method of artefact removal is to employ an additional sensing modality that correlates with the 

artefact but not with the signal of interest, and in turn this sensor can be used as a reference to remove 

all artefact-correlated signal from the raw signal, leaving the physiological signal of interest. Existing 

literature has focused on using accelerometers to provide this reference and remove artefacts, such 

as those that arise from walking, but artefacts that impact ear sensors tend to occur from smaller 

movements such as that of the jaw. Specifically, the actions of talking, chewing and general head 

movements present major artefacts to ear canal derived physiological signals. To this end, micro-

electrical-mechanical systems (MEMs) microphones, capable of detecting minor movements between 

the sensor and skin, have proven effective at removing these ear-specific motion artefacts from ear-

EEG (Goverdovsky et al 2015). By the same principle, the use of MEMs microphones may provide an 

effective artefact reference and thus enable a stable 24/7 in-ear PPG trace. This principle is outlined 

in Figure 5.  
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Concluding Remarks 

The in-ear location for PPG provides low latency blood oxygen estimates and highly detailed breathing 

waveforms. The combination of these physiological properties with next generation signal processing 

techniques and multimodal sensing has the potential to revolutionise the wearable monitoring of 

chronic respiratory disorders.  
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Figure 5. Overview of the adaptive noise cancellation of in-ear PPG with a micro-electrical-mechanical systems (MEMs) microphone 

used as a noise reference to detect minor motion between the sensor and the skin. 

Source: Adapted from (Davies et al 2020) (CC BY 4.0). 
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Status 

Multi-wavelength photoplethysmography (MWPPG) sensors emit and detect multiple wavelengths of 

light to non-invasively characterize underlying tissue. As summarized in Figure 6, the MWPPG 

technique investigates the wavelength-dependent optical responses from the skin and further 

captures the depth-resolved blood pulsation for advanced hemodynamic monitoring and the tissue 

absorption spectrum as a step toward wearable biomedical spectroscopy, thus expanding the 

functionality of PPG-based healthcare systems. 

The skin has a layered structure perfused by capillaries in the papillary dermis, arterioles and venules 

in the dermal layer, and arteries and veins in the subdermal layer. When MWPPG includes well-

separated wavelengths differing significantly in penetration depths, the pulsatile waveforms (AC) of 

MWPPG, referred to as pulsatile MWPPG here, can be used to characterize vessel type-specific pulses 

originating from different skin depths. It has been observed that pulsatile MWPPG channels differ in 

morphologies and trajectories in response to contact pressure, reactive hyperemia, breath holding, 

etc. (Gailite et al., 2008; Liu et al., 2019, 2016). The phase shift between MWPPG of well-separated 

wavelengths has been demonstrated to be physiological and also reasoned to indicate the pulse 

transit time (PTT) along skin arterioles (Liu et al., 2019; Vahdani-Ma and Vahdani-Manaf, 2015). 

MWPPG-derived arteriolar PTT has been theoretically and experimentally revealed to correlate with 

systemic vascular resistance and utilized for cuffless blood pressure prediction(Liu et al., 2021a, 2019; 

Lu et al., 2022). Integrating MWPPG with the oscillometric blood pressure measurement technique 

also allows for novel non-invasive capillary and arterial blood pressure (Liu et al., 2021b).  

 

 

 

Increasing the number of wavelengths for spectroscopic MWPPG also enables biomarker detection 

and quantification beyond the classic SpO2 measurement, such as methemoglobin and 

Figure 6. Multi-wavelength photoplethysmography (MWPPG) system development workflow. 
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carboxyhemoglobin in portable co-oximeters and bilirubin in jaundice meters. Additional wavelengths 

can also increase the accuracy of pulse oximetry estimations for a diverse pool of patients where 

melanin and fat content can widely vary. The endpoint of this line of thought is advancing the MWPPG 

technique to implement a wearable spectrophotometry solution that can quantify any biomarker with 

a distinctive absorption spectrum. 

In recent years, PPG sensors have gained increasing popularity in commercial wrist-worn health 

trackers with a wide use of green light for heart rate measurement and red and IR light for SpO2 

measurement, which can serve as a generic MWPPG sensing solution. There are extensive ongoing 

research efforts in designing MWPPG sensors with innovative optical layouts and high-performance 

multi-wavelength/imaging components to enhance signal acquisition (Yokota et al., 2021). Therefore, 

it is promising to develop and apply novel MWPPG-based health monitoring concepts to future 

wearable devices. 

Current and future challenges 

Increasing the number of wavelength channels within a MWPPG sensor presents engineering 

challenges depending on the multiplexing scheme implemented. Two main schemes exist: source 

multiplexing, where numerous narrow-band emitters are paired with a broad-band detector and 

synchronized LED-driving/read-out circuitry cycle between wavelengths to create a time-interlaced 

signal, and detector multiplexing, where numerous narrow-band detectors are paired with a broad-

band emitter to read out multiple wavelength channels in parallel (Hossain et al., 2021; Wang et al., 

2022). Source multiplexing schemes face a fundamental trade-off between the number of wavelength 

channels and sampling rate, whereas detector multiplexing systems face limitations in size and/or 

sensitivity as the number of sensing elements is increased. More channels in MWPPG, in principle, 

enable higher spatial/spectral resolution and a higher sampling rate allows for better temporal 

resolution for time-domain features such as MWPPG phase delay. However, an additional burden is 

placed on the limited power, memory, and computational resources of wearable devices. Maintaining 

acceptable signal quality for all MWPPG channels in real-world measurement is an even greater 

challenge, particularly when simultaneous recordings are required. This is a practical issue for MWPPG 

measurement at the wrist, which suffers from joint/tendon movement and lower vascular density. 

Despite the reference values of penetration depths as a function of wavelength in the literature, the 

exact constitutions of MWPPG can vary intra- and inter- individually with the skin tone, measurement 

site, and perfusion conditions, thus affecting the optimal wavelength combination and adding 

uncertainties to the MWPPG-derived features. Reconstruction of the original vessel type-specific 

pulses from pulsatile MWPPG signals is a difficult blind source separation problem since the source 

pulsations such as the capillary pulse, arteriolar pulse, and arterial pulse (or otherwise defined by the 

measurement model) bear resemblance in their morphologies and frequency spectrums. Novel optical 

sensing layouts and schemes and intelligent compensating algorithms will be needed to improve the 

measurement robustness. 

Light sources of proper wavelength resolution and high sensitivity photodetectors are hardware 

requisites for reliable measurements, particularly in spectroscopic MWPPG sensing for biomarker 

detection. Epidermal spectroscopic MWPPG measurement of biomarkers faces challenges in 

measurement sensitivity and specificity due to low concentration of biomarkers, interfering 

molecules, and spectral overtone, as well as technical challenges such as identification of optimal 

wavelength combinations and suitable chromophores and model calibrations for uncertain internal 

factors and environmental factors such as skin tones, temperature, and humidity. 
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Advances in Science and Technology to Meet Challenges 

High-performance optical sensors with tailored sensing schemes can assist the acquisition of high-

quality MWPPG signals. Flexible electro-optical sensors provide better conformity with the skin 

surface, thus facilitating motion-resistant and long-term health monitoring (see Section 2) (Xu et al., 

2017; Yokota et al., 2020). To advance MWPPG to wearable spectrometric measurement, high 

sensitivity, speed, and efficiency are desired for broad-band photodetectors for source multiplexing 

and narrow-band photodetector for detector multiplexing. 

To achieve a robust and efficient system for physiological monitoring, it is worth either: extending the 

MWPPG sensor into a sensing array wherein the geometry of light sources and detectors, such as the 

optimal separation distance, is carefully designed; or, integrating MWPPG with motion, pressure, 

acoustic and electric sensors to develop a multi-modality sensing solution. Fusing the multi-modality 

bio-signals prevents misleading outputs from motion-corrupted MWPPG signal segments or allows for 

adaptive power-saving sensing strategies based on the instantaneous use case. While a single-node 

MWPPG sensor provides the convenience of easy wearability, it is beneficial to adopt a body sensor 

network setup with multiple sensing nodes to achieve a future comprehensive assessment of systemic 

health conditions. 

Further theoretical and experimental deep dive into the physiological origins can MWPPG in various 

use cases facilitate identifying and extracting relevant and indicative features. Classic PPG-based 

applications such as heart rate, arrhythmia, and respiration detection can take advantage of the 

rhythmic differences and landmark robustness in pulsatile MWPPG. Often it is challenging to explicitly 

express the mathematical relationship between the MWPPG-derived features and the target variables 

due to the inter-/intra- individual tissue variances and the complexity of the light-tissue interaction 

process. Machine learning and artificial intelligence models leveraging proper medical datasets are 

promising paths to formulate the relationship from the high-dimensional MWPPG-derived features to 

the target biometrics. 

Concluding Remarks 

Given the widespread use of PPG sensors in wearable healthcare devices, MWPPG is a compatible 

solution to probe enriched and profound hemodynamic information without significantly increasing 

the sensor dimension. Pulsatile MWPPG enables depth-resolved analysis, thus improving the accuracy 

of traditional PPG-based applications, especially when vessel type-specific pulse waveforms are 

desired. Spectroscopic MWPPG is promising for wearable biochemical analysis and biomarker 

detection leveraging advances in high-performance optical components. A systematic effort from 

sensing, modeling and algorithms are demanded to achieve practical MWPPG healthcare applications. 
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SIGNAL PROCESSING 
 

5. Pulse rate variability 
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Institution(s): City, University of London 
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Status 

Pulse rate variability (PRV) describes the changes in pulse rate through time and is measured from 

pulsatile signals, especially the photoplethysmogram (PPG). It has been used to assess cardiac 

autonomic activity and multiple mental and somatic diseases (Mejia-Mejia et al., 2020). It has been 

suggested as an alternative to heart rate variability (HRV), which has been largely explored in the last 

40 years for evaluating changes in the cardiac autonomic nervous system (ANS) and related diseases 

(Mejia-Mejia et al., 2020). The rate at which the heart beats is normally determined by the sinus node 

in the heart, which is controlled by the sympathetic and parasympathetic branches of the ANS. Hence, 

changes in heart rate indirectly reflect the behaviour of the cardiac control exercised by this system 

(Task Force of the European Society of Cardiology and The North American Society of Pacing and 

Electrophysiology, 1996). HRV analysis has been used in the understanding, detection and diagnosis 

of various cardiovascular diseases and other pathophysiological phenomena, such as diabetes, 

hypertension and atherosclerosis (Mejia-Mejia et al., 2020). 

Since HRV analysis depends on acquiring electrocardiographic (ECG) signals continuously, which can 

be cumbersome and difficult to implement in real-life scenarios, researchers have used the PPG as an 

alternative source of pulse rate measurements, given that it is a non-invasive, non-intrusive, simple, 

and low-cost technique (Kyriacou, 2021). PRV analysis has been explored for the analysis of autonomic 

changes under different conditions, such as the presence of mental or somatic diseases, during sleep, 

or for evaluating the effects of drugs (Mejia-Mejia et al., 2020). PRV seems like a logical alternative to 

HRV since PPG signals carry valuable information regarding cardiovascular parameters and are easier 

to acquire, compared with ECG, in a long-term manner and in real-life scenarios. Hence, PRV could 

represent a useful tool for assessing cardiovascular and autonomic health in everyday settings, both 

in healthy and ill subjects. Also, given the widespread use of PPG sensors in wearable devices, it could 

become the ideal alternative to ECG in assessing different pathologies, including mental and 

cardiovascular diseases. Figure 7 illustrates the process of performing PRV analysis with PPG signals. 
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Current and Future Challenges 

Although HRV and PRV originate from similar processes, and pulse rate has been found to be a good 

surrogate of heart rate, the relationship between HRV and PRV is not straightforward, and there is still 

no consensus regarding the validity of using PRV as a surrogate of HRV (Mejia-Mejia et al., 2020). It 

has been shown that several technical and physiological factors may affect PPG and could alter PRV. 

Some researchers argue that the differences between HRV and PRV are mainly due to physiological 

aspects, such as haemodynamic changes (Gil, Orini, et al., 2010; Mejía-Mejía et al., 2020, 2021), the 

different nature of PPG and ECG signals (Schäfer and Vagedes, 2013), and the effects of other factors 

on PRV, such as external forces on the arterial vessels (Gil, Bailón, et al., 2010). Moreover, PRV has 

been found to be present in the absence of HRV (Constant et al., 1999; Pellegrino, Schiller and Zucker, 

2014), and there are reports of differences in PRV between measurement sites (Yuda et al., 2020). All 

of these suggest there are different processes affecting PRV that are not necessarily related to HRV. 

Whilst HRV is the main determinant of PRV, PRV is also influenced by variations in pulse arrival time: 

the time between R-waves in the ECG signal (from which HRV is assessed), and pulse onsets in the PPG 

signal (from which PRV is assessed). Indeed, studies have shown that differences between PRV and 

HRV are due to oscillations in pulse arrival time (Ajtay, Béres and Hejjel, 2023) and pulse transit time 

(pulse arrival time minus the pre-ejection period) (E. Gil et al., 2010). Pulse arrival time, pulse transit 

time, and also respiration, can have a sufficiently large influence so as to disturb some key 

measurements from PRV, especially under non-ideal scenarios, such as when non-healthy, older, and 

non-resting subjects are considered. It would be beneficial to pursue research that elucidates the level 

of impact these factors have on PRV and its relationship with HRV, and how could both PRV and HRV 

be used to extract information about these other physiological processes taking place. 

Figure 7. Pulse rate variability analysis from photoplethysmograms. Initially, (a) interbeat intervals (IBIs) are detected from the 

pulsatile signal, and (b) the duration of the intervals is extracted and plotted against time. These IBIs can be summarised using (c) 

time-domain features, (d) frequency-domain indices, and (e) non-linear analyses. 
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Other studies have concluded that the agreement between PRV and HRV may also be affected by 

technical aspects relating to the extraction of PRV from pulse waves (Béres, Holczer and Hejjel, 2019; 

Peralta et al., 2019; Mejía-Mejía, May and Kyriacou, 2022). The manner in which PPG signals are 

acquired and processed for measuring PRV is also important. Photoplethysmography, being an optical 

technique, is based on the interaction between tissue and light, and the wavelength at which the 

tissue is illuminated affect the depth at which light penetrates, with longer wavelengths reaching 

deeper tissue (Kyriacou, 2021). PRV has been extracted from PPG signals acquired using red, infrared, 

green and orange lights, but it is still not clear if this could result in differences in PRV measurements. 

Other important aspects that could affect PRV results are the PPG sampling frequency, the manner in 

which PPG signals are pre-processed, and the choice of frequency domain analysis techniques used 

for PRV analysis (Schäfer and Vagedes, 2013; Mejia-Mejia et al., 2020). 

The main challenges for PRV analysis are: (1) understanding how the above-mentioned aspects affect 

PRV analysis and results; and (2) reaching a clearer understanding of how different physiological 

phenomena affect PRV and its relationship with HRV. 

Advances in Science and Technology to Meet Challenges 

PPG sensors are the main technology needed to obtain PRV information. However, and as with most 

techniques based on PPG, there is a lack of standardisation of the technique and the signal processing 

strategies used to extract PRV from PPG signals. This lack of standardisation suggests that the 

comparison and validation of PRV-related results is not possible, hence decreasing the reliability of 

the technique. It is important to establish guidelines for standardising PRV estimation, similar to the 

standardisation of HRV measurements (Task Force of the European Society of Cardiology and The 

North American Society of Pacing and Electrophysiology, 1996; Shaffer and Ginsberg, 2017). This 

would help in avoiding equivocal comparisons of results from similar studies without having to 

consider processing and acquisition differences, which may significantly affect the conclusions 

reached by various PRV studies. 

Also, since it has been observed that several physiological phenomena may affect PRV differently from 

HRV, it is important to perform basic research to identify the different processes that influence PRV. 

This could not only make the technique more robust as an alternative to HRV, but could also give it 

additional value for the extraction of information related to cardiovascular and autonomic health. 

Concluding Remarks 

PRV has been suggested as an alternative measurement to HRV, but several physiological and 

technical aspects may affect PRV measurements. Thanks to the widespread use of PPG sensors and 

their non-invasive and non-intrusive nature, PRV presents opportunity for more ubiquitous analysis of 

cardiovascular autonomic nervous activity, which could help understand how it relates to everyday 

activity even in healthy subjects. There is a substantial need for standardisation of the technique in 

order to better understand how it could effectively be used for the monitoring and diagnosis of 

cardiovascular and autonomic related diseases. 
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Status 

Respiration is the exchange of oxygen and carbon dioxide between the body and the environment. It 

is essential for human life. Breathing subtly influences the PPG signal, providing opportunity to use 

the PPG for respiratory monitoring. The effects of breathing on the PPG include: frequency modulation 

induced by respiratory sinus arrhythmia; and baseline wander, amplitude and pulse width modulation 

(changes in the width of the systolic portion of the pulse wave) 1 induced by intrathoracic pressure 

changes during respiration (see Figure 8). 

 

 

Much research has been conducted into estimating respiratory rate (RR) from PPG signals 3.  The 

accuracy of these methods depends on the strength of respiratory modulations in the PPG signal, 

effectiveness in capturing these modulations, and robustness against noise. Several healthcare and 

consumer wearables now monitor RR from PPG signals 4. Commercial fitness trackers have recently 

been used to measure nocturnal RR, with potential applications in identifying elevated RRs associated 

with COVID-19 5. 

Nonetheless, significant issues with accuracy remain as PPG signals are particularly susceptible to 

noise. Noise can be non-physiological, such as motion artefact, or physiological, such as cardiovascular 

oscillations that are not related to respiration but overlap in the respiratory frequency band. Indeed, 

motion artefacts are to be expected when monitoring the PPG signal, particularly during daily life. 

Recent studies report that wearable PPG data is only of sufficient quality for pulse rate monitoring for 

Figure 8. Effects of breathing on PPG signals. Source: Adapted from 15 (CC BY 4.0). 
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14%-56% of the time 6-9. This is a significant limitation for respiratory monitoring, as obtaining 

respiratory information from PPG is more challenging than obtaining pulse rate. 

As such, it is important to assess the reliability of respiratory information extracted from PPG signals. 

Several approaches have been proposed to assess PPG signal quality, including some specifically 

assessing the quality of respiratory signals derived from PPG modulations 2. This strategy can be used 

to determine how much weight to give to RR estimates derived from each respiratory signal when 

using machine learning methods to estimate RR 2.  

Signal quality becomes increasingly important when measuring complex respiration parameters such 

as tidal volume and inspiration/expiration time. Several studies have found that the PPG can be used 

to monitor respiratory parameters and identify disordered breathing patterns associated with chronic 

obstructive pulmonary disease (COPD) 10, interstitial lung disease 11, sleep apnea 12 and asthma 13. 

However, these studies were limited to controlled, at-rest settings with higher-resolution devices. 

Incorporation of signal quality assessment could enable the PPG to be used to monitor breathing using 

low-power wearable devices.  

The use of machine learning algorithms also has the potential to improve PPG-based respiratory 

monitoring. Recent studies show that apnea and hypopnea events can be identified using long short-

term memory (LSTM) networks to process segments of PPG signals, with minimal denoising required  
12. LSTMs have also been used to measure RR 2. Other models, such as random forest and U-Net, have 

also been considered 10 13. 

Current and Future Challenges 

One clear challenge in utilizing PPG data for respiratory health monitoring is ensuring the quality of 

said PPG data. Thus, a key challenge is to improve the robustness of PPG measurements against 

motion. This can be addressed by accurately quantifying the quality of PPG signals in the context of 

respiration. Whist methods have been developed to quantify PPG-derived respiratory signal quality 

for RR measurement, it is not yet clear whether these methods are suitable for measuring other 

respiratory parameters. 

Where high-quality respiratory signals can be obtained, artificial intelligence (AI) has shown significant 

promise for accurately interpreting PPG signals in the context of respiratory health 2. A key limitation 

of AI is that it is computationally expensive. In many applications, this is addressed by offloading data 

to cloud computing facilities for AI processing. However, offloading data to the cloud requires internet 

connectivity, which increases power consumption and latency, and is not reliably available in many 

rural areas. There are also substantial privacy concerns associated with storing sensitive health data 

in cloud facilities. 

As previously mentioned, RR is not the only useful parameter related to breathing. Tidal volume is also 

clinically relevant. While there are many methods for deriving RR from the PPG, there are scant 

methods in the literature for deriving tidal volume from the PPG. 

Continuous respiratory monitoring has a wide range of potential applications, particularly when 

combined with pulse rate and pulse rate variability measurements obtained from the PPG signal. 

These potential applications include stress level assessment 16, depression severity assessment 17, and 

epileptic seizure detection 18. More direct applications include monitoring of chronic respiratory 

patients (e.g., patients diagnosed of chronic obstructive pulmonary disease and/or asthma) for early 

detection of exacerbations, which is a life-saving application (see Section  3 for further details) 10, 19. 

Sleep respiratory disorders such as sleep apnea deserve special mention, because there is less 
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movement and thus fewer motion artefacts during sleep than during daytime activity. Further work 

towards these applications is required, since none are fully developed and used routinely in clinical 

practice.  

Further work should establish how best to assess the performance of PPG-based respiratory 

monitoring techniques 3. Firstly, the growing number of publicly available PPG datasets provides 

opportunity to assess performance across multiple datasets to investigate generalisability across 

different settings and devices. It is particularly important to assess performance in daily life, since 

most previous work has been conducted in healthcare settings or controlled conditions. Secondly, the 

statistical methods used should be tailored to the intended application. To date, assessments of RR 

algorithms have focused on performance at a single time-point. In the future, studies could also assess 

the ability of algorithms to track changes in parameters over time, using similar approaches to those 

in Section 21.  

Advances in Science and Technology to Meet Challenges 

Ensuring and improving the quality of PPG signals is critical to enable accurate respiratory health 

monitoring using these sensors. Metrics for measuring respiratory signal quality must continue to be 

developed and validated in contexts beyond RR measurement. This will enable better evaluation of 

future techniques for improving the robustness of PPG signals against noise. Denoising of PPG and 

PPG-derived signals remains an active challenge in this domain, and future research should seek to 

address this using novel approaches. Potential approaches include: (i) using advanced AI models, such 

as autoencoders and transformers, to reconstruct clean signals from noisy ones; and (ii) using pulse 

decomposition analysis to reconstruct denoised PPG signals (based on physiological models, e.g., a 

sum of Gaussians). Alternatively, it may be possible to enhance signal quality by positioning PPG 

sensors in regions with higher vein density 14, which may be supported through the development of 

flexible and adhesive PPG sensing circuits. The optimal method remains unknown and may depend on 

the specific application. 

To overcome the challenges associated with cloud-based AI, future research should focus on strategies 

for implementing AI on edge devices. This primarily involves developing AI architectures with lower 

computational complexity, without compromising on performance compared to existing methods. 

This can be achieved by systematically identifying features that are critical to accurate prediction or 

measurement. An emerging strategy is the use of explainability tools, such as Shapley Additive 

Explanations (SHAP) or Local Interpretable Model-agnostic Explanations (LIME), to identify which 

features contributed most strongly to a model’s output. The model can then be revised to use only 

the few most important features. In terms of lightweight edge AI architectures, suitable candidates 

include random forests, shallow convolutional neural networks (CNNs), and LSTMs.  

With respect to tidal volume estimation, the amplitude of the respiratory modulations that serve as a 

basis for estimating RR from PPG could also serve as a basis for tracking tidal volume changes. 

Furthermore, tidal volume may be estimated in absolute terms after a calibration process. Estimating 

tidal volume in addition to RR would provide a more complete view of breathing, and that would be 

very interesting in several applications. In fact, all the mentioned applications will potentially benefit 

from new features based on tidal volume information, since their relation with respiration is actually 

not limited to RR, but to ventilation. 
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Concluding Remarks 

Overall, the use of photoplethysmography for respiratory monitoring is an active field of research. 

Recent studies have advanced the field through the development of signal quality assessment metrics, 

use of advanced signal processing techniques, and implementation of machine learning. Nonetheless, 

significant challenges and opportunities remain for current and future researchers in this exciting field 

of healthcare. Existing techniques could be improved to enhance the feasibility of using wearables for 

continuous PPG-derived respiratory monitoring, and further work is required to investigate whether 

respiratory monitoring can be performed reliably in activities of daily life. Novel techniques are being 

developed to assess additional respiratory metrics from the PPG such as tidal volume and 

inhalation/exhalation times, which when combined with RR could provide more holistic views of 

breathing and ventilation. Additionally, few studies have explored the application of this technology 

for the diagnosis, monitoring and management of respiratory health conditions; thus, this remains a 

key direction for future research. 
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7. Pulse wave analysis 
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Status 

Artery pulse palpation was used by Chinese, Indian, Greek, and Roman physicians. Galen (129–210 

AD) described 27 types of pulses and their meaning (Parker, 2009), but only Herzman, in 1937, 

introduced an instrument capable of objectively recording pulse waves and comfortable enough to be 

‘brought to the subject, not the subject to the instrument’ (Dillon and Herzman, 1941). The instrument 

recorded pulses of blood volume and was named photoelectric plethysmography (PPG). Gradually, 

the main differences among blood volume, pressure, and flow pulse waves were understood. Striking 

differences of pulse waveforms from the different body sites and due to different health conditions 

were observed quite early (Dillon and Herzman, 1941). Peripheral pulse waves (PPWs) were 

investigated mainly from the fingers, toes, and earlobes but can also be obtained from the forehead, 

nose, esophagus, chest, arm, and wrist (Park et al., 2022). PPWs change due to a person’s age, elevated 

blood pressure, arteriosclerosis, fever, chronic nephritis, pain, mental stress, emotions, and fitness. 

These changes sparked imagination about the potential clinical and ambulatory applications of pulse 

wave analysis (PWA) (Charlton et al., 2022). 

The morphology of PPWs is a significant source of diagnostic information since the PPW is determined 

by the interaction of the heart and blood vessels, but also modulated by respiration and autonomic 

nervous system activities. Therefore, pulse wave analysis (PWA) can be considered a non-invasive 

“window” to the main physiological processes of the body. Although PWA is also performed on blood 

pressure signals (Mynard et al., 2020), the appeal of continuous and comfortable health monitoring 

during daily life provided by personal PPG devices has extended PWA to the PPG signal. 

The shape of the PPW is influenced not only by the incident wave transmitted through the arteries 

from the heart but also by reflected and rereflected waves from a range of arterial sites (Baruch et al., 

2014). Potentially, the amplitude and timing of these waves provide useful diagnostic information 

about the functional state of physiological systems. The best-known indicators obtained through PWA 

are arterial stiffness, reflection, augmentation, and aging indexes (Charlton et al., 2022), but many 

more are proposed. Long-term monitoring of dynamic variations of PWA indexes combined with 

anomaly detection and interpretable machine learning algorithms could potentially provide diagnostic 

value, and also insight into causal mechanisms involved in the development of chronic diseases. 

Although PWA is a promising tool for health assessment, it is not a well-established methodology, with 

some challenges to be solved. 

Current and Future Challenges 

Progress in PWA research depends partly on developments in digital signal analysis algorithms. Time 

domain-based algorithms using joint analysis of original, and two or three first derivatives of the PPG 

waveforms were offered first (Charlton et al., 2022). All popular PWA indicators are calculated in the 
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time domain. Surprisingly, very few studies used frequency, time-frequency, time-scale domains, blind 

source separation (such as independent component analysis) or nonlinear analysis tools for PWA of 

the PPG signal. Model-based (mixture of Gaussian and/or lognormal functions) and data-driven (slope 

reflection-based) pulse-wave decomposition (PWD) algorithms (Kontaxis et al., 2021) have received 

more attention (Figure 9). Reliable tracking the time course of the extracted PWA or PWD indicators 

is an issue related to both the algorithm and the quality of the data. 

The pre-processing of the PPG signal is an essential step in PWA as it is carried out to remove motion 

artifacts, distortions, and noises while preserving the pulse wave morphology (Figure 10a). Signal 

quality assessment (SQA) is an important step in PWA. It saves computational resources by excluding 

low-quality pulses whilst retaining diagnostic quality pulses for analysis. During the daytime, only a 

small number of pulses can be expected to be of excellent quality and therefore suitable for PWA 

analysis (Moscato et al., 2022). 

Many factors influence the morphology of pulse waves. When measuring one factor, all the others 

should be considered confounders, e.g., the pulse amplitude can change due to changes in blood 

pressure, but also due to changes in the contact force of the PPG sensor (May et al., 2021) or hand 

position relative to heart level (Hickey et al., 2016). Pulse morphology influencing factors can be 

classified as static (related to the measurement method and context, e.g., reflection or transmission, 

body site, skin color, sex, height, arm length, BMI, etc.) and dynamic (heart activity, state of blood 

vessels, subject’s posture, movement artifacts, etc.). Therefore, one of the most important challenges 

in a successful PPG-based PWA is a comprehensive understanding of factors influencing PPG 

morphology (Proença M. et al., 2019). 

 

 

A significant challenge in PWD is the biophysical interpretation of extracted indicators. The link among 

the decomposed waves (shown in Figure 9) and their physiological meaning is not obvious. Therefore, 

the interpretation of PWD analysis should be very careful. 

Advances in Science and Technology to Meet Challenges 

Advances in sensor technology open new avenues for new PWA and PWD applications. The study 

(Yokota et al., 2020) investigated an organic photodiode-based imager for pulse-wave mapping. The 

conformable, soft contact imager with a resolution of 508 pixels per inch and 41 frames per second 

Figure 9. An illustration presenting significant differences in the PWD results of synchronized PPG signals from the finger (a) and wrist 

(b). Here: W1-W3 and T12, T13 are features extracted from decomposed waves W1 - W3 (see Kontaxis et al., 2021 for more details 

about the PWD method). 
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allows the best measurement location to be selected electronically, or spatial averaging to be 

implemented to improve SNR. Non-contact imagers, i.e., video and smartphone cameras, offer the 

means for PWA unobtrusive monitoring, which could be used for patients with severe burns and in 

routine clinical or ambulatory monitoring applications, e.g., haemodialysis or sleep. However, 

improved reliability is needed in uncontrolled environments. The sensor fusion of PPG-based PWA 

with other modalities such as ultrasound or magnetic resonance imaging could potentially provide a 

synergistic effect in estimating local artery compliance and characterization of arteriosclerosis even 

for deep arteries. A prerequisite for sensor fusion is the strict synchronization of different modalities.  

Signal processing methods have provided many spatio-temporal features of PPG that have been 

analysed in great detail. Advances in signal processing should aim to find the physiological significance 

of these indicators or a combination of them to be useful in routine clinical or ambulatory applications. 

For example, PWD methods could be supported with personalized constraints and thresholds based 

on physiology data to guarantee the interpretation of each wave among the different pulse 

morphologies. 

Machine learning methods could be useful for feature extraction and selection to choose the most 

relevant indicators for a particular application. Taking this philosophy to the extreme, using raw signals 

as input to the machine learning model avoids the estimation of features (Figure 10b). Although it 

could be useful for the final application, no knowledge about the physiological significance of the 

different characteristics of pulse morphology is obtained. Interpretability methods could be employed 

to reveal parts of the original or transformed PPG signal that are important for making regression or 

classification decisions in specific applications. One example of such a method is Gradient-weighted 

Class Activation Mapping (Grad-CAM). Finally, machine learning models must be trained and tested 

with heterogeneous representative databases of PPG signals, and the uncertainty of the model must 

be quantified. 

 

 

Fast advances in bioelectronics and signal processing, biophysical modeling and interpretation, 

machine learning, and deep learning methods make PWA attractive for the next generation of 

consumer wearable devices. 

Concluding Remarks 

In summary, there are a few different methods for performing PWA in PPG signals, but only a small 

number of PWA applications are considered in medical and consumer wearable devices. To increase 

the acceptance of PWA technology, substantial research and development is still needed to improve 

the efficiency of PWA in the extraction of biophysically relevant parameters that are invariant to 

confounding factors. Advances in optoelectronics and integration with other types of sensors will 

increase the quality of PPG signals, and biophysics-guided machine learning will provide interpretable 

and clinically useful PWA-based health indicators. In the next decade, we expect to see wearable 
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Figure 10. Conventional (a) and modern (b) pipelines of PWA. 
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devices capable of unobtrusively monitoring long-term trends of hemodynamic variables and 

providing timely recommendations before dangerous changes in the health of the users. 
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8. Development of wearable pulse oximeters 
 

Author(s): Toshiyo Tamura 
Institution(s): Waseda University 
ORCiD(s):  0000-0002-8514-4200 
 

Status 

Oximetry is the measurement of haemoglobin oxygen saturation in blood or tissue and depends on 

the Lambert–Beer relationship between light transmission and optical density. Pulse oximeters are 

non-invasive, compact, and affordable devices that have been used for decades to quantify oxygen 

saturation. They allow early detection of hypoxaemia, enhance patient safety, decrease the 

anaesthesia mortality rate, and reduce caregiver workload (Tamura 2019). During the coronavirus 

disease 2019 (COVID-19) pandemic, home use of pulse oximeters increased, helping clinicians to 

identify cases requiring medical intervention. Pulse oximetry is currently being integrated into 

wearables. While these enable oxygen-saturation monitoring in daily life with several potential 

applications, many challenges remain to ensure accurate wearable pulse oximeters. 

In 1935, Matthes developed the first oxygen-saturation meter. It used a two-wavelength light source 

with red and green filters, which were later changed to red and infrared (IR) filters. In the 1940s, 

Millikan, a British scientist, used a dual light source to create the first aviation ear oxygen meter. In 

1964, Hewlett Packard created the first ear oximeter using light of eight wavelengths; these were used 

primarily in sleep laboratories and pulmonary clinics but were expensive, cumbersome, and large. In 

1972, Takuo Aoyagi, a Japanese bioengineer at Nihon Kohden, developed a pulse oximeter based on 

pulsatile variations in the optical density of tissues in the red and IR wavelengths to quantify arterial 

oxygen saturation based on the ratio of red to IR light absorption in blood, with no need for calibration. 

Susumu Nakajima (a surgeon) and his associates first tested the device in patients in 1975. Dr. Aoyagi 

obtained a Japanese patent. Minolta obtained a United States patent based on the same concept. 

Nihon Kohden introduced an ear oximeter in 1975, and Miloria began marketing a fingertip area 

oximeter in 1977. The history of the pulse oximeter is shown in Figure 11. 

In the United States, Ohmeda Biox and Nellcor introduced the pulse oximeter. Initially, it was applied 

for respiratory care, but its use later expanded to operating rooms. Since then, other manufacturers 

have entered the market and pulse oximeter technology has improved significantly. 

Pulse oximetry became part of the general anaesthetic procedure in the United States in 1987, and 

quickly spread to emergency rooms, recovery rooms, neonatal units, and intensive-care units. The first 

fingertip pulse oximeter appeared on the market in 1995. The Food and Drug Administration (FDA) 

published a notice in the Federal Register (Vol. 72, No. 138; July 19, 2007) entitled “Draft Guidance for 

Industry and Food and Drug Administration Staff; Pulse Oximeters Premarket Notification Submissions 

[510(k)s]”. Shortly thereafter, FDA-approved pulse oximeters became available.  

Handheld pulse oximeters with small probes, wrist-worn devices with finger probes or embedded 

light-emitting diode-photodetector (LED-PD) sensors, fingertip devices, and ring oximeters are all 

available. Instruments used clinically include wrist-worn devices such as WristOx (Nonin Medical, 

Plymouth, MN, USA), Pulsox 500i (Konica Minolta, Tokyo Japan), and Checkme O2 (Viatom 

Technology, Shenzhen, China); wireless telemetry devices with pulse oximetry; and an embedded 

pulse oximeter (Checkme; San-ei Medsys, Kyoto, Japan). Recently, pulse oximeters have become 
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affordable for both in-hospital and home use. Typical wrist-pulse oximeters include the Oxitone 

1000M (Oxitone Medical, Kfar Saba, Israel) and a wrist monitor (Biobeat Wrist watch; Bio-beat 

Technologies, Petah Tikva, Israel), which have been approved by the FDA and used in hospitals. 

Non-FDA-approved devices include the Apple Watch, Fitbit, and Galaxy Watch, which have personal 

health applications. Differences between approved and non-approved devices are discussed in the 

next section. More recently, ring-pulse oximeters have been released, such as the CIRCUL 

(BodiMetrics, Manhattan Beach, CA, USA), RingO2 (Viatom, Shenzhen, China), and Checkme Ring (San-

ei Medsys) (Jung et al. 2022, Santos et al. 2022, Zhao et al. 2022). A patch oximeter is also under 

development. 

 

 

Current and Future Challenges 

Pulse oximeters are non-invasive and simple to use, and enable early diagnosis of pulmonary 

dysfunction. During the COVID-19 pandemic, pulse oximeters attracted raised attention, but several 

questions also arose regarding their use. Many factors can affect photoplethysmography (PPG) signals, 

including the light wavelength, measurement site, contact force, motion artifacts, skin colour, henna 

pigmentation, nail varnish, and ambient light intensity and temperature. 

Figure 11. History of the pulse oximeter. The photographs are reproduced with permission from Nihon Koden (Tokyo, Japan), Konika 

Minolta (Tokyo, Japan) Oxiton (Oxitone Medical, Kfar Saba, Israel) and San-ei Medsys. Kyoto, Japan) 2021. 

about:blank
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Pulse oximeters may over- or underestimate oxygen saturation. Their accuracy is affected by skin 

pigmentation, the fit of the device, peripheral blood flow, nail coatings, tattoos and dyes, and device 

maintenance and cleaning. Currently, skin pigmentation is a major research topic. Pulse oximeters 

may overestimate oxygen saturation in individuals with relatively dark skin, potentially resulting in 

hypoxia not being treated (Sjoding et al. 2020). Overestimation by pulse oximeters has been reported 

in cases of low perfusion (Bickler 2005), and results can be inaccurate depending on the level of skin 

pigmentation (Cabanas et al. 2022). These inaccuracies are greater at lower levels of oxygenation. 

Oxygen saturation measured by pulse oximetry is 3–4% higher than that determined by the gold 

standard, i.e. arterial blood gas analysis (Crooks et al. 2022, Fawzy et al. 2022, Gottlieb et al. 2022).  

The degree of inaccuracy varies among devices, and the evidence is insufficient for the Therapeutic 

Goods Administration to make recommendations. Most pulse oximeters are approved by medical 

regulatory authorities, but some are available over the counter (Lipnick et al. 2016). Over-the-counter 

pulse oximeters can be less accurate than devices with regulatory approval (Lipnick et al. 2016; 

Therapeutic Goods Administration, 2022). Overreliance on pulse oximeters could lead to suboptimal 

management of patients with abnormal oxygen levels; the risk is higher in people with darker skin 

(Sjoding et al. 2020). 

Sale of over-the-counter devices is not regulated; they are sold directly to consumers in stores or 

online as general wellness products or for sports or aviation use, and were not designed for medical 

use. Medical-use pulse oximeters undergo clinical testing to confirm their accuracy, are reviewed by 

medical-device authorities, and are available only with a prescription. They are typically used in 

hospitals and doctors’ offices, although they are sometimes prescribed for home use.  

Research has focused on the use of multi-wavelength oximeters and algorithms to prevent motion 

artifacts. Green light is used to confirm heart rate regularity and adjust the pulse oximetry signal. SpO2 

values are highly reliable (Ray et al. 2021). 

The contact force between tissue and the sensor affects the accuracy of SpO2 values obtained using 

transmission and reflectance probes. Insufficient contact pressure can result in a weak PPG signal, 

while excessive pressure blocks the circulation and deforms the PPG. The range of contact force that 

generates optimal PPG signals with salient pulsatile components has been revealed recently; forces of 

5–15 kPa were associated with error rates < 2%. Combined probes could improve the reliability of 

reflectance oximeters and help optimize the fit of wearable devices. 

Reflectance pulse oximeters have been used in both hospital and home settings. Mendelson et al. 

(1988) examined a reflectance probe in 1988. The light intensity of the IR LED was low and the 

measurement site was the forehead. Regression analysis revealed a high correlation and relatively 

small standard error of the estimates. Although light scattering influences accuracy, in most studies 

the accuracy of SpO2 values obtained using reflectance pulse oximeters were similar to those obtained 

using a transmittance probe worn on the finger. The penetration depth of transmitted light affects 

signal reception. Before the development of high-intensity LEDs, only IR LEDs could be used, which 

were suitable only for the forehead. However, since then, high-intensity LEDs have enabled the 

development of wrist oximeters. For clinical use, transmittance probes are preferrable, although 

forehead reflectance probes are used in some cases. 

Advances in Science and Technology to Meet Challenges 

As mentioned above, the accuracy and validity of pulse oximeters have attracted considerable 

attention, especially in terms of the influence of skin pigmentation in the clinical setting, the optimal 

wavelength, the development of patch sensors, and regulatory issues. 
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Pulse oximetry errors are likely amplified by low perfusion and motion, among other factors. Although 

the greater absorbance of red light by melanin seen in relatively dark skin may result in overestimation 

of oxygen saturation, further studies are necessary to quantify this effect, determine whether dark 

skin is correlated with other factors that affect oximeter performance, and evaluate the impact of dark 

skin in the presence of other factors that affect signal quality and processing (e.g. low perfusion or use 

of a low-quality oximeter) (Okunlola et al. 2022). Dark skin is a risk factor for hypoxia going undetected 

by pulse oximetry. Clinicians should adjust treatments accordingly and consider inspecting the pulse 

oximeters used in their institutions. 

It is difficult to determine weights for different skin colours when using pulse oximetry for diagnosis. 

The utility of the Fitzpatrick skin-type test, which is used to assess constitutive skin colour, is limited; 

a large study involving subjects with both light and dark skin is required. There has been little interest 

in solving the inherent problems of pulse oximeters, despite their clinical relevance. Research to 

address these problems is important, and clinicians should engage with engineers, regulators, and 

other stakeholders to this end. 

Multi-wavelength oximeters have been developed to measure methaemoglobin and 

carboxyhaemoglobin. However, red and IR illumination produce less reliable signals during 

movement. Green might serve as an alternative, as it can provide signals that are more resilient to 

motion artefacts.  

The measurement site should also be considered, and a low signal-to-noise ratio is required for the 

perfusion index. Objective methods should be used to quantify skin pigment at the site of oximeter 

measurement (e.g. the ear or finger), and dorsal and ventral measurements should be obtained.  

Regarding standards and regulations for oximeters, the FDA 510k accuracy requirement is < 3% for 

transmittance sensors and < 3.5% for reflectance sensors; the ISO requirement for the latter is < 4%. 

Accuracy limitations should be considered when using pulse oximetry to aid diagnosis and treatment 

decision-making. Standardisation of test protocols is required to elucidate pulse-oximetry errors in 

patients with dark skin. This will enable performance evaluation data to be shared. 

A patch oximeter with an adhesive sensor is under development. The advantages of patch sensors 

include flexibility due to the organic material used in the LED and ultralow power requirements. 

Disposable probes are important in the COVID-19 era (Taylor-Williams et al. 2022). 

Concluding Remarks 

Pulse oximetry enables monitoring of respiratory function during anaesthesia, but the results are 

affected by skin pigmentation. Objective measurements of skin pigmentation should be performed 

(e.g. colourimetry) rather than relying on subjective descriptions or race/ethnicity. To improve 

oximeter accuracy, standardisation is required. Pulse-oximetry errors in patients with dark skin must 

be quantified in large studies involving subjects with various levels of skin pigmentation. Testing 

protocols and guidelines are also needed, and standards of accuracy should be established through 

the collaboration of regulatory authorities, research institutes, medical professionals, and 

manufacturers. 
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9. PPG signal quality: not a black and white matter 
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Status 

The photoplethysmogram (PPG) is a non-invasive signal which can be used to detect physiological 

changes in hemodynamic and cardiac functions. However, its recording can be corrupted by subject 

movement, ambient light, and inappropriate sensor placement resulting in imperfect signals. Indeed, 

as detailed in Section 6, studies have reported that between 44 and 86% of PPG signals collected are 

not of sufficient quality for pulse rate monitoring. PPG signal quality has been found to be substantially 

influenced by physical activity and health status [(Moscato et al., 2022)]. Therefore, optimal handling 

of imperfect PPG signals is of ultimate importance to realize the full potential of this ubiquitously 

available technology. The field has undoubtedly recognized the importance of PPG signal quality as 

evidenced by numerous studies aimed at developing approaches of 1) classifying PPG signal quality 

[(Pereira et al., 2019, 2020),(Mohagheghian et al., 2022)]; 2) recognizing artifactual regions in a PPG 

signal [(Guo et al., 2021)]; 3) recovering corrupted PPG signals [(Mishra and Nirala, 2020)], these three 

main approaches are represented in Figure 12. Many studies classify PPG signal quality with a goal to 

exclude periods of poor quality signal from downstream tasks such as arrhythmia detection 

[(Orphanidou et al., 2015),(Elgendi, 2016)]. However, this conventional way of treating PPG signal 

quality as a black and white matter is not optimal as will be shown in the next section. Delineating 

artifactual regions in a PPG signal and recovering true signals from corrupted ones are two more 

challenging tasks and the development of novel approaches to accomplish these tasks has started to 

appear in the literature.  
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Challenges 

The challenge to incorporate signal quality as an integral part of the pipeline to accomplish a 

classification task can be illustrated mathematically. In this pipeline, the classification task is only 

performed on PPG signals whose quality is greater than a threshold. Let 𝑁0
𝑇𝑃 , 𝑁0

𝐹𝑃 , 𝑁0
𝑇𝑁 , and 𝑁0

𝐹𝑁 

denote the number of true positives, false positives, true negatives, and false negatives in the test 

dataset of only good quality signals and 𝑁1
𝑇𝑃 , 𝑁1

𝐹𝑃 , 𝑁1
𝑇𝑁 , and 𝑁1

𝐹𝑁, the corresponding metrics 

calculated based on the excluded poor-quality PPG signals. Using these notations, the sensitivity for 

the classification task is 𝑁0
𝑇𝑃 (𝑁0

𝑇𝑃 + 𝑁0
𝐹𝑁 + 𝑁1

𝑇𝑃 + 𝑁1
𝐹𝑁)⁄  and the positive predictive value (PPV) is 

𝑁0
𝑇𝑃 (𝑁0

𝑇𝑃 +𝑁0
𝐹𝑃)⁄ . However, if we also perform classification task on excluded samples to improve 

the sensitivity to  (𝑁0
𝑇𝑃 + 𝑁1

𝑇𝑃) (𝑁0
𝑇𝑃 + 𝑁0

𝐹𝑁 + 𝑁1
𝑇𝑃 + 𝑁1

𝐹𝑁)⁄ , the corresponding PPV becomes 

(𝑁0
𝑇𝑃 +𝑁1

𝑇𝑃) (𝑁0
𝑇𝑃 + 𝑁0

𝐹𝑃 + 𝑁1
𝑇𝑃 + 𝑁1

𝐹𝑃)⁄ .  By simple algebra, we show that PPV after including 

some imperfect PPG signals will be non-inferior to that based on only clean PPG signal when 

𝑁1
𝑇𝑃 𝑁1

𝐹𝑃⁄ ≥ 𝑁0
𝑇𝑃 𝑁0

𝐹𝑃⁄ .  Therefore, one needs to carefully select the signal quality threshold to 

achieve maximal PPV without compromising sensitivity. Unfortunately, we have yet to identify any 

published studies that exploit this insight. 

Moreover, the morphological characteristic varies when identifying the PPG signal quality under 

different conditions. First, the shape and amplitude of the PPG signal differ between modes. For 

example, for transmission-mode photoplethysmography, such as finger or in-ear 

photoplethysmography, the photodetector detects the light transmitted through the medium, 

whereas for reflectance-mode photoplethysmography from wrist-worn watches, the reflection time 

of light from the blood vessels is recorded. Therefore, it impedes the generalizability of PPG signal 

quality assessment. Second, the interpatient variability also influences the morphology of PPG signals. 

The time-varying dynamics as well as different temporal and physical conditions of different patients 

change the shape, amplitude, and intervals of the signals, which also makes proposing a generalizable 

strategy to identify the PPG quality difficult. Third, because the PPG is often used in tasks other than 

PPG Quality

Classification 

Good     Vs     Bad

Noisy Regions

Detection 

    

Recover Corrupted

PPG Segments 

PPG Aquisition

 

Discard Segments or Regions of PPG Signal

Approaches to Monitor the Health Condition

Figure 12. Representation of the three main approaches proposed to handle imperfect PPG signals. 
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classification (e.g., estimating heart rate or blood pressure), the strategy designed for classification 

tasks to determine an optimal signal quality threshold to exclude an imperfect PPG signal is difficult 

to adopt.  

Advances in Science and Technology to Meet Challenges 

As discussed above, a more nuanced treatment of PPG signal quality as an integral part of a PPG signal 

processing pipeline is needed to ensure optimal performance of the ultimate task. Here, we propose 

a potential unified approach to achieve this goal.  This approach is based on the premise that the 

ultimate task will benefit from maximizing the use of clean samples in a PPG signal segment while 

minimizing the impact of artifactual samples. For example, a detection algorithm of atrial fibrillation 

(AF) should still be able to confidently predict AF even from a few seconds of clean PPG signal samples 

that are embedded in an otherwise vastly noisy signal. In terms of algorithm design, one would require 

weighting differently the contribution of signal samples that have different signal quality to the 

downstream task. This idea requires one to integrate signal quality assessment as an integral part of 

the downstream task. This contrasts with treating signal quality assessment as a separate pre-

processing task to exclude imperfect PPG signals. Figure 13 illustrates one example of this design 

where a signal quality assessor is used to quantify a signal quality for each consecutive sub-segment 

of the signal, which is then used in the downstream model in such a way that subsegments with higher 

signal quality will be more “attended” by the model. To achieve an accurate quality assessment of 

subsegments, we can treat artifact detection as a 1D segmentation problem (Guo et al., 2021), where 

we aim to segment artifacts from non-artifacts. Another method is to use post-hoc explanation 

techniques, such as class activation map (Zhou et al., 2016) and layer-wise relevance propagation 

(Binder et al., 2016), on a binary quality assessment classifier to generate the importance of each 

signal data point. Subsegments with more contribution to the good-quality class will be more 

“attended” by the model. 

 

 
 

 

Figure 13. Integrating signal quality assessment with downstream tasks. 
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Concluding Remarks 

Optimal handling of PPG signals of imperfect quality is critical to downstream tasks. Mathematical 

derivation shows that simply excluding signals whose quality is below a threshold will underperform 

if the threshold is not chosen at an optimal value. We propose a generic algorithm framework to 

address this challenge through a more nuanced treatment of PPG signal quality as an integral part of 

a complete PPG signal processing pipeline.   
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Status  

Photoplethysmography (PPG) is extensively employed in the latest watch and ring-type wearable 

electronic devices, because it can offer rich cardiovascular information (Kyriacou and Allen, 2021). PPG 

obtained by nonprofessional users in daily life may contain fluctuations due to several external factors; 

thus, it is difficult to guarantee the results’ reliability. One of the most critical factors that deteriorate 

the reliability of wearable PPG measurements is motion artifact (MA). In most cases, the pattern of 

MA is unpredictable, and it occurs very frequently in everyday life, greatly reducing the signal’s 

reliability. This can lead to errors in interpreting the results, and potential misdiagnosis.  

More than 100 investigations related to MAs have been performed since 1998. Figure 14(a) presents 

the publication and citation trends of MA-related research, and it shows that the number of 

publications and citations on PPG MA has increased drastically since 2015. Figure 14 (b) demonstrates 

that MA reduction and adaptive filtering have been the main research directions. Figure 14 (c) and (d) 

present the cumulative number of publications, by year, according to the research field and 

methodology. They show that the number of research approaches that are not categorized is 

increasing. These approaches for handling MAs can be categorized as those improving the signal-to-

noise ratio (SNR) and those evaluating the signal availability for the intended application. Some 

approaches aiming at signal enhancement improve the PPG quality in the signal-acquisition stage by 

redesigning the sensor and analog front-end. The signal-acquisition hardware is improved by 

modifying the structure of the sensor to ensure contact with skin even during movement (Lee et al., 

2022). Other approaches aim to reduce the MA through traditional statistical or mathematical signal-

processing approaches or by using auxiliary signals such as motion-reference signals or multiple PPG 

signals. Signal-processing methods to reduce MA are based on periodic moving average (Lee et al., 

2007), continuous wavelet transform (Zhang et al., 2019), and/or Fourier decomposition (Pankaj et 

al., 2022). A recent work presented the reconstruction of PPG signals with MA, using machine-

learning–based approaches (Tarvirdizadeh et al., 2020). Auxiliary signals measured from 

accelerometers (Arunkumar and Bhaskar, 2020), gyroscopes (Lee et al., 2018), and piezoelectric 

sensors (Wang et al., 2021) are also applied as motion-reference signals in adaptive filters for MA 

reduction. Moreover, MA-reduction techniques using multichannel signal processing based on 

multiple-wavelength light-sensing systems have also been proposed (Lee et al., 2020).  

To evaluate the signal availability, the signal quality is frequently assessed based on PPG features (Park 

et al., 2022). If the signal quality is not good, it is often impossible to extract the features; hence, 

evaluating the signal quality using the extracted feature may involve a methodological contradiction, 

i.e., a “fallacy of begging the question.” Thus, recent research has applied machine learning directly to 

the original signal to evaluate the signal quality, achieving better performance than that of the existing 

feature-based studies, even without feature detection (Park et al., 2022). A problem associated with 
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the current signal-quality assessment techniques is that the evaluation criteria for signal quality are 

subjective. Only limited research has been conducted on analyzing the PPG signal quality in relation 

to the pulse wave shape (Kyriacou and Allen, 2021). PPG waveform morphologies without MA may 

also be different at different measurement sites on the body and for different subjects (Kyriacou and 

Allen, 2021).  

 
(a) 

 
(b) 

 
                                        (c)                                                                            (d) 

 
 

Figure 14. (a) Publication and citation trends of motion artifact related studies contained in the “Web of Science” employing all field 

search terms, “photoplethysmography” AND “motion artifact”, for the period 1998–2021. Citations are to source items indexed 

within the Web of Science. All article types have been included (accessed on 25/5/2022). The light blue bar indicates the moment of 

explosive growth. (b) Sankey plot for research area and number of publications of original articles for motion artifacts. (c)  Histogram 

of cumulative publications in terms of research area, from 1998 to 2022. (d) Histogram of cumulative publications in terms of 

methodology, from 1998 to 2022. MA: motion artifact, ICA: Independent component analysis. 
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Current and Future Challenges 

The major challenges of MA are related to the technical validation aspects. Traditional bio-signal 

processing research has focused on compressing noise and enhancing signal quality, i.e., improving 

SNR. However, when handling MA in wearable PPGs, a different approach is required because in 

wearable PPGs, important information can be frequently lost due to MA. In general cases, clean PPG 

can be extracted from noisy PPG through noise reduction if the noise has independent characteristics 

from the PPG. Unfortunately, in most cases of PPG MA, the frequency range of the noise overlaps the 

frequency of interest of PPG; thus, linear filtering is ineffective in removing artifacts (Jiang, 2018). 

Moreover, if the level of noise is too high, it is difficult to extract the signal from the noise, and 

inaccurate information can lead to errors in result interpretation. Therefore, this needs to be focused 

on (Figure 15). From this perspective, the recent PPG preprocessing research has paid attention to 

signal quality assessment. The goal of this assessment is to prevent errors in the interpretation of 

results caused by a “moderate level” of noise removal and to provide only clear information. However, 

the challenge is that there is no classification for the standard of signal quality of PPG signals. For 

example, a high-quality signal might be required for analyzing pulse wave shape, whereas a lower 

quality signal can be acceptable for heart rate monitoring (Charlton et al., 2022).  

The second major challenge in handling PPG MA is validating the performance of MA reduction 

methods. Although many researchers have used treadmill for inducing motion artifacts, the 

magnitude of MA can vary depending on the motion characteristics, such as motion types, periodicity, 

or sensor location. Thus. only a limited evaluation can be performed. Particularly, since more errors 

occur in resistive training than in the treadmill (Zhang et al., 2020), the diversity of dynamic noise 

induction protocols for method evaluation should also be considered.  
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Advances in Science and Technology to Meet Challenges 

In addition to the existing approach of removing the noise included in the signal, MA needs to be 

addressed in terms of determining whether a signal is available or not. Technically, in the future, MA 

reduction may be possible using an integrated method based on signal and noise separation, SNR 

improvement, and signal restoration or generation. The transition of this technical perspective 

suggests that MA can be addressed by expanding from the conventional signal processing to data 

processing based on classification and regression. The combined technology of big data and deep 

learning, which can analyze the quality of a signal without an additional feature extraction process 

and restore the signal through regeneration, is highly likely to be employed as an effective alternative 

to handling the MA of wearable PPGs. However, it is also necessary that there exists an agreement 

between researchers on a common evaluation protocol and approach for the objective performance 

validation of MA-reduction approaches. Recently, the International Electrotechnical Commission (IEC) 

TC 124 developed a test protocol and evaluation standard (IEC63203-402-3(ED1)) for assessing the 

accuracy of PPG-based heart rate monitoring. The test evaluation protocol of the standard to be 

established is expected to be employed in the research on PPG MA, in the future. Furthermore, as 

wearable PPG is being emphasized more in daily living, it is necessary to fully consider the commitment 

associated with the data-availability evaluation method based on real-world data in terms of data 

availability. 

Concluding Remarks 

Despite the efforts to remove MAs from PPG signals, there has been no clear solution yet. The efforts 

are being expanded to include an approach involving bypassing methods focusing on avoiding after 

defining rather than eliminating. These trends indirectly suggest that it is difficult to eliminate MA at 

the current level of technology. Traditionally, MA has been recognized as a noise to be removed, but 

it can be viewed as evidence that the user is active in wearable PPG for daily use. This means that 

when dealing with MA in wearable PPG, it will be effective to look at it from the point of view of 

improving the signal availability, and beyond the conventional noise removal that aims to simply 

increase SNR. An effective response to MA of wearable PPG may begin with such a shift in perspective.  
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APPLICATIONS 
 

11.Consumer applications 
 
Author(s): Ilkka Korhonen 
Institution(s): Tampere University, Faculty of Medicine and Life Sciences 
ORCiD(s): 0000-0002-5322-8469 
 

Status 

Although photoplethysmography (PPG) has been widely used in hospital settings since the 1980’s, 

consumer applications of PPG were only introduced around 2010. The first consumer applications 

were armbands which used mainly infrared light for PPG to measure heart rate (HR). These devices 

were very prone to motion artefacts and did not gain significant market penetration. The first optical 

wrist-worn HR monitors with reasonable accuracy were released in 2013 (Parak and Korhonen, 2014). 

The breakthroughs enabling acceptable accuracy were the use of green light for PPG and advancement 

in motion cancellation algorithms. PPG based on green light was found to be significantly less prone 

to motion artefacts than IR (Maeda et al 2011). Since then, optical HR monitoring has become a 

standard way of monitoring HR in consumer applications ranging from exercise HR monitoring to 24/7 

tracking of stress, physical activity, and sleep. Today, most smart watches are equipped with an optical 

HR sensor, and PPG is also used in other form factors such as ear-pods, armbands, and rings, which 

are available for consumer use. Optical HR monitoring has revolutionized consumer HR monitoring 

and its market and made HR monitoring an everyday option for hundreds of millions of consumers.  

The accuracy of optical HR monitoring based on PPG has been significantly improved since 2013. 

Motion cancellation based on filtering and machine learning algorithms has been significantly 

enhanced together with advancements in optomechanical design and electronics performance, and 

numerous studies show that especially during rhythmic activities the best optical HR monitors reach 

accuracy comparable to ECG-based methods in HR monitoring (Zhang et al, 2020). When monitoring 

beat-to-beat intervals during rest, accuracies around 6ms mean absolute error (MAE) have been 

reported (Parak et al 2015) while during motion and arrhythmias, significantly higher errors and lower 

coverage (i.e. amount of time when estimation is available) are common. Large differences however 

exist between different brands and devices, highlighting a need for critical evaluation when 

interpreting results, and objective scientific validation of commercial devices prior to their wide use, 

such as for research purposes. In addition to HR and heart rate variability (HRV) monitoring, metrics 

based on advanced analytics of these parameters (such as stress, energy expenditure, maximal oxygen 

consumption, etc), and also other PPG-based consumer applications have been introduced recently. 

For instance, several smart watches and rings offer estimates of blood oxygen saturation (SpO2) for 

consumer use, e.g. for monitoring training in and adjustment to high altitudes. Some devices also offer 

blood pressure (BP) monitoring based on pulse wave analysis of the PPG signal directly for consumers 

for informative monitoring.  

Current and Future Challenges 

Despite the progress during last decade, optical 24/7 HR monitoring in consumer devices during daily 

life activities has been and still is challenging (Lemay et al, 2014). The PPG signal is prone to optical 

noise, such as due to rapid changes in ambient light levels), and also motion artefacts which modify 
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the sensor contact pressure, moving the sensor against the skin, or causing the tissue itself to move 

during motion either due to gravity or muscle, tendon or ligament motion within the tissue close to 

the sensor. As a result, the signal-to-noise ratio of the PPG may be very low, and often the heart 

activity related component in the PPG is completely lost due to artefacts. Inter-individual factors such 

as skin tone and anatomical differences cause variations in performance, while intra-individual factors 

such as blood perfusion changes, e.g. due to external temperature changes, challenge the monitoring 

accuracy. Good performance requires excellent mechanical design of the device (e.g. strap and 

housing) and proper wearing such as strap tightness optimization and correct sensor location. While 

these factors are important for any PPG application, they are especially critical for long-term consumer 

applications where consumers’ adherence to wearing instructions is usually low, and usage comfort 

dominates the design over accuracy concerns. Hence, the true accuracy of consumer applications of 

PPG-based HR, SpO2 and BP monitoring is likely very compromised compared to what is seen in 

controlled evaluation studies.  

Despite these challenges in data reliability, the wide availability and use of PPG-based consumer 

devices has generated datasets which have been beyond reach earlier. These data, accumulating 

mostly for companies selling these devices, are valuable assets in studying longitudinal behavioural 

health patterns in large numbers of consumers, up to millions (Perez et al, 2019; Radin et al, 2020; 

Natarajan et al, 2020; Ong et al, 2021). One of the future opportunities and challenges is to better 

understand the reliability of such data, and to discriminate when the reported values may be trusted 

and when not. 

Advances in Science and Technology to Meet Challenges 

Currently, researchers and wearable tech companies are focusing on pushing the boundaries of sensor 

wearability, comfort, battery lifetime, and also accuracy and coverage even further. Advances in 

miniaturization of the electronics and reduction in their power consumption not only help to improve 

wearability but to reduce the sensor weight and therefore motion artefacts; an extreme of this 

development are tattoo-types of sensors (Laurila et al, 2022). Also, form factors other than the wrist-

watch are entering wide consumer use. Today, hearables have passed wrist-worn devices as the most 

common consumer wearable, and integration of PPG sensors into them is becoming popular. The ear 

is an excellent location for the PPG sensor due to the reduction in motion artefacts as compared to 

the wrist, and potentially better PPG signal-to-noise ratio due to better perfusion in the ear area in 

most conditions. However, mechanical design to meet variations in consumer anatomy comfortably 

and economically continues to be a challenge. Smart rings provide a very high signal quality especially 

during rest thanks to strong blood perfusion in fingers, and finger anatomy also enables transmissive 

PPG instead of reflective, which in particular improves SpO2 accuracy. Novel ring sensors have been 

miniaturized successfully, allowing excellent wearability and ease-of-use, and it may be expected that 

ring sensors will be increasingly popular among consumers in the coming years. Integration into other 

form factors, such as smart glasses, will also be a future trend – it is safe to assume that PPG sensors 

will be added to any wearable device which is in contact with the skin to monitor user’s health, 

wellbeing, and activity. As a result, availability of the wearable wellness data based on PPG will 

become even wider and cover still longer periods of time and usage situations. This will offer 

unforeseen opportunities for both epidemiological research and design of data-driven health 

interventions and services. 

Another key area for advancing consumer applications of PPG is related to advancements in the 

algorithms. While wearable sensor platforms become ever more capable in terms of memory and 
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processing power, more advanced algorithms to process PPG data in real-time in embedded sensors 

are made possible. Today, most of the algorithms to process PPG to cancel motion artefacts and detect 

HR are based on relatively classic signal processing algorithms such as adaptive filtering, spectral 

analysis and knowledge-based decision trees, which are adapted to personal history little or not at all. 

Research today focuses on learning algorithms which adapt and learn from the personal history, and 

apply machine learning techniques for improved detection of HR, SpO2, or BP (e.g El-Haj, 2020). 

Furthermore, multichannel monitoring of PPG has great potential to improve signal-to-noise ratio and 

coverage of the PPG, and to provide new information not only for HR and SpO2 monitoring but also 

for applications such as BP monitoring (Liu et al, 2016). 

Concluding Remarks 

Consumer applications of PPG have been focused on monitoring of HR, HRV and parameters derived 

from them, such as physical activity, sleep, and stress. Advances in technology are now introducing 

new parameters such as SpO2 and BP for consumer applications and devices available over the 

counter. The main differentiators between consumer and medical wearables are consumer-

favourable design, wearability, availability and cost. In addition, consumer wearables are often 

integrated with other, non-health related features such as smart watch features, which make 

consumer adherence to and coverage of data from these applications in long term monitoring superior 

as compared to their medical device counterparts. The accuracy of consumer applications and medical 

devices is also expected to narrow. The wide adoption of PPG-based devices by consumers offers 

increasing opportunities for real-life data collection to support research on health, health outcomes 

and the impact of interventions. However, objective scientific research is needed to provide an 

evidence base for their use in research, such as evaluation of the accuracy of consumer devices. 
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Status 

Detecting cardiac arrhythmias, especially atrial fibrillation (AF), with wearable photoplethysmography 

devices has been a popular research topic for almost a decade. AF is linked with an over five-fold 

increase in the risk of stroke and there are also many other serious health conditions that are thought 

to be preceded by an increase in asymptomatic arrhythmic activity of the heart. These potentially 

preventable conditions include cognitive impairment by microemboli due to asymptomatic atrial 

fibrillation, sudden arrhythmic cardiac death and worsening of heart failure leading to preventable 

hospitalizations. Especially in the early stage, AF usually appears intermittently and is therefore 

detected effectively only by wearable devices enabling long-term monitoring. Today, several 

commercial smart watches or fitness trackers from manufacturers such as Withings, Apple, and Fitbit 

feature AF detection as a part of their photoplethysmographic (PPG) heart rate sensors. Currently, 

there are not many devices that are intended exclusively for clinical use. One such solution is the 

PulseOn Arrhythmia Monitor System launched in early 2022. Several others are however expected to 

appear soon.  

According to the guidelines of the European Society of Cardiology (ESC), the diagnosis of AF requires 

rhythm documentation with an electrocardiogram (ECG) tracing showing AF. For AF, a single-lead ECG 

of at least 30 seconds recorded with any device and any type of electrodes is sufficient. (Hindricks et 

al 2021). To support diagnostics, many wearable PPG devices that feature detection of irregular pulse 

now also have the ability to record an ECG. There are also wearables and handheld devices that only 

facilitate intermittent ECG measurement, but a major benefit of combining PPG-based AF detection 

and notification together with ECG is to be able to detect also asymptomatic episodes and episodes 

occurring during night. Further, European Heart Rhythm Association’s Practical Guide (Svennberg et 

al 2022) proposes that PPG data without ECG can be used for heart rate and rhythm monitoring after 

AF diagnosis. Consensus statements provided in the Practical Guide also state that: “PPG-based or 

ECG-based devices are preferred to pulse palpation for AF screening”, “In systematic screening for AF, 

PPG-based or ECG-based devices can be used", and “If PPG screening is indicative of AF, an ECG-based 

method should be used to confirm the diagnosis of AF”. Although these consensus statements are not 

yet recognized in the guidelines of the ESC or the American Heart Association, they have a chance to 

be included in those as the evidence on the practical benefits of PPG-based screening builds up. From 

the economical point of view, population-based screening for AF using wearable devices has also been 

found feasible in a simulation study by Chen et al. (2022) for individuals of ≥65 years of age and having 

a CHA2DS2-VASC score warranting anticoagulation medication. From the methods evaluated in the 

study, wrist-worn wearable PPG followed by conditional wrist-worn wearable ECG and confirmatory 

patch monitor was found the most cost-effective strategy.  

Current guidelines for the pharmacological treatment of AF are from the era when there was no 

feasible means of studying e.g. the effect of AF burden on the risk of stroke. PPG-based methods can 

provide the means for doing this and thus helping in optimizing the guidelines. It must however be 

emphasized that an AF diagnosis often leads to life-long oral anticoagulant medication, which in turn 
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predisposes the patient to the increased risk of haemorrhage. The clinician therefore has to be certain 

of the type of arrhythmia when making the diagnosis.  

Most algorithmic approaches for detecting cardiac arrhythmias from PPG records rely on 

interpretation of heartbeat interval data. In addition, some studies e.g., by Eerikäinen et al (2019) have 

combined heartbeat interval information with features extracted from the PPG signal waveform. The 

focus has been mainly in the detection of AF, which is the most prevalent sustained arrhythmia. The 

data collection for algorithm development and performance assessment has often been done in the 

inpatient setting but the most representative results from the practical application point of view are 

obtained in free-living conditions. Review articles by Eerikäinen et al (2020), Lopez Perales et al (2021) 

and Pereira et al (2020) list a number of articles on PPG-based AF detection. Both sensitivity and 

specificity vary usually between 95-99%, medians being 96.2% and 97.7% (Eerikäinen et al 2020) but 

direct comparison of the results should be done with caution because the exact results are affected 

greatly by the patient sample, e.g. the amount of other arrhythmias present in the data and recording 

conditions as well as data analysis strategy, e.g. length of the analysed data segments and requirement 

for minimum AF episode duration. We recently obtained 95.6% sensitivity and 99.2% specificity for AF 

detection in outpatient setting for 5-minute data segments. In outpatient setting usually roughly 50% 

of the data segments need to be discarded due to excessive interference in the PPG signal.  

Preliminary research data also exists on the detection of other arrhythmias such as atrial flutter (AFL), 

quantification of the number of ectopic beats (Nazarian et al 2021) as well as estimating the burden 

of AF (Zhu et al 2021), but these features are not widely in use in certified medical devices. Detection 

of the aforementioned arrhythmias would be beneficial in clinical work, which makes PPG-based 

arrhythmia detection still a relevant topic of research.  

Current and Future Challenges 

In PPG-based arrhythmia detection, the challenges regarding the quality and reliability of the data are 

mostly the same as in many other PPG applications. These include high sensitivity to movement (i.e. 

physical activity), the effect of skin colour and the effect of low superficial blood perfusion. In the case 

of arrhythmia detection, there is however one additional specific feature in the data affecting the 

accuracy. Due to the imperfect filling of the ventricles, the strength of the pulse waves varies during 

arrhythmia, which makes it often more difficult to accurately detect individual heartbeats. This is 

demonstrated for example in article by Harju et al. as well as recently by Charlton et al. (Harju et al 

2018, Charlton et al. 2022), which both compared the heartbeat interval estimation accuracy during 

sinus rhythm and atrial fibrillation. The effect is also illustrated in Figure 23. In addition, because 

heartbeat intervals are highly irregular during AF, the use of frequency domain analysis methods, 

often used for the estimation of average heart rate, are not effective. 

As said, so far PPG-based arrhythmia detection research has mainly focused on AF. The challenge with 

AFL, which is another relatively common arrhythmia, is that it is often manifested as a very stable 

rhythm caused by a supraventricular re-entry activation combined with every second, third or fourth 

flutter activation triggering a ventricular contraction. Due to the resulting stable rhythm, methods 

based on the detection of increased heartbeat interval variability are not effective. The diminished 

variation, which is clearly seen in ECG-based Poincaré (or Lorenz) plot might be used for detecting AFL 

but the inevitable uncertainty of PPG-based heartbeat interval estimation caused by variance in pulse 

arrival time and PPG waveform disturbances induce a challenge for reliability.  Features extracted from 

the pulse waveforms could provide additional information for identifying AFL. Pulse signal waveforms 
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vary between individuals, but data recorded during sinus rhythm could be used to provide individual 

baseline information on the waveform. 

Reliable detection of single ectopic beats has been a challenge with PPG-based arrhythmia algorithms. 

As such, ectopic beats can be detected from patterns in heartbeat interval tachogram (Haddad et al 

2019) but the actual problem has been to be sure whether the pattern is a result of a true ectopic 

heartbeat (i.e. ventricular or supraventricular extra systole - VES or SVES, also called as PAC/PVC for 

premature atrial and ventricular contraction, respectively), or an error in the beat detection due to 

simultaneous movement or other artifact. Distinguishing VESs and SVESs from each other would be 

important as large number of VES can be a sign of severe heart diseases. Monitoring the effect of 

catheter ablation performed for treating excessive ventricular extra systoles would be an additional 

use case.  VES often results in more attenuated PPG pulse waves compared with SVES, or a complete 

lack of the pulse wave. Solosenko et al. have proposed a method for the detection of VES (Solosenko 

et al. 2015). However, their method was validated with transmittance mode PPG in which the signal 

is usually stronger than in reflective mode PPG commonly used in wearable devices. A recent doctoral 

dissertation done in the same research group proposed and evaluated methods for detecting life-

threatening extreme bradycardia and ventricular tachycardia episodes as well as and assessing the 

burden of ectopic beats using wearable PPG device (Paliakaite 2023). They also published a PPG 

simulator tool for assessing detection algorithms. Yet another challenge in PPG-based arrhythmia 

detection is that due to its high sensitivity to movements, reliable beat-to-beat heartbeat interval 

detection cannot be performed during high-intensity activities. Therefore, short arrhythmia episodes 

may be left unnoticed especially if occurring during exercise or other activities. 

 

 

 

Figure 16.   Example of the onset of atrial fibrillation demonstrating the variation in the PPG pulse wave amplitudes due to inefficient 

filling of the ventricles. Single ectopic beats produce similar variations in the PPG signal waveform. 
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Advances in Science and Technology to Meet Challenges 

The fundamental challenge of PPG measurement, sensitivity to movement artefacts, is very difficult 

to overcome completely but several technological advances can help to mitigate its effect and enable 

more versatile applications. The PPG signal quality can currently be relatively well optimized by 

actively controlling the essential parameters of the PPG measurement: LED driving current and the 

gain of the measurement amplifier as well as compensating the DC offset to maximize the PPG signal 

amplitude. Multi-wavelength PPG measurement provides an opportunity to further improve the 

performance of PPG measurement. As reflection of different wavelengths is mainly received from 

different depths in the tissue, combining their information enables both compensation against 

movement artefacts up to some extent as well as combatting against the challenges brought by 

variations in skin pigmentation and blood perfusion. The use of multi-wavelength PPG technology 

could also enable algorithms for differentiating true heart-originated ectopic beats. In addition to 

Section 4, which is dedicated to wearable multi-wavelength PPG, Ray et al. has recently gathered a 

comprehensive review on research around the topic (Ray et al 2021).  

Because periods of low levels of movement may be short, it will be important in the future to develop 

arrhythmia detection algorithms that are able to make reliable rhythm assessment from short 

segments of good quality PPG data. In addition, because there may be short, few second periods in 

the PPG which have been corrupted by movement artefacts, the algorithms should be able to recover 

from artefacts quickly and allow a certain amount of artefact whilst still being able to make a rhythm 

assessment.  

Although current care guidelines by ESC or American Heart Association do not consider AF burden in 

the indication for permanent anticoagulation, the evidence is building that AF burden is independently 

associated with the risk of thromboembolism and ischemic stroke. (Go et al 2018, Healey et al 2012). 

It is still unclear what duration of AF episode warrants anticoagulation to protect from 

thromboembolic events (Svendsen et al 2021). Reliable estimation of the AF burden based on 

continuous PPG data could thus become a useful tool in clinical decision-making in the future. Figure 

17 shows an illustrative example of PPG based visualization of AF episodes.  

In the future, the use of pulse waveform information together with heartbeat interval data could 

enable ectopic beat detection with improved confidence and for example the detection of 

supraventricular tachycardia episodes that are known to be associated with an increased risk of 

developing AF or bradycardias and cardiac pauses that may lead to syncope and sudden cardiac death.   

Long-term statistical analysis of the aforementioned information combined with behavioural data 

could thus further be used to assess individual’s risk for developing pathological arrhythmias.  
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Concluding Remarks 

PPG-based arrhythmia detection has been an extensive research interest for several years, already 

producing several commercial solutions for the detection of AF episodes. However, the full potential 

of PPG for detecting cardiac arrhythmia is yet to be exploited. Future research should focus on 

algorithms for reliable detection of other arrhythmias besides AF, such as AFL and the number of 

ectopic beats, as well as the estimation of AF burden, which is likely to become more important in 

clinical decision making in the future. In the development of new solutions, it is important to verify 

the performance with varying populations and conditions. The unobtrusive PPG-based technology has 

potential to enable convenient, reliable, and cost-effective solutions for large-scale screening and 

assist in the diagnosis and monitoring of AF and other arrhythmias as well as potentially in the 

evaluation of the risk of sudden cardiac death. 
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13.Sleep assessment from the PPG 
 
Author: Gari D Clifford1,2 
Institutions: 1Emory University and 2Georgia Institute of Technology 
ORCiD: 0000-0002-5709-201X  
 
Status 

While published research in the use of cardiovascular signals for assessing sleep stretches back to the 

1980s (Moody et al. 1986; Thomas et al. 2005), over the last decade there has been an explosion of 

consumer-level wearables containing photoplethysmographic (PPG) sensors which has been 

associated with a commensurate increase in publications on using the PPG for assessing the depth of 

sleep and sleep ‘architecture’ (Dehkordi et al. 2014). Most approaches have focused on heart rate and 

respiratory variability-related features (Beattie et al. 2017, Fonseca et al. 2017), or more rarely, 

measures of cardiorespiratory coupling, such as in Figure 18 (Li et al. 2021). Therefore, these 

approaches are highly similar to the electrocardiographic-based forerunners (Li et al. 2018).  

 

 

Recent efforts to apply deep learning to PPG have ranged from learning from beat-to-beat intervals 

(Fonseca et al. 2017) to raw data (Korkalainen et al. 2020) to physiology-driven features such as time-

frequency cardiorespiratory coupling (Li et al. 2021). The metrics reported in the literature vary, but 

commonly include Cohen’s Kappa (𝜅) and Accuracy (Acc). Some of the more transparent papers have 

also identified errors in derived metrics such as Total Sleep Time, REM Efficiency and Sleep Latency, 

Figure 18. Example of average respiration-heart rate cross spectrum in the time-frequency domain during different sleep states: (a) 

Wake; (b) REM sleep; (c) NREM light sleep; (d) NREM deep sleep. Hotter colors indicate higher cross spectral coherence (inherently 

normalized between 0 and 1). Adapted from Li et al. 2018. 
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to provide a deeper insight into how any performance translates into downstream diagnosis. Of 

course, all these metrics are a function of the distribution of sleep classes within the testing and 

training databases, and they are rarely reported. Moreover, there are no articles at this time which 

have evaluated how the quoted performance maps into a diagnostic or screening performance. The 

published results have varied widely, with the state-of-the-art being reported to be 𝜅 ≅ 0.7, which is 

close to inter-human expert concordance level.  However, without public code and data, it is 

impossible to verify these surprising claims, and may reflect imbalances in sleep state prevalence in 

the data (see challenge three in the next section). It is therefore recommended that in future studies, 

at least one pathological class is included in the population and any sleep staging algorithm is also 

assessed in terms of a diagnostic outcome on the population being studied. (E.g., for identifying 

insomniacs from normal). While this doesn’t fulfil the entire diagnostic criteria, it does provide an 

insight into how the errors in a given sleep staging algorithm affect a down-stream diagnosis. 

Current and Future Challenges 

There are multiple challenges that confront efficient and effective sleep monitoring from the PPG. 

First, to generate a high-quality signal for the PPG requires good contact with the skin. Even when 

wearing on the wrist (which is not the optimal place for transducing blood movement), the sensor can 

create localized heating, sweating, and cause discomfort. This leads users to wear the device loosely. 

This can be partially solved by using adhesive materials (see Section 2), but such modalities are for 

short-term monitoring only (hours to days) because of the skin irritation that results. The quality of a 

PPG signal is also a function of where on the body a signal is captured, and of skin pigmentation, which 

can lead to significant biases and even structural discrimination through dismissed symptoms, under-

diagnosis and under-treatment (Feiner et al. 2007). In addition, the quality is also a function of 

wavelength, yet little work has been performed on the effect of choice of wavelength (or multispectral 

wavelengths) on sleep staging from the PPG. Of course, signal quality at night is often better than 

during the day, because of lack of movement. However, since low quality is associated with sleep 

disruption, it can be a confounder for the end goal of diagnosis from sleep stages. Therefore, it is 

important to account for this bias when classifying the sleep stages. One approach to dealing with the 

above issues is to use off-body video-based PPG approaches. However, these lead to other issues such 

as the need to have uncovered skin in view, accurately identifying the region of interest, movement 

tracking issues, video resolution and compression issues, and concerns over privacy. In particular, the 

fact that most people rotate their face and body in bed means that any system that wanted to use off-

body PPG (rather than movement) to stage sleep would need multiple cameras, and the ability to see 

though hair, bed linen, and any other visual obstacles. Considering these issues, it seems much more 

practical to use radar or seismocardographic measures of physiology and movement for off-body sleep 

staging.  Moreover, the enormous variation in camera hardware, pre-processing and lighting 

conditions make any comparisons between studies very difficult. 

Second, many approaches in the literature do not attempt to differentiate artifact from a real signal, 

and so can confuse activity with a real signal. Without the use of related signals, such as accelerometer 

data to identify movement artifact, limb movement, and other useful metrics not readily derived from 

the PPG, it is more likely that a system will learn artifact biases in the training and test data, and reduce 

generalizability (Li and Clifford 2012). Moreover, the only clinically accepted indicator of sleep stages 

is the electroencephalogram (and related signals such as the electrooculogram), since sleep stages are 

believed to be a brain state, not a physiological cardiovascular state, and therefore cannot be 

definitely identified by a cardiovascular signal alone, particularly in pathological patients. A key 
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example would be with an insomniac who is likely to be lying still and may exhibit sleep-like physiology 

because of the phase of their circadian rhythm.  

Third, a key problem, inherent in all sleep staging (and most, if not all medical fields that rely on human 

labels) is the high inter-rater disagreement levels. For sleep staging, values of 𝜅 tend to be in the range 

of 0.6 - 0.7 on average, but can vary highly by sleep stage with 𝜅 = 0.70, 0.24, 0.57, 0.57, and 0.69 for 

the Wake, N1, N2, N3, and REM stages, respectively (Lee et al. 2022). None of the literature on the 

topic of wearable sleep staging (particularly PPG) has directly addressed this issue. Moreover, there is 

an inherent problem in many approaches to PPG-based or physiology-based sleep staging, in that 30 

seconds (the standard sleep staged epoch length) of physiological data may not be long enough to 

assess a sleep stage, even when using raw (30Hz+) data, because physiology changes on a timescale 

well beyond 30s.  

A fourth problem, rarely addressed, is the effect of abnormal physiology on sleep. A simple example 

is the effect of cardiovascular rhythm and abnormal beat types on physiology-based sleep staging. 

Arrhythmias, or even lack of variability or respiratory sinus arrhythmia (as is seen in the elderly or 

those with neuropathy, for example), are likely to confound any approach based on such variability 

changes within sleep states.  Since sleep is being used as an intermediate metric to diagnose a medical 

problem, having a medical problem that affects the physiology of sleep and cardiovascular 

rhythm/variability creates a serious confounder. Either an algorithm must be trained on all possible 

pathologies, or pathology-specific algorithms must be used, which are selected through a separate 

screening process. In the latter case, the algorithm can be used for tracking changes over time in the 

appropriate population, but cannot be used as a screening or diagnostic agent. This appears to be a 

promising future direction, which would include a screening interview, followed by a baseline setting 

simultaneous EEG and PPG recording, then a personalized PPG-based sleep algorithm that could be 

developed through transfer learning, for example. 

Fifth, there is little coherence in the literature on the metrics and databases used or the rationale (and 

description of) how different patients within databases were excluded or distributed during training, 

particularly with respect to demographics and health conditions (e.g., see Table 2.) Finally, there is the 

issue of bias and interpretability. Although explicit biases (such as response to skin pigmentation) are 

clearly addressable, contemporary end-to-end machine learning (which dominates current research 

by volume, but not necessarily quality) introduces the tricky issue of false discovery – i.e. the possibility 

of learning features associated with the target that are not associated with sleep stages beyond the 

limited cohort chosen for training and testing. Explicit features that have been chosen range from 

pulse timing variability (Radha et al. 2021) to morphological changes (Korkalainen et al. 2020), to the 

interactions between morphological and timing (Li et al. 2021). While these may seem less prone to 

false discovery, variability, morphology and the strength of coupling is known to change with age and 

medical condition, and therefore may introduce biases. However, at least these biases are known and 

are therefore more easily accounted for.    

Advances in Science and Technology to Meet Challenges 

To address these challenges, it is clear that far more research is required, particularly in multispectral 

PPG, and its performance should be assessed based on skin pigmentation, skin age, hair cover, and 

body location. In addition, the inclusion of multiple sensors (from on-body accelerometry, to off-body 

full-body movement such as radar-based monitoring) and the use of multimodal machine learning 

may provide an optimal method for combining these data to classify sleep stages. Moreover, there is 

a need to integrate downstream metrics (such as diagnoses) into the optimization process (e.g., see 
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Cakmak et al. 2021). To improve the issue of inter-rater variability, studies need to focus on using at 

least three independent experts, and develop machine learning approaches that factor in the 

uncertainties from disagreements, identifying transition points in 30 second epochs to address the 

problem of within-epoch class confusion. To address the issue of arrhythmias, a multiclass 

optimization approach (sleep, artifact, rhythm) could be applied. Addressing the issue of scientific 

repeatability is common to all studies and is generally addressed by well documented open-source 

code and open access data.  Finally, to address the bias, and patient diagnoses issues, a transfer 

learning approach can help, providing boosting on a relatively small sub-population (Li et al. 2021).  

Concluding Remarks 

In summary, there is significant potential in the use of PPG (and related sensor streams) for sleep 

staging, but significant barriers remain. The current push to keep raw data inaccessible in commercial 

devices continues to hold the field back and is likely to exacerbate existing biases. There is a clear need 

for standardized databases, open access code, open-source software, and reference hardware to help 

accelerate the utility of this key sensor modality for sleep monitoring. 
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Table 2. Overview of PPG-based classification of sleep stages.  OSA: Obstructive Sleep Apnea, SHHS: Sleep Heart Health Study, ETSF: Emory 

Twin Study Follow-up dataset, PTSD: Post-Traumatic Stress Disorder, SOMNIA: Sleep and Obstructive Sleep Apnea Measuring with Non-

Invasive Applications, N2N: Night to Night dataset, HHS: Heart Health Study dataset, MESA: Multi-Ethnic Study of Atherosclerosis, CFS: 

Cleveland Family Study. Private indicates data is not available in the public domain. 

Work Inputs used Database 

name 

Database demographics No. 

stages  

Acc  

(%) 

𝜅 

Korkalaine

n et al. 

(2020) 

raw PPG Private 894 suspected OSA patients 3  

4  

5  

80.1 

68.5 

64.1 

0.65 

0.54 

0.51 

Li et al. 

(2021) 

HRV metrics 

from PPG + 

activity features 

from 

accelerometer 

SHHS visit1 

ETSF 

5793 subjects for pre-training 

(SHHS), 105 subjects (ETSF, 

PTSD twin study) 

2  

3  

4  

81.5 

77.1 

68.6 

 

0.58 

0.50 

0.44 

Radha et al. 

(2021) 

HRV metrics 

from PPG 

Siesta 

Eindhoven 

292 subjects (195 healthy + 

97 sleep disorder patients), 

or 584 recordings (Siesta) 

60 subjects (healthy), or 101 

recordings (Eindhoven) 

4  76.36 0.65  
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Work Inputs used Database 

name 

Database demographics No. 

stages  

Acc  

(%) 

𝜅 

Korkalaine

n et al. 

(2020) 

raw PPG Private 894 suspected OSA patients 3  

4  

5  

80.1 

68.5 

64.1 

0.65 

0.54 

0.51 

Wulterkens 

et al. 

(2021) 

HRV metrics 

from PPG + 

body 

movement 

features from 

accelerometer 

SOMNIA + 

N2N + HHS 

422 sleep disordered 

patients (from SOMNIA) + 

121 healthy (from N2N + 

HHS) for training, 292 

patients (from SOMNIA) for 

validation 

4  76.4

% 

0.62 

Huttunen 

et al. 

(2021) 

raw PPG Private 2149 suspected OSA patients 

for pre-training, 877 

suspected OSA recordings  

3  

4  

5  

83.3 

74.1 

68.7 

0.72 

0.64 

0.60 

Kotzen et 

al. (2022) 

HRV metrics 

from PPG and 

raw PPG 

SHHS Visit 1 

MESA 

CFS Visit-5 

v1 

5758 subjects for pre-training 

(SHHS), 2054 patients (MESA) 

+ 320 patients (CFS) 

4  84 0.75 
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14.Diagnosing obstructive sleep apnea from pulse oximetry 
 
Author(s): Jeremy Levy 1,2 and Joachim A. Behar 1 
Institution(s): 1 Faculty of Biomedical Engineering, Technion Institute of Technology, Haifa, 
Israel; 2 Faculty of Electrical and Computer Engineering, Technion Institute of Technology, 
Haifa, Israel.  
 
ORCiD(s): 0000-0001-7498-6413 and 0000-0001-5956-7034 
 

Status 

Obstructive Sleep Apnea (OSA) is a respiratory disease, caused by pharyngeal collapse during sleep 

and characterized by frequent awakenings. It is a highly prevalent condition with an estimated 425 

million (95% CI 399–450) adults worldwide aged 30–69 years (men and women) having moderate to 

severe OSA, in a review of 17 studies (Benjafield et al. 2019). Full-night polysomnography (PSG), 

although time-consuming and expensive, is considered the gold standard for diagnosing OSA. The goal 

of PSG is to confirm the clinical suspicion of OSA, assess its severity, and guide therapeutic choices. 

Because of the high prevalence of OSA, the high proportion of undiagnosed individuals and the limited 

number of sleep labs offering PSG, it has become critical to develop alternative pathways for the 

diagnosis of OSA from physiological time series recorded by wearable sensors and interpreted by data-

driven algorithms. These algorithms have to demonstrate high performance to enable the diagnosis 

of OSA and be robust to population shifts. The oximetry time series have been used to support PSG 

interpretation with the typical statistics reported in PSG reports being the 3% oxygen desaturation 

index, the mean oxygen saturation, lowest value and proportion of time under 90%. Researchers have 

later elaborated other oximetry features, which are often less intelligible but are designed to better 

capture the dynamics of the time series or specific events. These include the delta index (Pepin et al. 

1991), power spectral density-based features (Zamarron et al. 1999) or sample entropy (Richman et 

al. 2000). Recently, research has investigated the combination of such features in a machine learning 

(ML) model. In addition to using pulse oximetry, some researchers have developed models based on 

the photoplethysmography signal (Chen et al. 2021) or pulse rate variability (Blanchard et al. 2021, 

Sabil et al. 2021). 

Current and Future Challenges 

Efforts focused on the analysis of respiratory pathologies based on the oximetry time series have 

received considerable attention in the last few years. Behar et al. (2019) developed OxyDOSA, a linear 

regression model trained on oximetry biomarkers and three clinical features. They trained the model 

on a PSG clinical database of 887 individuals from a representative population sample of São Paulo 

(Brazil). They performed a binary classification of non-OSA versus OSA and obtained an AUROC of 

0.94 ± 0.02 and a sensitivity of 0.87 ± 0.04 on the test set. Vaquerizo-Villar et al. (2019) proposed a 

Convolutional Neural Network (CNN) working on 60-seconds segments of oximetry. They obtained 

93.6% accuracy on detecting apnea or hypopnea events, on a dataset of 453 paediatric patients. 

However, the majority of studies used a single dataset. One important challenge with translating 

medial ML algorithms into clinical practice is their lack of generalizability. Indeed, the model must be 

robust to distribution shifts associated with population sample (e.g., effect of skin colour) or changes 

in the recording device (i.e., hardware used to acquire the data). As shown by Celi et al. (2022), 

generalization is currently one of the main bottlenecks for developing effective clinical ML models. 
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Different sensors exist that can record the oximetry time series. For example, during a PSG test, the 

photoplethysmogram (PPG) signal (from which 𝑆𝑝𝑂2 is derived) is recorded via transmission of the 

light through the finger whereas smartwatches can record the PPG via reflectance of the light through 

the skin surface. Although the reflectance photoplethysmography signal will often be of a lower 

quality than the transmission one, smartwatches (or similar wearables) bring the opportunity to ease 

remote diagnosis of OSA. However, the quality of the physiological measurements obtained using 

these new wearables is still questionable and there is currently no proof that these may be used for 

diagnostic purposes (Zhang and Khatami 2022). 

Advances in Science and Technology to Meet Challenges 

The oximetry signal can be collected continuously using a pulse oximeter. Levy et al (2021) developed 

a Python Oximetry BioMarkers (POBM) toolbox to ease the engineering of relevant oximetry features. 

The oximetry biomarkers (OBM) were divided into five categories: General statistics, Complexity, 

Periodicity, Desaturation and Hypoxic Burden. Along with the toolbox, a flowchart for continuous 

oximetry time series analysis, using a feature-engineering data-driven approach has been proposed 

(Figure 19). This can support rigorous research into the diagnosis of respiratory pathologies from 

single channel oximetry including OSA. This framework, along with a Deep Learning model, has been 

used in the context of OSA diagnosis by Levy et al. (2022), for a regression of the AHI. The model 

developed, called OxiNet, achieved an F1 score of 0.87 on the Sleep Heart Health Study (SHHS) dataset. 

After a step of transfer learning, generalization of OxiNet has been demonstrated on external datasets 

from different population samples thus reflecting generalization performance when distribution shifts 

exist. In another work, Deviaene et al. (2018) trained a random forest model combining 139 SpO2 

features and 4 clinical features. The goal was to classify 1-min segments according to whether or not 

they contained an apnea or hypopnea event. They obtained an average sensitivity of 64.6% on the 

test set of SHHS for the binary classification where mild, moderate, and severe are confounded, and 

an averaged accuracy of 87.6%. In the SHHS test set, 73% of the events are hypopneas, which are 

harder to detect than apnea. That could be one reason for the low sensitivity obtained, compared to 

the accuracy. Overall, these results motivate the use of a single sensor, the pulse oximeter, to enable 

low cost and widely available diagnosis of OSA. 
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Concluding Remarks 

There are still challenges in the development of intelligent algorithms for the diagnosis of OSA from 

the oximetry signal. However, there is strong evidence on the feasibility of OSA diagnosis based on 

single channel oximetry. There is limited evidence of whether the quality of the oximetry data 

recorded via wearable sensors is of sufficient quality to enable these data-driven algorithms to 

perform well enough i.e. enable diagnosis versus screening. The location of the sensor has an impact 

on the quality of the signal acquisition, and consequently on the performance measures of different 

algorithms for OSA diagnosis. A study (Hassan et al. 2021) has shown that the quality of the signal 

varied at different sensing locations (finger, toe, ear), with several confounders such as ejection 

fraction or heart failure. Beyond OSA, computational analysis of the continuous oximetry time series 

has the potential to be used for the purpose of diagnosis and monitoring of several respiratory 

conditions as demonstrated in the recent work of (Levy et al. 2021) and (Sobel et al. 2021) on chronic 

obstructive pulmonary disease and COVID-19. 
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Status 

Mental disorders are recognized among the main causes of the global health-related burden, with an 

age-standardized prevalence of 12.262 per 100.0000 people in 2019, increasing after the COVID-19 

pandemic, and with depression and anxiety being the most common ones (GBD 2019 Mental Disorders 

Collaborators, 2022). Impaired mental health is associated with negative outcomes, such as disability, 

reduced quality of life, and premature mortality  (Matcham et al., 2019). The diagnosis and follow-up 

of mental disorders are often reliant on self-reported questionnaires or interviews at specific clinical 

visits. Consequently, monitoring mental health using wearable technology could play a key role in the 

early identification of vulnerability, relapses and response to treatment, reducing morbidity, 

improving patients’ quality of life, and reducing the economic burden on health care systems. In this 

line, there have been some efforts in the development of digital tools for the assessment of mental 

health, with most passive solutions being based on actigraphy, speech, sleep and GPS data, and few 

approaches based on cardiovascular parameters such as arterial stiffness and heart rate (Osipov et al., 

2015; Matcham et al., 2019; Hickey et al., 2021).    

Prolonged stress is a crucial factor underlying depression and anxiety, with lower stress resilience 

being associated with higher vulnerability to psychiatric disorders. The physiological response to stress 

is mediated by the autonomic nervous system (ANS). Repetitive and maladaptive responses to stress 

might be behind the autonomic imbalance and reduced autonomic reactivity observed in mental 

health disorders (Kontaxis et al., 2021). Since ANS regulation of the cardiovascular system impinges 

characteristic patterns in some physiological signals, such as the electrocardiogram (ECG), and the 

photoplethysmogram (PPG), wearable devices that can measure these signals non-invasively have 

great potential for monitoring mental health. 

Heart rate variability (HRV), derived from the ECG, is the most widely used and commonly accepted 

measure of ANS regulation of the heart, mainly in resting conditions. In a recent systematic review 

HRV was identified as the most useful physiological metric for stress and anxiety detection (Hickey et 

al., 2021). Reduced HRV has also been reported in patients with depression (Kemp et al., 2010). Pulse 

rate variability (PRV), derived from the PPG, can be used as a surrogate of HRV in many practical 

situations (see Section 5). In fact, PRV has been proven useful to classify mental distress versus calm 

stages (Zangróniz et al., 2018), and  PRV in response to a mental task has been shown to discriminate 

major depressive disorder (MDD) patients from controls (Dagdanpurev et al., 2018), mainly using 

mean pulse rate, the power in the high frequency (HF) band and the ratio between the power in the 

low frequency (LF) and HF band (LF/HF).   

Current and Future Challenges 

Despite the potential of HRV for mental health monitoring, there are some unmet challenges. On one 

hand, since heart rate (HR) dynamics are influenced by changing factors such as respiration, activity, 

and time of the day, the contextualization of HRV measures is important for their correct 

interpretation. For example, in (Varon et al., 2019)  HRV measures were only capable of distinguishing 

stress and relax stages when respiratory information was taken into account. On the other hand, in 
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order to be of practical/clinical use, HRV should be obtained during real-life contexts and in a manner 

which is accepted by the user (considering intrusiveness and discomfort). This is particularly 

challenging in chronic disorder patients and the reason why wearable devices based on PPG have a 

great potential in the field of mental health monitoring.  

Not only pulse rate but also PPG waveform morphology is altered under stress and depression.  In 

(Charlton et al., 2018) PPG features indicative of stress were investigated in a simulation study in which 

haemodynamic changes were included in a numerical model to simulate the effect of stress on PPG 

signals at different sites. The most significant and consistent features were the time from pulse onset 

to peak, the time from dicrotic notch to pulse end, and the pulse rate. In (Khandoker et al., 2017) 

multiscale tone-entropy applied to the series of systolic, diastolic and pulse wave amplitudes turned 

out useful to discriminate MDD patients and controls and to identify those MDD patients with suicidal 

ideation. Pulse decomposition analysis was used to observe the decreased autonomic reactivity to a 

stressful stimulus in MDD patients with respect to matched controls, with the percentage of amplitude 

loss in wave reflections being one of the most discriminating parameters (Kontaxis et al., 2021).  

However, most of these studies used PPG signals recorded at the fingertip by medical or research 

devices in laboratory settings. The use of wearable PPG to monitor mental health during daily life faces 

additional challenges that need to be addressed. One of them is the low quality of the PPG signal 

(Charlton et al., 2020), especially when recorded at wrist due to its smoother characteristics and 

higher sensitivity to movement artefacts, which can be aggravated by uncontrolled and improper use 

of the wearable device (loose or poor contact). Despite the challenges, relax and stress stages were 

discriminated using PRV metrics derived from a PPG-based wrist-worn using custom-developed 

wearable (Zangróniz et al., 2018) or commercially available devices (Beh, Wu and Wu, 2021). 

Advances in Science and Technology to Meet Challenges 

One of the most important steps for wearable PPG monitoring during daily-life is the assessment of 

signal quality. Different PPG features require different signal quality metrics and thresholds. For 

instance, one PPG signal can have a signal quality sufficiently high for a robust estimation of pulse 

rate, but not for PRV estimation or pulse wave decomposition. It is also important to discard PPG 

segments with too low signal quality that may result in outlier features’ estimates. For example, in 

(Beh, Wu and Wu, 2021) a preprocessing step to remove outlier pulses based on pulse waveform and 

duration signal quality indices, and a postprocessing step to reject assessments obtained from 

segments with excessive removed pulses, was proposed to identify mental workload, obtaining a 

similar performance to one based on ECG with a rate of outcome rejection of around 30%. 

The high intersubject variability as well as the sensitivity of HR dynamics to external and internal 

stimuli require the contextualization of HR-related metrics. Synchronous accelerometer data can be 

used to identify resting and activity periods (Can et al., 2019, Cakmak et al., 2021). Information of 

different signals (accelerometer, electrodermal activity, respiration) can be fused to increase the 

capability of PPG metrics to monitor mental health. For example, in  (Can et al., 2019) the use of 

electrodermal activity in combination with PRV metrics, as well as additional context derived from the 

accelerometer signal, improved stress assessment during real life. In (Cakmak et al., 2021) features 

from the PPG and accelerometer signals recorded at wrist during eight weeks were used to classify 

post-trauma symptoms in post-traumatic stress patients. The combination of these passive features 

with clinical surveys improved the classification accuracy achieved by any of the sources separately. 

Information from different sources can be combined using machine learning algorithms (Can et al., 
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2019, Cakmak et al., 2021) but other approaches should be investigated which exploit the interactions 

and relations between the different signals (Osipov et al., 2015; Varon et al., 2019). 

Different studies have demonstrated the advantages of assessing ANS in response to a stressful 

stimulus, either mental/cognitive or physical (Osipov et al., 2015; Kontaxis et al., 2021), suggesting the 

convenience of including or identifying stressful stages when monitoring mental health. 

In any case, more longitudinal studies are needed where the wearable PPG data are continuously 

recorded and mental health clinically followed-up for long periods of time (years) in order to allow for 

the development of personalized models.  

Concluding Remarks 

In summary, the main challenges that should be addressed when using wearable PPG technology for 

mental health assessment include: i) low signal quality with significant data losses during daily life 

which requires the development of dedicated signal quality algorithms; ii) the importance of assessing 

ANS in response to stressful stimuli, rather than just in basal conditions, and the use of subject-specific 

measures; iv) the inclusion of contextualization and combination with other sources. 

Despite the challenges and limitations of wearable PPG technology for obtaining robust ANS markers 

during daily-life activities, there is evidence for the potential for this modality to significantly 

contribute to mental health monitoring, especially when combined with other information such as 

physical activity, sleep quality, home stay, social interactions, cognitive function and self-reported 

status (Osipov et al., 2015; Matcham et al., 2019).  
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Status 

Cardiovascular diseases (CVDs) remain the No. 1 killer over the world, and high blood pressure (BP), 

aka hypertension, is one of the most important modifiable risk factors of CVDs. Studies have shown 

that 24-hour ambulatory BP, particularly night-time BP, is superior to office BP in predicting total and 

cardiovascular mortality (Yang et al., 2019). Tonoarteriography (TAG) (Ding et al., 2015, Ji et al., 2021) 

that can acquire arterial BP waveform continuously, ubiquitously, and unobtrusively is, therefore, very 

important for pervasive monitoring, early screening, detection, prevention and management of 

hypertension and its related CVDs.  

The oscillometric BP monitor is commonly used to measure BP in the clinical setting and at home, but 

it requires an inflatable cuff that can cause discomfort and disruption to the user and thus is not 

suitable for monitoring at night. Further, it can only provide an intermittent value of BP. With advances 

in emerging sensing, computation, algorithm and artificial intelligence (AI), continuous BP waveform 

via TAG and beat-by-beat BP measurement in a continuous and unobtrusive manner but without a 

cuff has become possible, with the translation of cardiovascular signal features to BP by either 

mechanism model or data-driven model (Figure 20).  

Photoplethysmography (PPG) has been extensively used for cuffless BP measurement, since PPG 

reflects blood volume change that is related with BP variation. With multiple PPG signals or a PPG 

signal and other sensing modalities, such as electrocardiogram (ECG), pulse transit time (PTT) can be 

obtained to indicate BP changes. There have been various studies on PTT-based BP estimation, due to 

the advantages of the PTT technique being low-cost, ease of use, continuous and noninvasive (Ding 

and Zhang, 2019). The PTT-based BP estimation method relies on the principle of pulse wave velocity 

(PWV), which relates PWV/PTT with BP. Beyond PTT, there are also other PPG features, e.g., heart 

rate, PPG intensity ratio (PIR), being used for BP estimation. The BP features are then translated to BP 

values via a calibration model, which can be mathematical formulas based on the physiological 

knowledge communicating the BP features with BP, or a data-driven model that maps the BP features 

or signals to BP (Ding et al., 2016). Yet, the performance of current studies can hardly meet the 

international standard for cuffless BP measurement (either TAG or beat-by-beat BP) especially for mid- 

and long-term monitoring, and advance is desirable to overcome the limitations including the accuracy 

and stability associated with calibration in the physiological mechanism-based models and the data 

size in AI-based models for wide application of the technology.  
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Current and Future Challenges 

One of the biggest stumbling blocks to cuffless BP monitoring is its limited mid- and long-term 

accuracy, potentially attributable to four main issues and challenges. First, the precise mechanism 

underlying cuffless BP measurement is not fully understood. It is clear that specific PPG-derived BP 

indicators – e.g., PTT/PWV – are associated with BP via the relationship between arterial compliance 

and pressure. Yet, it remains unclear if the possible mechanism acts in the right way with unrealistic 

assumptions. The association between unobtrusively obtained BP indicators (e.g., via PPG signal) and 

BP also seem to vary across a whole range of dimensions, such as age, gender, level of physical activity, 

mental status, environment, and so on. This emphasizes the importance of research into the 

mechanism.  

Second, the sensing technology that is robust to interruptions and noise – in particular, motion 

artefacts – determines the practicability of the TAG or cuffless beat-by-beat BP monitoring technique. 

Signal processing methods to remove the interferences would further enhance the acquired signal 

quality. The immature sensing technology would result in poor studies in wearable and unobtrusive 

monitoring system in practice for TAG waveform and beat-by-beat BP estimation.  

Another main challenge is the insufficiency of current estimation models. A physiological mechanism-

based model is usually based upon a few PPG-derived BP indicators, e.g., PTT/PWV and PIR, and the 

model is rather simple with limited factors being considered, leading to inadequate estimation 

accuracy. For a data-driven model, sufficient data that covers various possibility of BP changes, 

interpretability, as well as personalisation problems are the key issues. 

Last but not the least, as the bridge between the research in the lab and the application in practice, 

clinical validation of the technique requires standard protocol, in which the reference method to 

measure continuous BP or TAG signal and the duration of measurement are the important factors 

among others, such as sample size and dynamic range of BP. An accurate reference BP measurement 

method is the key to evaluate the performance of new methods or devices. However, there are two 

main issues of the commonly used ground truth measurement methods, e.g., auscultatory or 

Figure 20. The framework of wearable cuffless blood pressure (BP) or TAG monitoring. 
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oscillometric method, intra-arterial BP measurement. One is the synchronization problem between 

the reference BP and estimated BP. Because of the different nature of the reference method and the 

cuffless BP measurement method and each of them requires one sensing location but BP may vary at 

different sites of the body, it is very challenging to synchronize them. The other issue is that the 

reference BP measurement method can be inaccurate. For example, the auscultatory method may be 

affected by the experience of the observer. Even intra-arterial BP – the gold standard of BP 

measurement in clinical – can be distorted due to improper placement of the BP sensor and other 

noises. With regard to the duration of measurement, although there are standards for cuffless BP 

measurement addressing these issues, e.g., the IEEE Standard for Wearable Cuffless Blood Pressure 

Measuring Device (IEEE, 2019), many validation studies have ignored the important aspects, in 

particular, the validation of mid to long term accuracy evaluation. Studies that use machine learning 

models to predict the BP commonly validated BP over a short duration of only up to 6 months (Su et 

al., 2018). These showed good performance, but a clear advantage over traditional cuff-based BP 

measuring method remains to be seen. 

Advances in Science and Technology to Meet Challenges 

As mentioned above, the biggest dilemma facing cuffless BP measurement is its restricted 

performance due to the imperfect mechanism, motion artifacts in signal acquisition system, modelling 

with limited data support, as well as clinical validation standard. Efforts should therefore be 

undertaken to address these challenges such as to advance the science and technology. 

First of all, we need to clarify the mechanism of using unobtrusive CVD signals (e.g., PPG) for TAG 

signal and beat-by-beat BP estimations. This requires us to understand the relationship between the 

CVD signals and BP in more depth. More specifically, questions should be elucidated including whether 

the signals contain the information that represents BP changes, what kind of features can be extracted 

from the signals to indicate BP changes, and what is the effective model that maps the indicators to 

systolic and diastolic BPs and TAG waveform. 

Next, robust multi-modal sensing systems and signal processing algorithms are required to achieve 

reliable, unobtrusive and continuous BP measurement. A robust yet neat sensing system is critical to 

acquire signals for real time monitoring of BP in an unobtrusive manner. Multi-wavelength PPG is such 

an example for TAG monitoring (see Section 4) (Liu et al., 2018). Further, novel sensor designs and 

signal processing techniques should be developed to mitigate against noise and interference such as 

motion artefact. This will promote the development of the technology, commonly confined to the lab, 

to study in daily use.  

Third, we should take advantage of AI techniques to build models to estimate beat-by-beat BP and its 

continuous waveform – the TAG signal – but with the integration of knowledge and data. For AI-driven 

methods, it is necessary to share the code for the sake of reproducibility to advance the field similarly 

to research in computer science. This is further aided by the use of public datasets, since some studies 

have used the same data but achieved very different results and performance. 

Finally, standardisation of the validation protocol is desirable to promote the progress of the 

technology. The protocol should include population, sample size, validation procedure, dynamic range 

of BP, and calibration interval. Further, we encourage studies to validate their proposed method with 

consideration of calibration interval or accuracy duration, since this has been neglected in most 

current studies. Most important of all, the evaluation standard must be accepted by the clinical 

community and other stakeholders so as to promote the technology and translate it into practice 

(Mukkamala et al., 2021). (See Section 21 for further details) 
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With the effort to address these challenges, it is possible to advance the TAG technology and make 

breakthrough against the traditional techniques that have been used for centuries (Figure 21).  

 

 

Concluding Remarks 

Wearable PPG technology is a promising way for measuring beat-by-beat BP and continuous BP signals 

(i.e. TAG) without the inflatable cuff that is commonly required by current BP monitors. However, the 

imperfect mechanism underlying cuffless BP measurement leads to unsound estimation models. 

Sensing technology and clinical validation issues further contribute to the limited accuracy of this 

technology that confines its wide application. As such, it would be very valuable to clarify the 

mechanism of cuffless BP by investigating the fundamental relationship between wearable PPG and 

other modal signals with BP, to make the sensing system robust to interference, to build models that 

can accurately estimate BP, and to standardize the clinical validation protocol, for promoting the TAG 

technology into practice. 
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17.Hospital monitoring 
 
Author(s): (i) Tingting Zhu, (ii) Lei Lu, and (iii) David A. Clifton 
Institution(s): Department of Engineering Science, University of Oxford 
ORCiD(s): (i) 0000-0002-1552-5630 
 

Status 

A pulse oximeter has long been considered a routine measurement device for patient monitoring in 

clinical settings [1-3]. It monitors the oxygen saturation in the blood (via the fingertip or earlobe, for 

example) and changes in blood volume in the skin using the photoplethysmogram, which measures 

changes in light absorption in the tissue [4]. The photoplethysmography (PPG) waveform is non-

invasive and can be collected passively by consumer devices; it is typically available for prolonged 

periods, and therefore well-suited for in-hospital monitoring to identify transient abnormal events [5]. 

With advances in digital signal processing and machine learning, the PPG waveform has been used for 

extracting physiological parameters for different clinical applications [5, 6]. Besides the standard vital-

sign values (such as heart rate, respiratory rate, body temperature, arterial oxygen saturation, and 

arterial blood pressure), cardiac parameters (such as electrical heart activity, cardiac output, and heart 

valve mechanics) can also be derived from PPG [4, 7]. Some research also focuses on the level of 

consciousness, mental stress, and pain, based on PPG for patient monitoring [8]. For neurological and 

metabolic applications, the PPG waveform is used for measuring brain activity, cerebral tissue 

oxygenation, intracranial pressure, blood gas and blood sugar, and microcirculation monitoring [9, 10]. 

Furthermore, recent developments in imaging PPG (iPPG), allow further opportunities for hospital 

monitoring as iPPG offers non-contact sensing using cameras [3]. Current ongoing research for clinical 

monitoring covers a wide range of applications, including neonatal and paediatrics monitoring [1], 

diabetes screening [4], hospitalised coronavirus (COVID-19) patient health monitoring [5], predicting 

deteriorations in patients with infectious disease [6], assessment of hypertension and vascular ageing 

[11], prediction of mortality and hospitalisation of patients [12], detection of atrial fibrillation and 

prediction of cardiovascular risks [13], and sleep monitoring and detection of obstructive sleep apnoea 

[14]. Some notable examples are highlighted in Figure 22. 
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Current and Future Challenges 

Despite the flexibility and low-cost advantages of PPG, its applications in patient monitoring remain 

limited due to multiple challenges from data collection to disease detection. Most commercially 

available wearable devices capture PPG in the background, where the signal is unprocessed and noisy 

depending on the connectivity of the device and the patient’s movement. Vital signs such as oxygen 

saturation (SpO2) can then be calculated using proprietary software. The black-box approach using 

proprietary software to extract SpO2 or other physiological signals makes PPG-based wearable devices 

unattractive as they are usually not generalisable to all patients with different age groups and 

diseases. Furthermore, there are currently only a handful of devices on the market that provide access 

to the PPG waveforms, with the cost of those devices limiting the use of PPG in low-resource settings. 

Signal quality issues such as motion artefacts and data connectivity, and device battery life, are further 

barriers to the use of PPG in clinical monitoring. In addition, despite active research into techniques 

for measuring the signal quality of PPG waveforms, such techniques are mostly tested in healthy 

subjects (particularly on commercial devices) and on only a small number of participants, which makes 

it difficult to generalise findings to clinical settings. For long-term monitoring of bed-bound patients, 

existing PPG-based devices are limited by battery life and Bluetooth connectivity issues. 

There is a further question as to whether the collected PPG waveforms contain sufficient physiological 

information from which vital signs may be estimated. This is a critical criterion as most wearable 

devices are validated on healthy subjects, and it is required to translate them into clinical practice in 

which subjects are often co-morbid, elderly, and ill, which confounds existing methods. In spite of 

Figure 22.   PPG for hospital monitoring. Vital signs include - but are not limited to - heart rate, body temperature, blood pressure, 

respiratory rate, and oxygen saturation. Applications of PPG-based physiological monitoring include health monitoring in the neonatal 

and paediatric intensive-care units [1], non-contact monitoring of patients undergoing haemodialysis [2], non-contact monitoring of 

changes in tissue blood perfusion during abdominal surgery [3], detecting diabetes from smartphone-based vascular signals [4], real-

time monitoring vital signs of COVID-19 patients [5], deterioration detection of autonomic nervous system dysfunction in infectious 

patients [6], and others. 
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recent breakthroughs in using PPG for detecting cardiac arrhythmia, it is limited to atrial fibrillation 

only. Therefore, PPG research is still at a preliminary stage for describing cardiac morphologies. The 

new advances in iPPG allow it to serve as a second modality for estimating vital signs information, and 

make it highly relevant for clinical monitoring due to its convenience in assessment. However, the 

quality of the signal collected, and the information content provided, limit the use of iPPG. For a 

clinical environment where highly accurate vital measurements are required for critically ill patients, 

traditional monitoring systems are preferred over iPPG. Furthermore, iPPG captures videos which can 

be computationally challenging to analyse, as it requires intensive processing powers and extensive 

resources for storage. 

Advances in Science and Technology to Meet Challenges 

The challenges described signpost opportunities for future development. Existing algorithms for 

assessing PPG signal quality vary according to the device configuration, application, and subjects being 

monitored [15]. Thus, to extract physiological information from PPG, vital signs-specific quality 

assessment, such as respiratory signal quality indices (RQIs) [7], in addition to the traditional signal 

quality indices (SQIs), should be considered in clinical usage. As there is no coherent “one model fits 

all” solution, Bayesian methods may be used for learning how to optimally fuse multiple independent 

SQIs and RQIs [16]. Despite the popularity of expert-crafted features from PPG for clinical monitoring, 

more recent advances in deep learning using neural networks (NNs) have shown promising results. 

NNs can offer modelling of the PPG waveforms directly, without dedicated algorithms for pre-

processing and/or feature extraction. Light-weighted NNs (such as MnasNet [6]) are also designed for 

Internet-of-Things or mobile devices which allow real-time on-sensor processing. However, NNs still 

lack physiological interpretation of the underlying phenomenon. Detection of different cardiac 

abnormalities is straightforward in electrocardiogram (ECG) modelling, but is particularly challenging 

for PPG due to a lack of patient examples. Generative Adversarial Networks can be used as a synthesis 

tool for generating samples to train algorithms for improved performance [17]. While PPG-based work 

has previously been used for classifying cardiac abnormality and is validated against those derived 

from ECG, no work has been undertaken to date on using PPG to perform active sampling to monitor 

patients’ health status where there is ECG abnormality. Such application would also be extremely 

beneficial for using wearable devices in clinical settings where existing monitoring can otherwise be 

either infrequent or entirely absent. This is also beneficial for preserving battery life on wearables and 

reducing artefacts and transmitting data only when it is necessary. As discussed previously, any 

algorithms for estimating physiological parameters need to perform sufficiently well and satisfy any 

intended applications if they are to be deployed effectively in clinical settings. Overall, the clinical 

utility of PPG needs to be assessed via validated studies in patients to identify suitable algorithms for 

data extraction and parameter estimation. Further regulatory approvals of PPG-based devices are 

required for the certification of medical devices to be used for integration into clinical pathways. 

Concluding Remarks 

This section highlights the status of PPG-based patient monitoring for applications ranging from 

physiological parameter extraction to health abnormality and disease detection. Although there are 

ongoing, fundamental challenges in PPG-based wearable devices, advances in science and technology 

are allowing rich information to be extracted from the PPG waveform, thereby providing exciting 

potential in patient monitoring, and assisting clinical decision support in hospitals.  
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18.PPG low frequency variability and autonomic function 
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University of Science and Technology, Shenzhen, China 
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Status 

The PPG signal is composite in nature with a heartbeat synchronous pulse superimposed on a range 

of lower frequency components attributed to respiration, vasomotion, autonomic nervous system  

activity and thermoregulation [1, 2]. Valuable information can be extracted from the PPG in the study 

impairment of the autonomic nervous system. This is an important area of study as autonomic 

dysfunction is associated with significant morbidity and can be present in a range of medical 

conditions, for example in patients with diabetes and types of dementia. 

Assessment of PPG variability has included studies of the low frequency pulse amplitude, timing 

changes and/or morphology changes which are also likely to be linked with autonomic function in 

humans [1, 2]. Particularly, the baseline and the amplitude of the PPG signal are related to the blood 

volume and arterial blood volume change, respectively, which are affected by the arterial wall tonus 

that is controlled by the autonomic nervous system (ANS), specifically the sympathetic nervous system 

(SNS).  The amplitude and the baseline of the PPG signal exhibit spontaneous fluctuations with the 

same high, low and very low frequencies (HF, LF and VLF, respectively), as those of heart rate [3] 

(Figure 23 A). 

In several studies the VLF fluctuations of the PPG amplitude and baseline were studied in the time 

domain. The VLF variability of the baseline and amplitude showed high correlation between right and 

left limbs and between fingers and toes of healthy adults [4, 5], which should be attributed to the SNS 

control. Hence, the correlation between limbs of the VLF PPG fluctuations can be utilised for 

evaluating SNS function. The correlation was found to be lower in limbs of a number of diabetic 

patients [6], probably because of peripheral sympathetic neuropathy. High correlation was also found 

between the two feet of neonates, including preterm ones, though in some of them the correlation 

coefficient was smaller, probably due to immaturity of the brainstem or the peripheral nerves [7]. The 

between-limbs correlation coefficients and the standard deviations of the amplitude and baseline 

decreased in patients after sympathectomy and after sympathetic blockade [8, 9], indicating that SNS 

function can be evaluated by the VLF fluctuations of PPG. Patients with the connective tissue disease, 

systemic sclerosis (SSc) have also been studied using similar measurement and analysis approaches 

and the right to left side correlation was reduced with the disease [10].  

The wider published literature for this important field in PPG research also includes publications on a 

range of potential autonomic function applications including the assessment of cardiovascular 

regulation, diabetic neuropathy, endothelial dysfunction, peripheral vascular impairment, sleep 

science, pain, falls and syncope (orthostatic hypotension, OH), mental health and wellbeing, and for 

unique and challenging environments such as micro-gravity/space and military research (Figure 23 B) 

[11, 12]. There are also PPG-based autonomic function testing devices on the market including semi-

https://pureportal.coventry.ac.uk/en/organisations/faculty-research-centre-for-intelligent-healthcare
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portable systems for measuring beat-to-beat BP and its variability for use in hospital autonomic 

function testing units and clinical research facilities (e.g., the Portapres / Finometer CNAP type systems 

for research assessments in heart failure, diabetic neuropathy, and orthostatic hypotension). 

 

 

 

Traditionally, PPG studies have been largely limited to non-ambulatory assessments and 

measurement settings. There is clear scope to make ANS assessments more real world, truly 

ambulatory, and accessible, by utilising wearable sensing technology (including watches, bracelets, 

fitness trackers), and validated for use in specific applications. There are clear challenges however to 

overcome. For example, in order to reliably assess the lower PPG variability frequencies, accurate low-

artefact waveforms are needed for feature analysis and quantification of signal dynamics. The lack of 

standardisation in PPG measurements and analysis is also a concern as it can limit generalisability of 

a test beyond the centre that it was developed in. Three pressing challenge areas for future research 

are (i) sensing, (ii) measurements, data and analysis, and (iii) translation to use in clinical applications. 

 

Current and Future Challenges 

PPG Sensing: 

• The optimal body sites for autonomic function assessments are not yet known. Skin PPG 
measurements are often made at the extremities, but other sites are sometimes needed – 
e.g., at the forehead which is regulated by both sympathetic (“SNS”) and parasympathetic 
(“PSNS”) branches, and for when scalp access allows, to assess PPG variability there that could 
be linked to cerebral tissue. 

• PPG sensor attachment needs to be reliable. Designs should minimise “probe-tissue” 
movement artefact, which is very important to help reduce noise, especially if ambulatory 
measurements are to be performed. 

• Technology miniaturisation for portability could include integrating all system components on 
a wearable sensor itself, but this would not be trivial to achieve. 

• Calibration methods are a challenge, e.g., pin-pointing specific SNS function from the 
measured parameters of the VLF PPG variability. 

• The measurements of VLF PPG variability in preterm newborn babies are of utmost 
importance because early detection of central or peripheral SNS dysfunction enables effective 
treatment, but their spontaneous limbs movements cannot be controlled. Efficient signal 
analysis techniques are required to reliably remove patient movement related noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – We allow at most two figures that are roughly the size of this box. 

Figure 23. A) PPG signal showing the variability of the PPG amplitude (AM) and blood volume (BV, or baseline, which relates to the 

PPG DC measure) and heart period (HP) (from [9]), and B) potential clinical application areas that can utilise the low frequency 

variability in PPG pulse features – there are many opportunities but more research is needed . 
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Measurements, Data and Analysis: 

• There are not yet internationally standardised measurement protocols for specific PPG 
autonomic assessments. Challenges include introducing and getting technologies clinically 
accepted. 

• Developing analysis algorithms is challenging. There will be variability and uncertainty in 
measurements linking to mental state, i.e., psychophysiological changes in PPG. 

• As the heart-beat period and consequently heart rate can be measured by PPG [3, 13], heart 
rate variability can be obtained by PPG instead of using the less convenient ECG. 

• Ethical considerations, including global patient monitoring and data use / security. 

• There are challenges in differentiating between LF and VLF (as well as ultra low frequency, 
ULF) PPG fluctuations, as well as extracting the ANS component of HF PPG fluctuations [14, 
15]. PPG signals are complex and body site dependent and influenced by age and disease. 
Consequently, one algorithm might not be valid for all sites. 

• It is not clear whether analysis should be conducted in frequency or time domains, since each 
approach has its limitations. Also, short time series analysis to estimate the LF characteristics 
has known limitations.  

• Interpretation of signals and features (e.g., multi-order derivative and multivariate). 

• Challenges in developing representative physiological models describing the generation and 
modulation of the PPG, and its interaction/regulation with other measurements. 

• Training in PPG technology and particularly for the study of VLF/ULF is limited. 

Applications: 

• Reliably measuring and understanding correlations between VLF PPG fluctuations in two 
limbs, for the assessment of ANS dysfunction. This approach is important for diabetic patients 
(peripheral neuropathy), for preterm neonates (central/brainstem immaturity), and for 
elderly persons (central/brainstem dysfunction). An important question is what the ground 
truth could be for such assessments. 

• Challenges with reliably monitoring ANS during sleep. 

• ANS assessment in patients with orthostatic hypotension. 

• There are many challenges to extreme environment monitoring, such as space exploration 
and sub-sea diving. 

 

Advances in Science and Technology to Meet Challenges 

PPG Sensing: 

• Different body skin sites are differently regulated by the SNS and PSNS. More scientific studies 
are needed to understand the impact of measurement factors (e.g., body site, wavelength). 
This could include computational studies of light interaction with tissue. 

• Sensor materials, i.e., wearable/flexible technologies must be considered, including skin-
inspired organic electronics and skin-interfaced sensors. 

• Technology miniaturisation can be made and at low cost. 

• Calibration in BP low frequency variability assessments - the next generation “cuffless” BP 
technologies to be developed. 

Measurements, Data and Analysis: 

• Robust standardised measurement protocols: Repeatability and reproducibility data are 
needed for measurements from wearable sensing solutions. 
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• To facilitate sharing of PPG datasets collected under various conditions and open-sourced 
standardised PPG processing code for multi-centre comparative studies. 

• To better understand PPG noise, artefact rejection and resilience. This could include AI 
techniques to facilitate this. 

• Differentiation between LF and VLF (and ULF) fluctuations. Explainable AI could have a role in 
developing and validating different autonomic function tests based on PPG, and to help 
explain the signals. 

• Short time series analysis techniques exist from other science and engineering fields, hence 
there is scope for multi-disciplinary research and development to improve algorithms 
enabling reliable biomarker extraction and tracking over time.  

• Advances in machine learning techniques including deep learning lends itself to the utilisation 
of “in the cloud” analysis of the PPG signal. 

• Utilise computer simulation software, e.g., Simulink (Mathworks Inc.), to develop 
physiological models describing the generation and modulation of the PPG, and its 
interaction/regulation with other measurements. 

• Advanced analysis and modelling could also be applied to determine the optimal site for 
autonomic function assessment and thus minimising measurements to just one site for 
wearable implementation. 

 

 

 
Applications: 

• When measuring the correlation between VLF PPG fluctuations in two limbs, it is essential to 
determine normal ranges and to quantify the effects of age and gender. 

• Developing a reliable technique for a non-invasive measurement of cortical PPG signal 
variability for the assessment of cortical blood perfusion and its regulation.  

Figure 24. Wearable PPG VLF sensing concept, looking for changes in the signal variability that could be linked to autonomic 

dysfunction. From PPG sensing in a wearable for a particular application to signal analysis in the cloud of the signals, and with 

appropriate intervention – in this case an ambulance is called to attend to a patient who has fallen in their home. Ideally, the sensing 

and signal analysis should have capability to give an early warning of a fall event. 
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• There is much to learn about sleep. Autonomic measurements can be made using a range of 
techniques including PPG. Clarity on the wide-ranging literature is needed to help determine 
what information is currently available, what is still needed, and where are the gaps that 
potential wearable PPG sensing can provide. 

• Orthostatic hypotension is usually assessed in Falls and Syncope units in hospitals. Wearable 
PPG sensors offer the potential for ambulatory real-world monitoring (Figure 24), for example 
utilising cuffless PPG sensing of BP as well as PPG and heart rate variabilities to predict in 
advance a fall event. 

• Population level disease monitoring should be considered, i.e., following on from successful 
small-scale studies proving the efficacy of PPG lower frequency variability for specific clinical 
application areas, to then gather big data for global digital health and disease monitoring, e.g., 
autonomic nervous system by HRV linked features derived from PPG monitoring during a 
pandemic such as with Covid-19 [16]. 

Concluding Remarks 

The field of autonomic nervous system LF/VLF/ULF assessments using PPG has been briefly 

overviewed. The clinical need for further research and development in this area has been highlighted, 

with much work to be done in PPG measurements made at rest and perhaps before moving to the 

more challenging case with ambulatory studies using wearable sensing. There is massive potential 

though for a wide range of clinical application areas in autonomic function and the assessment of low 

frequency variability, especially with research and development that can be multidisciplinary, 

involving clinical, science and engineering, technological, and data science teams. There are 

opportunities emerging for advancements in resilience sensing that covers ambulatory use in the 

measurement of PPG in real-world settings, including opportunities to utilise the technologies as part 

of fitness and wellbeing monitoring. 
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19.Assessment of vascular age and arterial compliance 
 

Author(s):  Chengyu Liu1，Yumin Li1， Dingchang Zheng2 
Institution(s): 1 State Key Laboratory of Bioelectronics, School of Instrument Science and 
Engineering, Southeast University, Nanjing 210096, China; 2 Research Centre of Intelligent 
Healthcare, Coventry University, United Kingdom 
ORCiD(s): Chengyu Liu (0000-0003-1965-3020); Yumin Li (0000-0002-3557-5969); Dingchang 
Zheng (0000-0001-8077-4548) 

 

Status 

Cardiovascular disease (CVD) is a series of diseases caused by heart and blood vessel lesions and is the 

leading cause of death worldwide. These deaths are mainly attributed to the long-term effects of 

atherosclerosis (Visseren et al., 2021). It is known that the structure and function of blood vessels 

continuously degenerate with aging, eventually leading to damage to the brain, heart, and kidneys 

(Savji et al., 2013). Vascular function also can decline with poor diet, obesity, smoking, and diabetes. 

Therefore, conveniently assessing vascular function is essential for the early screening of CVD.  

Non-invasive methods to assess vascular function include: ankle-brachial index (ABI), brachial-ankle 

pulse wave velocity (ba-PWV), and carotid-femoral pulse wave velocity (cf-PWV). In clinical practice, 

cf-PWV is the gold standard for non-invasive assessing arterial stiffness (Laurent et al., 2006). When 

arterial stiffness increases, the adhesion between the fibrous tissues of the arterial wall becomes 

greater, and the compliance of arteries decreases, which leads to faster PWV. Alternatively, the 

presence of atherosclerosis can be identified from PWV differences measured between the left and 

right sides of the body, which has been attempted to assess the vascular age and arterial compliance 

of a particular individual or even a population group. 

However, the above methods are not suitable for wearable monitoring due to their need for bulky 

measurement devices. In recent years, with the development of wearable healthcare technologies, 

photoplethysmography (PPG) has provided a convenient method for assessing vascular function. 

Some researchers have developed technologies to simultaneously collect PPG signals from different 

body sites to obtain PWV. In addition, PPG waveform features could also be analysed to assess arterial 

compliance and vascular age. Manufacturers have implemented PPG technologies into different 

formats of portable devices: smart watches, smart headphones, smartphones, etc. (Kusche et al., 

2015; Chan et al., 2016; Koshy et al., 2018). Therefore, there is an excellent opportunity to incorporate 

vascular function assessment into wearable PPG-based devices if sufficiently reliable approaches can 

be developed.  

Current and Future Challenges 

Although, in recent years, the measurement of PWV has been widely used to evaluate arterial stiffness 

for clinical research, this approach has not been widely adopted for clinical use. There are currently 

two main methods for assessing vascular age and arterial compliance by PPG (Figure 25): 

• PPG pulse waveform analysis (PWA);  

• Calculation of pulse transit time (PTT) from the simultaneous acquisition of multiple PPG 

signals, or pulse arrival time (PAT) from an ECG signal and a PPG signal. 
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When performing vascular age and arterial compliance analysis by PWA, most studies used time-

domain techniques based on PPG signal features (Stiffness index, Reflection index) (Tuktarov et al., 

2020) or PPG second derivative features (von Wowern et al., 2018). For a comprehensive overview of 

such features, see (Charlton et al., 2022). Feature parameters obtained from PPG waveforms 

decomposed using a Gaussian decomposition model have also been studied (Gu et al., 2014). In order 

to obtain reliable PPG features, high-quality PPG signals are essential. Many factors affect PPG signal 

quality, such as sensor wavelength, contact pressure, motion between sensor and tissue, and subject 

skin pigmentation. However, there is no universal method for assessing PPG signal quality for the 

assessment of vascular age and arterial compliance. Furthermore, it is important to develop effective 

algorithms to identify features that reliably and accurately reflect vascular aging and arterial 

compliance. Finally, after obtaining a series of PPG-based feature parameters, vascular age, and 

arterial compliance could be assessed by population-based linear regression or deep learning models. 

To date, the generalisability and robustness of such statistical and deep learning models have not been 

properly evaluated.  

Figure 25. (a) PPG and ECG collection locations. (b) PPG and ECG features for assessing arterial compliance and vascular age. PPG_D is 

the first derivative of PPG, and PPG_2D is the second derivative of PPG. (1) shows some PWA features. Crest time (CT) is the time 

delay between PPG valley and peak for calculating the Stiffness index. T1 is the time delay between the PPG peak and the diastolic 

peak. PW is the pulse width. H1 and H2 are the amplitude for the pulse and diastolic peak. The points a, b, c, d, and e are PPG second 

derivative features. (2) shows some features (PAT and PTT) between different positions (wrist and finger) of PPG and ECG. PAT_F1 is 

the time delay between ECG R point and finger PPG Peak. PAT_F2 is the time delay between ECG R point and finger PPG_D Peak. 

PAT_F3 is the time delay between ECG R point and finger PPG valley. PAT_W1 is the time delay between ECG R point and wrist PPG 

Peak. PAT_W2 is the time delay between ECG R point and wrist PPG_D Peak. PAT_W3 is the time delay between ECG R point and 

wrist PPG valley. PTT_WF is the time delay between finger PPG valley and wrist PPG valley. 
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When assessing vascular age and atherosclerosis by PTT, there is no reference standard for PTT 

calculation. The calculated PTT varies depending on the measurement site where the PPG signal is 

acquired (wrist, ear, finger, and toe) and measurement posture. Calculating PAT from the ECG and 

PPG has been widely investigated. However, PAT is the sum of the PTT and pre-ejection period (PEP), 

making it challenging to obtain a PTT from PAT measurements that truly reflect vascular function 

changes. Finally, the vast majority of studies have been mainly conducted on healthy individuals, 

lacking clinical validation against atherosclerosis (Charlton et al., 2022).  

Advances in Science and Technology to Meet Challenges 

In response to the above challenges, continuous improvement in science and technology is needed to 

solve the challenges. First of all, the effect of measurement conditions on PPG-based vascular function 

assessment should be investigated to standardise the measurement protocol, including the 

measurement posture, measurement site, measurement duration, etc. Second, more advanced 

algorithms should be studied to suppress PPG noise and ultimately improve the repeatability of PPG-

derived feature extraction. Similarly, the acquisition of other signals (e.g. acceleration signals) could 

also be used to eliminate the noise. Third, PPG signal quality evaluation standards should be 

established to determine the classification criteria of different quality PPG signal, and to select the 

appropriate features for specific applications in assessing vascular age and arterial compliance. Fourth, 

in order to avoid the effect of PEP on PAT, the ECG could be replaced by other physiological signals 

(such as the Seismocardiogram (SCG), Ballistocardiogram (BCG), or impedance cardiography (ICG)). 

Fifth, when assessing vascular age and arterial compliance by regression models or deep learning, 

separate assessment models can be specifically developed for different sites, postures, and people 

with different skin pigmentation. Sixth, in order to improve the generalisability, robustness, and 

evaluation accuracy of the models, a variety of datasets from different populations should be 

developed to provide enough data for validation. Seventh, the extracted PPG features need to be 

validated in clinical practice, including in patients with different diseases such as atherosclerosis and 

diabetes. Finally, for PPG sensors, the relative position of the LED to the photodiode should also be 

investigated to improve the quality of the PPG signal, which can be used to develop medical devices 

for assessing vascular age and arterial compliance. 

Concluding Remarks 

Wearable PPGs are emerging as a potential tool for assessing vascular age and arterial compliance, 

and more attention has been paid to the use of wearable devices for telemonitoring since the start of 

the COVID-19 pandemic (Behar et al., 2020). Much work remains to be done to enable the assessment 

of vascular age and atherosclerosis by PPG-based wearable devices and their clinical use. Not only do 

researchers need to overcome challenges with PPG sensor studies, signal processing, and noise 

suppression, but valid clinical evaluation data and evaluation models are equally indispensable. In 

addition, there is a need to guide the end user through a simple and standardized process to take 

measurements. Currently, developing a wearable medical-grade vascular age and arterial compliance 

assessment device remains a challenge for international organizations and researchers in every 

country. 
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Status 

Photoplethysmography (PPG) is a vascular optics technique that can provide composite information 

about the micro- and macro-circulation [1]. PPG has many clinical applications, but one important area 

is the detection of peripheral arterial disease (PAD) due to atherosclerosis [2]. PAD of increasing 

severity progressively leads to exercise-induced leg pain (intermittent claudication), and if more 

severe, potentially to rest pain, gangrene and amputation. The prevalence of PAD increases with age 

and is also associated with an increased risk of coronary disease and stroke. It is critical to establish a 

PAD diagnosis in middle aged and older subjects, since other conditions, such as musculoskeletal 

disease, can mimic the symptoms of PAD [2]. Screening for PAD with PPG could help ensure the early 

diagnosis of PAD as well as for follow up and evaluating the efficiency of therapy. 

PAD usually affects the lower limb arteries [2,3]. Toe PPG pulses usually become damped and delayed 

with PAD progression (Figure 26), although waveforms can also be similarly affected in the case of 

microvascular disease / autonomic changes [4]. The reason for the damping and delay of the PPG pulse 

in patients with occlusive PAD is not fully understood. Although bilateral pulses are shown in the figure 

to illustrate pulse distortion with PAD it is important to note that measurements do not need to be 

carried out on both legs simultaneously. It is feasible that sequential measurements could be 

performed or even measurements only made on the most symptomatic limb.  

Standard methods of PAD testing include the Ankle Brachial Pressure Index (ABPI) and/or vascular 

ultrasound (VU) or imaging with contrast CT or MRI angiography. PPG is not currently routinely used, 

despite its potential advantages of speed, low cost, and minimal training requirements. PPG PAD 

technology can be miniaturized, with portable devices being developed for clinical settings such as 

primary care diagnostics. PPG diagnostics have tended to be restricted to non-ambulatory 

assessments, which limit test applicability and may potentially miss valuable diagnostic/predictive 

information about the peripheral circulation.  

https://pureportal.coventry.ac.uk/en/organisations/faculty-research-centre-for-intelligent-healthcare
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To our knowledge wearable sensing systems do not currently provide PAD diagnostics but we believe 

there is a potential role for them. The main current clinical need is for rapid single test in older patients 

with leg pain, utilising portable equipment suitable for use in primary care and non-hospital 

environments and for community screening. Wearable sensors, in a shoe or sock for example, could 

be also be relevant in patients who have undergone interventions, such as bypass grafting or stenting 

for PAD, to provide monitoring for graft failure or complications and in those with borderline perfusion 

in the distal limb/foot due to PAD, often in combination with microvascular disease, such as in 

diabetics, where there may be variation during the day with posture and blood pressure changes and 

a high risk of foot ulceration or necrosis. Such patients may develop ischaemic foot complications 

without warning and if high risk could be monitored by a wearable sensor system. 

There are three pressing areas for future research in PAD diagnostics with PPG: i) sensors (e.g., 

wearable devices), ii) measurements, data and analysis (e.g., elimination of signal movement 

artifacts, and the modelling and novel communication of disease to the patient and clinician), and iii) 

clinical application of the PPG technologies in PAD. Algorithms need to work reliably when there are 

co-existent conditions such as diabetes and/or cardiac arrhythmias, such as atrial fibrillation (AF). Test 

cost acceptability and additional knowledge of the barriers and facilitators of technology adoption 

could aid the drive toward improving standardization in PPG measurements. Understanding what 

makes the PPG pulse damped in vascular disease is still not fully understood, but further analytics and 

modelling including using ambulatory measurements should help boost our knowledge in this area. 

 

 

Bilateral great toe pulse analysis: PAD in 1 leg only
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Figure 26.  In a healthy subject without PAD, it is expected that there will be bilateral similarity in shape and timing for the great toe 

pulses, with the typical pulsatile characteristic - as shown for the right foot. In a limb with significant PAD there is usually relative 

damping and timing delay of the pulse - as shown for the left foot. It is noted that measurements do not necessarily have to be 

conducted on both legs simultaneously, they could be made on 1 leg at a time – for example for the leg reported to be the most 

symptomatic. Although PPG is not a perfect test for PAD it has the advantages of speed, low-cost, ease of use, and the potential to 

improve the accessibility of PAD testing for many people. 
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Current and Future Challenges 

 

PPG Sensing: 

• Optimal body sites for PAD detection are not yet known. Measurements are usually made on 

the skin at the (great) toe pads, but other sites are needed for ambulatory measurements 

(e.g., at the inguinal and/or popliteal level for pulse transit information and modelling 

between sites along a limb including between toes and on other toes). There should also be 

consideration of angiosomes, where different parts of the leg / foot are supplied from 

different blood vessels, so testing just one toe or one position may not always be sufficient. 

With all this in mind one would expect consumer devices not to be sufficient and that tailored 

clinical wearables may be required for PAD assessments. 

• The PPG sensor–tissue attachment needs to be reliable, repeatable, and safe, but there is no 

standardization currently in probe design. There are challenges to miniaturization onto a 

wearable sensor for portability. A range of potential wearable sensor form factors would need 

evaluating to home in on the ideal sensor probe design for PAD assessments. 

• Cuffless blood pressure (BP) measurement using PPG is a vogue area, with validations so far 

done for arm (finger and wrist) measurement sites [5]. It remains difficult to measure the leg 

BP value from toe PPG or to give an estimate of ABPI using multi-site PPG using cuffless 

methods. 

 

Measurements, Data and Analysis: 

• Standardized measurement protocols for PPG PAD assessments are lacking. There are also 

challenges in developing new protocols that are clinically accepted.  

• Training in PPG technology is limited in measurements and analytics.  

• Pulse characteristics change with age; this needs to be carefully considered in the choice of 

normal comparison ranges. There also have been disparities reported with ethnicity [6]. 

• The PPG lower-frequency components at the toe can also provide valuable information for 

PAD detection [7,8] but there are issues in interpreting the PPG waveforms and features (e.g., 

including multivariate) and explaining them. 

• There is a need to optimize PAD detection algorithms for milder disease cases which may be 

clinically asymptomatic. 

 

Clinical Application of PPG in PAD: 

• PPG provides composite information on macro- and microcirculations, however, the gold 

standard test(s) for PAD detection algorithms that also involve a microvascular disease 

component remain unknown. 

• Reliable PAD detection is needed in cases with co-existent diabetes mellitus and/or cardiac 

arrhythmia. 

• Test result communication to the patient and operator also requires further refinement 

including borderline positive results that may need further investigation. 

• A barrier to advancing the technology could come from the lack of understanding of the 

nature of the PPG pulse and why it becomes damped in vascular disease. 
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• Algorithm optimization is needed for sensitivity to early disease. Disease severity is likely to 

be different for different measurement settings, e.g., hospitals, primary care, and home-based 

assessments, and a “real-world” device would need to account for this [9]. 

 

Advances in Science and Technology to Meet Challenges 

 

PPG Sensing: 

• Body site: More studies are needed to understand the impact of measurement factors (e.g., 

body site, wavelength, and probe-tissue loading). 

• Sensor attachment: Wearable/flexible technologies for the sensor must be considered, to 

allow measurement during ambulation which may improve accuracy.  

• Technology miniaturization: Miniaturization must be possible at a low cost and with “lab on a 

chip” sensing capability. 

• Lower limb ABPI from (great) toe PPG is conceptually possible; this would include using 

bespoke sensor design and machine learning techniques for cuffless BP’s. 

 

Measurements, Data and Analysis: 

• Standardized measurement protocols: Interlinking sensor design, data analytics, algorithm 

noise resilience, patient acceptability, and training will be complex. Protocols also need 

adequate validation and should be co-created with public, patient, technologist, and clinician 

inputs. Novel disease-detection communication methods should be explored. 

• Training in the use of PPG technology is limited. Ideally, measurements should be automated 

and devices designed to be as resilient and operator-independent as possible. 

• Adequate normative data across age, gender, and ethnicity should be collected, and a reliable 

transferable measurement protocol should be used. 

• Optimized noise resilience techniques should be developed and applied to ambulatory 

measurements. 

• Physiological models describing the generation and modulation of PPG and its components, 

as well as the interaction/regulation between PPG and other measurements, should also be 

considered (Figure 27). It is very important to consider low frequency variability, and measures 

of this, in such modelling. 

• Advances in machine learning techniques, including deep learning and explainable artificial 

intelligence, are likely to have a significant role in the future in helping to classify and 

understand PPG signals. 

• It is vital that the algorithms are developed and tested for a range of clinical settings (e.g., 

hospital vascular setting vs. primary care settings and in asymptomatic early PAD). It is 

possible that different PPG features will be best suited to specific clinical settings and disease 

prevalence. 
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Clinical Applications: 

• Algorithms should be developed with macro- and microvascular diseases in mind, and PPG 

data sets should be collected using protocols addressing both strands.  

• Resilience algorithms need to be developed that can cope with the wide range of patients to 

be seen.   

• Standardization in test protocols is needed for reliable testing, reporting, and interpretation. 

• Modelling and simulation could help in our understanding of what actually is being measured 

and why the pulse often becomes damped and delayed with vascular disease [10].  

• Carefully designed research and validation studies should be conducted to gather data from 

different settings and for different disease prevalence. 

           

 

 

Concluding Remarks 

The clinical need for further research and development in this area has been highlighted. There are 

some clear limitations with the current technologies, as well as a lack of understanding of the 

fundamentals of PPG changes with arterial disease and other clinical reasons. The field of PAD 

detection is challenging but with the potential capabilities of wearable systems and ambulatory 

sensing could offer massive potential for a wide range of clinical applications in vascular assessment. 

With research and development that is multidisciplinary, involving clinical, vascular, technological, and 

data science teams there are clear opportunities emerging for advancements in resilient sensing that 

covers ambulatory use in the measurement of PPG and the detection of PAD / vascular disease in real-

world settings. There are also opportunities in PAD diagnostics to utilize technologies as part of fitness 

and wellbeing monitoring.  

Mathematical modelling using Simulink: 

PPG damping in unilateral PAD cases

*Healthy leg 

PPG, input

Leg with PAD
PPG, input

Low pass filter time constant (*) adjusted to best fit 
simulated PPG PAD pulse with actual PAD leg signal.

Figure 27.  Use of MATLAB’s (Mathworks Inc) Simulink software to model simple filter approximations in the study of PPG waveform 

damping at the toe in lower limb PAD. The main Simulink building blocks and their interconnections are shown just as an overview to 

illustrate the potential of the approach. Here, a pilot of unilateral PAD cases each had a single pole low pass filter time constant (*) 

varied to give the best fit (by RMS error) of the simulated PPG PAD pulse with the actual PAD leg PPG signal, and the filter time 

constants compared with a reference standard for PAD such as the ABPI. Such pilot experiments can form a starting point for better 

understanding the damping and timing of PPG with disease. More detailed studies could include the analysis of ambulatory / wearable 

PPG signals for PAD diagnostics.  
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21.Investigating waveform analysis for blood pressure monitoring 
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Status 

PWA – photoplethysmography (PPG) waveform analysis – is being pursued by many for blood pressure 

(BP) monitoring (Mukkamala et al 2022a, 2022b) (see Section 16).  The popularity of this approach 

stems from recent advances in wearable sensing and machine learning and its potential clinical 

applications. Figure 28 illustrates the approach.  A PPG waveform indicative of blood volume 

oscillations is measured with a wearable; features are extracted from the waveform; and a calibration 

model is applied to map the features to BP values.  For more accurate calibration, cuff BP 

measurements are usually required at certain intervals (e.g. monthly).  In this way, PWA can 

seamlessly produce numerous cuffless BP measurements in between the cuff calibrations.  The 

expanded monitoring could reveal the true underlying BP of individuals during daily life including sleep 

for accurate assessment and effective management of hypertension.  It could also enable surveillance 

and timely treatment of hypotension following major surgery or in intensive care, which is common 

and likewise a precursor of mortality (Sessler and Saugel 2019). 
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Studies on PWA for BP monitoring are increasingly appearing in the literature, and cuff-calibrated, 

cuffless PWA devices are emerging on the market (Mukkamala et al 2022a, 2022b).  However, there 

is neither a widely accepted theory nor a convincing body of published, independent data to 

substantiate the accuracy of this approach (Mukkamala et al 2022a, 2022b).  As a result, the approach 

has faced scepticism from longstanding BP researchers and is currently not recommended for clinical 

use (Stergiou et al 2022).  Further investigations are needed for practical PWA to have a chance at 

gaining traction in BP monitoring. 

Current and Future Challenges 

Despite progress, major challenges remain at every stage of the approach. 

Measuring the PPG waveform is more problematic for BP monitoring than arrhythmia analysis, which 

involves detecting mainly pulse intervals.  Firstly, as shown in Figure 29A, the PPG amplitude and shape 

are sensitive to the PPG sensor contact pressure on the skin in accordance with the well-known 

oscillometric principle (Mukkamala et al 2022a, Natarajan et al 2022).  Secondly, popular wristbands 

and smartwatches measure small PPG waveforms from the cutaneous circulation on the backside of 

the wrist that may preclude noise-robust feature extraction and reflect low-pressure rather than 

arterial vessels. 

 

Figure 28.   Photoplethysmography (PPG) waveform analysis (PWA) for potentially expanding blood pressure (BP) monitoring.  

Source: Adapted from (Mukkamala et al, 2022b) (CC BY 4.0). 
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Physiological explanations on how the PPG waveform features relate to BP are crucial for facilitating 

trust in generalizing to inevitable unseen conditions but may be difficult to conceive due to lack of a 

prevailing theory.  Conventional thinking and data suggest that there is no simple relationship.  PPG 

interrogates small arteries that are viscoelastic and abundant in smooth muscle (Mukkamala et al 

2015).  The PPG waveform is therefore a lowpass filtered version of co-located BP oscillations, where 

the viscoelastic filter gain and corner frequency vary inversely with BP and independently of BP via 

rapidly contracting smooth muscle.  As a result, as shown in Figure 29B, the PPG amplitude can 

increase or decrease for the same BP increase (Natarajan et al 2022).  Pulse transit time, which is a 

cardinal feature and claimed to be detectable from a single PPG waveform (Baruch et al 2011), is 

likewise confounded by smooth muscle contraction for small artery wave travel paths (Mukkamala et 

al 2015).  The variability of the viscoelastic filter could also be the reason that several popular PPG 

waveform features (e.g., diastolic peak) are not consistently discernible (Natarajan et al 2022).   

Calibration is often considered to be the major challenge in the field of cuffless BP measurement and 

may be an even greater hurdle for PWA.  The reason is that the machine learning-derived calibration 

model is expected to compromise many person-specific parameters for mapping the features to BP.  

To determine N person-specific model parameters, cuff BP measurements at N different BP levels 

from the person would be needed.  Such a personalized calibration model is therefore impractical.  

The single cuff BP measurement, which is obtained for calibration, only provides a personalized model 

intercept to set the initial BP level. 

Proving that PWA can accurately measure BP at least in controlled conditions is most important but 

tricky.  Because of the cuff calibrations, the sole purpose of this approach is to track BP changes 

relative to the preceding cuff BP measurement.  Interventions must therefore be invoked in human 

subjects to safely increase and decrease BP via different mechanisms.  As shown in Figure 29C, it is 

imperative to correctly reveal the accuracy in tracking the BP changes above and beyond the initial, 

cuff BP measurement (Mukkamala et al 2021).  Standard protocols for validating automatic cuff 

devices do not involve intra-subject BP changes and therefore cannot be leveraged including their bias 

and precision error limits of 5 and 8 mmHg (Mukkamala et al 2021).  Accuracy must also be checked 

over time to verify the recommended time period for cuff recalibration. 

If the PWA device is intended for ambulatory monitoring rather than on-demand measurement 

wherein it is held at heart level, then hydrostatic effects present a serious obstacle.  For example, local 

BP obtained with a wrist-worn device increases by 7 mmHg for every 10 cm in which the hand is below 

heart level due to the weight of the blood column (Mukkamala et al 2022a).  As shown in Figure 29D, 

the PPG waveform amplitude and shape therefore change when the device is at different vertical 

heights despite no change in systemic BP.  Such changes must be distinguished from similar systemic 

BP-induced changes. 

 

Figure 29.   (A) PPG waveform during slowly increasing sensor contact pressure on the finger.  (B) Changes in cuff BP and PPG 

amplitude during MA (mental arithmetic) and CP (cold pressor) tests. (C) Incorrect and correct ways of showing cuffless BP 

measurement accuracy of PWA with cuff calibration.  Because of the cuff calibration, a plot of cuffless BP versus cuff BP pooled over 

all study participants will largely and trivially reflect the inter-participant differences in the cuff BP levels.  A plot of the change in 

cuffless BP relative to the calibration versus the change in cuff BP relative to the calibration should instead be displayed for a 

meaningful indication of the BP measurement accuracy.  While PWA in this example does not provide any value beyond the cuff BP 

measurement for calibration, it could in practice.  (D) Finger PPG waveform when a tightly applied sensor is at two different vertical 

heights. 

Sources: (B) adapted from (Natarajan et al 2022); (C) adapted from (Mukkamala et al 2021). 
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Advances in Science and Technology to Meet Challenges 

Research advances at each stage of this approach are accordingly needed. 

An accurate yet convenient PPG sensor should be built.  Targeting the finger digital arteries may be 

reasonable.  It would allow for a ring form factor and high-fidelity waveforms even in low signal 

amplitude conditions (i.e., dark skin, cold) via transmission-mode infrared sensing (Mukkamala et al 

2022a).  Additional sensors should be incorporated to circumvent some of the confounders.  For 

example, force sensing, which is typically not employed, could assess PPG sensor contact pressure 

variations (e.g., the finger constricts/expands in cold/warm environments), a thermometer could 

identify temperature-induced PPG waveform changes, and an inertial measurement unit may help 

detect the vertical height of the device in addition to motion artifact.  Other sensors that offer BP 

information beyond a single PPG waveform (e.g., direct pulse transit time measurement) but do not 

compromise convenience should also be included.  

Rich training databases are vital to create for effective machine learning.  A database should comprise 

measurements of the PPG waveform via the intended device and reference BP from human subjects.  

The measurements must be available during diverse BP changes for the possibility of discovering 

generalizable features.  Many heterogenous subjects should also be included for the possibility of 

defining more accurate calibration model parameters that are dependent on basic person information 

(e.g., demographics).  Such a database may be straightforward to establish for the hypotension 

surveillance application, as many surgical and intensive care patients are hemodynamically unstable 

and receive invasive BP monitoring for routine care.  Note that popular databases (e.g., MIMIC) may 

not suffice, as the finger clip PPG waveforms therein are heavily processed and likely not 

representative of PPG waveforms from other sites (Natarajan et al 2022).  Creating a database for the 

more popular hypertension monitoring application may require a multi-group, multi-site effort and 

could leverage natural BP variations during daily life with an ambulatory cuff device as reference 

and/or proven interventions (e.g., cold pressor, mental arithmetic) (Mukkamala et al 2015) plus 

hypertensive medications with auscultation as reference.    

Data-efficient machine learning methods are important to develop even with the availability of a 

comprehensive database.  While a database can include many subjects, it will necessarily be more 

limited in terms of the critical intra-subject BP variations.  Feature dimensionality reduction and other 

contemporary machine learning tools should be exploited.   

Standard protocols must be established to validate PWA devices, especially for the hypertension 

monitoring application, and one protocol has already been proposed (IEEE 2019).  However, further 

vetting of this protocol remains. Most notably, the protocol does not specify the interventions for 

changing BP, which could lead to devices that work only in narrow circumstances.  Since PWA can offer 

many measurements over time, which could be averaged to reduce error and intra-person BP 

variations, even the error limits should be reconsidered (i.e., relaxed) (Mukkamala and Hahn 2018).  

Concluding Remarks 

PWA could offer great convenience in BP monitoring and may therefore be worthwhile to pursue.  

However, convenience alone is insufficient.  The approach has to work, which means that it has to 

show significant added value over the cuff BP measurements for calibration.  Future investigations will 

allow conclusive determination of whether optimal PWA implementations are viable for BP 

monitoring or not.  Even if PWA proves unsuccessful, PPG, when combined with other sensing and 

actuation such as in the oscillometric finger pressing method (Mukkamala et al 2022a, 2022b), may 

still be invaluable for cuffless BP measurement. 
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22.Sources of inaccuracy in wearable photoplethysmography 
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Status 

Photoplethysmography can be used as a diagnostic tool for managing cardiovascular disease, provided 

that high-quality waveforms of sufficient signal-to-noise ratio (SNR) can be obtained from which to 

extract waveform features. This analysis goes beyond the assessment of pulse peaks, potentially 

allowing continuous monitoring of several health-related metrics. The photoplethysmogram (PPG) 

waveform and its derivatives provide a wealth of information on cardiac functionality1. Different 

fiducial points have been used to monitor heart rate (such as the pulse onset, the systolic peak, and 

the first derivative peak). Additional features have been used to assess cardiovascular function, 

including: pulse transit time has been used to assess blood pressure; the dicrotic notch and areas 

under the curve before and after the notch have been used to estimate stroke volume; first derivative 

parameters have been used to measure blood flow velocity; and higher derivative points for 

measuring risk for cardiovascular disease 2. Finally, features have been combined using Artificial 

Intelligence (A.I.) techniques to characterize blood pressure. 

Noise from various sources often impedes precise readings from PPG-based devices, reducing the 

accuracy of metrics derived from the PPG.  Multiple sources of error limit the delivery and collection 

of light from PPG-based devices, altering the signal. Key factors are motion artifacts, and issues related 

to the skin-device interface such as sweat and the contact pressure of the sensor to the skin3-5. 

Biological variables may also be limiting factors, such as skin tone, age, gender, obesity, and associated 

physiological differences, such as respiration, body site, temperature, and venous pulsation.  

Several studies have characterized the performance of PPG-based devices and observed their 

limitations through both experimental and computational methods3,6,7; these and future studies are 

fundamental for instrument optimization and to foster new applications of PPG-based 

instrumentation.  The characterization of errors in photoplethysmography has so far focused on issues 

related to motion artifact – by testing subjects in various levels of activity - and biological variables - 

by stratifying subjects by gender, age, race, and, most recently, skin tone 8.  

Current and Future Challenges 

As of today, many continuous PPG-based devices are considered to be “general wellness” devices by 

the US Food and Drug Administration (FDA), and, as such, do not require regulatory approval. For 

example, in the United States, currently less than ten among all wearable devices have received 

clearance for specific functionalities, from the Food and Drug Administration (FDA) 1. As an example, 

the FDA has recently granted approval to Apple to track a user's atrial fibrillation history as part of the 

Apple Watch electrocardiogram application. 

Persistent issues with the accuracy of PPG-derived parameters and regulatory costs limit the transition 

of most devices to medical-grade labeling. This is particularly true when photoplethysmography is 

used to ascertain other metrics beyond heart rate.  

For example, many research laboratories and companies are working on PPG-based continuous blood 

pressure (BP) monitoring for the management of hypertension. Accurate and precise measurements, 
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which are paramount when establishing diagnosis and treatment, are largely elusive due to sources 

of error in the PPG readings. As a result, personalized and repeated calibration of the PPG sensors 

through alternative systems (e.g. sphygmomanometer) are needed but are inconvenient and costly.  

There are contradictory reports on the influence of skin tone on the functionality of wearable 

photoplethysmography.  Many PPG sensors utilize green light, which is highly absorbed by hemoglobin 

and epidermal melanin, which give the skin its tone. While some studies show significant error in heart 

rate estimation 9,10 associated with skin tone, others indicate that such error is limited3.  Furthermore, 

research on the influence of skin tone on the shape and features of the PPG waveform is ongoing and 

not definitive. This is a significant issue, and further studies are necessary to provide equitable access 

to care. 

Obesity changes the skin's optical properties and thickness, altering the PPG signature 11. Blood flow 

regulation, capillary density, and skin oxygenation are altered by an increase in Body Mass Index (BMI). 

Computational efforts 6,7 have shown a reduction of up to 60% in signal-to-noise ratio when obesity 

(BMI > 40) and darker skin tone (e.g., Type 6 Fitzpatrick scale) are combined, as well as PPG features 

such as the dicrotic notch and diastolic peak being less well defined.  

Age is another factor altering the skin and its optical properties, ultimately changing how light travels 

through the skin. Skin thickness and perfusion decrease with age, and lower capillary recruitment have 

been noted combined with a reduction in artery compliance. All these parameters modify the PPG 

waveform amplitude and shape, potentially lowering its diagnostic capability and future applications. 

Advances in Science and Technology to Meet Challenges 

New studies and alternative approaches to instrumentation are needed to improve the PPG signal-to-

noise ratio (SNR) to use photoplethysmography for the characterization of blood pressure and other 

metrics for the management and prevention of cardiovascular disease. 

Further characterization of the error associated with the biological variables listed above is a priority. 

Specifically, better statistics and stratification of subjects are necessary when addressing skin tone, 

obesity, age, and gender. To date, our knowledge of the absorption coefficient of the epidermis in 

populations with elevated skin tone (characterized as Fitzpatrick scale of VI and above) is lacking and 

based on studies with extremely limited number of individuals12. Similarly, we still have not 

experimentally characterized the optical properties of individuals with obesity at different BMI levels. 

These issues play a fundamental role in optical transport in the skin and consequently in the formation 

of PPG features. Monte Carlo and other light transport models in the skin have been proposed to 

devise new instrumentation approaches. Still, they rely on sets of optical properties which are not 

appropriate for all users. This is a significant issue to be addressed through well-controlled studies of 

optical properties and full PPG assessment. 

Using longer wavelengths beyond the PPG's standard green light sources could alleviate some issues 

related to skin variability in tone, thickness, and perfusion. Near-infrared light travels deeper into the 

tissue as its absorption by melanin and hemoglobin is lower. This, combined with an intelligent 

selection of source and detector separation, could be used to improve the signal. Similarly, using 

multiple wavelengths could prove helpful by probing different tissue depths and isolating various skin 

layer influences (see Section 4). 

Finally, both the applied pressure on the skin and the location on the body where the measurement 

is taken show a strong influence on the PPG signal quality and waveform shape1, but these factors 
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could be mitigated together with motion artifacts with the addition of pressure sensors and 

accelerometers and consistent measurement site. 

Concluding Remarks 

There are many sources of error in current PPG instrumentation that limit the application of this 

modality to diagnostic metrics beyond heart rate and heart rate variability.  Characterizing the PPG 

features and their association with different biological variables will provide opportunities for both 

instrument development and future applications. This is considered a crucial future step for this 

modality. 

Acknowledgments 

Dr. Ramella-Roman acknowledges the support of the National Science Foundation Engineering 

Research Center for Precise Advanced Technologies and Health Systems for Underserved Populations 

(PATHS-UP) (#1648451).  

References 

1. Fine, J., et al. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular 

Monitoring. Biosensors (Basel) 11(2021). 

2. Allen, J., Zheng, D.C., Kyriacou, P.A. & Elgendi, M. Photoplethysmography (PPG): state-of-the-art 

methods and applications. Physiol Meas 42(2021). 

3. Bent, B., Goldstein, B.A., Kibbe, W.A. & Dunn, J.P. Investigating sources of inaccuracy in wearable 

optical heart rate sensors. NPJ Digit Med 3, 18 (2020). 

4. Jo, E., Lewis, K., Directo, D., Kim, M.J. & Dolezal, B.A. Validation of Biofeedback Wearables for 

Photoplethysmographic Heart Rate Tracking. J Sports Sci Med 15, 540-547 (2016). 

5. Reddy, R.K., et al. Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities 

and Types of Structured Exercise: Evaluation Study. JMIR Mhealth Uhealth 6, e10338 (2018). 

6. Ajmal, Boonya-Ananta, T., Rodriguez, A.J., Du Le, V.N. & Ramella-Roman, J.C. Monte Carlo analysis of 

optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the 

photoplethysmography (PPG) signal. Biomed Opt Express 12, 7445-7457 (2021). 

7. Boonya-Ananta, T., et al. Synthetic photoplethysmography (PPG) of the radial artery through 

parallelized Monte Carlo and its correlation to body mass index (BMI). Sci Rep 11, 2570 (2021). 

8. Shcherbina, A., et al. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and 

Energy Expenditure in a Diverse Cohort. J Pers Med 7(2017). 

9. Preejith, S.A., A.; Joseph, J.; Sivaprakasam, M. Design, development and clinical validation of a wrist-

based optical heart rate monitor. Proceedings of the 2016 IEEE International Symposium on Medical 

Measurements and Applications (MeMeA),Benevento, Italy, 12–14 May 2016; pp. 1–6. 

10. Hermand, E., Cassirame, J., Ennequin, G. & Hue, O. Validation of a Photoplethysmographic Heart 

Rate Monitor: Polar OH1. Int J Sports Med 40, 462-467 (2019). 

11. Rodriguez, A.J., et al. Skin optical properties in the obese and their relation to body mass index: a 

review. J Biomed Opt 27(2022). 

12. Jacques, S.L. Optical properties of biological tissues: a review. Phys Med Biol 58, R37-61 (2013). 

 

  



Physiological Measurement    Roadmap 

 111 

23.Wearable data analysis 
 
Author(s): Jessilyn Dunn1-3, Md Mobashir Hasan Shandhi1, Will Ke Wang1 

Institution(s): 1Department of Biomedical Engineering, Duke University, Durham, NC, USA; 
2Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA; 3Duke 
Clinical Research Institute, Durham, NC, USA 
ORCiD(s): Jessilyn Dunn: 0000-0002-3241-8183; Md Mobashir Hasan Shandhi: 0000-0001-
9541-529X; Will Ke Wang: 0000-0003-1444-5468 
 

Status 

Digital health is a broad scope term encompassing mobile health, wearable devices, health 

information technology, telehealth and telemedicine, and personalized medicine (Health 2020). 

Biometric Monitoring Technologies (BioMeTs) are digital health tools that process data captured by 

mobile sensors and use algorithms to generate measures of behavioral and/or physiological function 

(Goldsack et al 2020). Digital biomarkers are digitally collected data from BioMeTs (e.g., interbeat-

intervals from a photoplethysmography (PPG)-based heart rate monitor) that are transformed into 

indicators of health outcomes (e.g., diabetic state). Digital biomarkers can be used to provide 

biomedical insights or improve health decision-making (e.g., encourage healthy lifestyle behaviors). 

Research in digital biomarker development spans fields and disease states, from movement-related 

disorders to cancer to infectious disease, and can conceivably be applied to any area of health, 

wellness, and medicine.  

There are two levels of data that are generated from BioMeTs: sample-level and processed data. 

Sample-level data are used as inputs into algorithms that convert that data to a second type of 

reported data (processed data) that is not a direct representation of the original analog signal. For 

example, ‘heart rate’ and ‘inter-beat interval’ are two processed data types that can be obtained from 

sample-level data (e.g., a 32 Hz PPG signal). Processed data are usually calculated through two main 

steps, where step one involves preprocessing of the sample-level signal and step two involves directly 

modeling or estimation of the target metric, such as heart rate. The preprocessing step is usually an 

ensemble of different techniques, including filtering, detrending, transformations, outlier detection 

and missing value imputations. It is important to note that the processed data are not a direct 

representation of the original analog signal measured by the sensor; instead, an algorithm was applied 

to produce that new type of data.  

Digital biomarkers are calculated using BioMeTs prediction algorithms, and these are typically 

developed through a two-part process of training and testing models to predict a target variable using 

the sensor data as an input. Common predictive modeling tasks using BioMeT data include regression 

(continuous target variable) and classification (categorical target variable), with a common pipeline 

of: 1) preprocessing and segmentation, 2) feature extraction and selection, and 3) predictive model 

building and testing (Figure 30). A common practice before or parallel to predictive modeling is 

exploratory data analysis and unsupervised learning. Exploratory data analysis can help to uncover the 

nature and characteristics of the data at hand and how best to handle signal cleaning and artifact 

removal. Unsupervised learning can reveal hidden structure in the data and can be useful for 

hypothesis generation. 
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Most consumer wearable BioMeT manufacturers do not provide sample-level sensor data, but instead 

provide processed data as aggregate metrics. For example, Apple recently developed a Food and Drug 

Administration-cleared algorithm for binary (yes/no) detection of atrial fibrillation using the Apple 

Watch wrist-based electrocardiogram (ECG) and PPG. These aggregate metrics may themselves act as 

digital biomarkers, or the metrics may be used and combined by researchers and clinicians to develop 

composite digital biomarkers.  

Current and Future Challenges 

One of the major challenges faced by the research and medical communities is that BioMeT 

manufacturer-developed algorithms are nearly always proprietary and information about their 

verification and validation is often not released to the public (Goldsack et al 2020). For robust and 

reproducible digital biomarkers, openness and transparency surrounding the evaluation of these 

digital tools is critical (Goldsack et al 2020, Bent et al 2020, Beam et al 2020, Bent et al 2021b). 

Due to the wide range of BioMeTs and heterogeneous phenotypes, ensuring that the details of the 

predictive modeling pipeline (Fig. 1) are fit-for-purpose can be challenging. Because BioMeTs collect 

data in real world settings using different hardware and software, it is difficult to develop a single best 

practice method for data preprocessing, feature engineering and selection, and predictive modeling 

(Charlton et al 2022). As a result, researchers typically rely on previous literature to decide how best 

to handle the specific BioMeT data they are working with. 

Preprocessing addresses noise and artifacts through detrending, filtering, and signal decomposition. 

Feature engineering collapses large time series segments into condensed metrics. Using engineered 

features as inputs into machine learning algorithms generates light-weight and interpretable models 

that are easy to deploy. Domain knowledge is key to determining how best to select model features. 

Domain-driven features for PPG may include for example the heart rate variability metrics SDNN and 

RMSSD, which are known to be related to important physiological processes. However, such domain-

driven features do not always exist for every type of BioMeT or physiologic process and also may not 

fully capture the key characteristics of each signal. Because feature engineering and selection methods 

must be tailored to each specific domain area, research question, and prediction goal, there is no one 

optimal method.  

In general, predictive models can be parametric or nonparametric and can follow either traditional 

statistical or machine learning frameworks. Models that are specific to time series data may be used 

for prediction tasks such as detecting arrhythmias or activity types (e.g., exercise) from PPG and/or 

movement data. Investigations applying predictive modeling to BioMeT data are far from exhausted. 

In recent years, deep learning models have become increasingly popular, achieving great performance 

in many areas of biomedical applications (Marcus 2018, Bock et al 2021). As opposed to parametric 

machine learning models such as logistic regression or linear regression, deep-learning models are an 

example of non-parametric machine learning models, where the predictive models do not assume a 

Figure 30. Common predictive modeling pipeline for wearable data. 
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predetermined form of the relationship between the input data and the output labels. Deep-learning 

models learn only from the data given, and are also considered end-to-end, meaning that the steps of 

preprocessing and feature engineering are completely automated unless otherwise designed, an 

extremely desirable trait. However, due to their data-hungry nature, deep-learning models cannot 

easily learn from small datasets, and available wearable datasets are often considered small in 

comparison to the large image data repositories like the MNIST database (Lecun et al 1998). The 

process of feature engineering also allows researchers to incorporate domain knowledge into model 

building, which is difficult to achieve for deep learning models intuitively. More importantly, even 

though deep-learning models allow researchers and engineers to seemingly skip over the steps of 

preprocessing, feature engineering and statistical modeling, such models are far from easy to develop. 

Deep learning model architectures require intelligent design. In addition to building the model 

architectures using common units such as convolutional layers and long short-term memory networks, 

researchers and engineers are required to choose whether and how to implement sometimes vaguely 

understood techniques, such as batch normalization, drop-out layers, and residual networks. Due to 

their nonparametric nature, deep-learning models can also be extremely large, having to learn and 

save millions of parameters. This makes the models difficult to deploy onto wearable hardware, which 

are usually very limited in computation power and storage space. We must be cautious of the promise 

of deep learning to solve all modeling problems in biomedical applications.  

Predictive modeling is also constrained by the limited computation power, battery life and storage 

space available on current wearable devices. These constraints are most challenging when designing 

predictive models to be used on wearable systems with immediate biofeedback, demanding the 

predictive models to be real-time and light-weight while simultaneously providing clinically-

acceptable accuracy and sensitivity. A natural progression to the static model deployment strategies 

is online learning, where the deployed models continue to learn and update iteratively as a result of 

the arrival of new data. This is especially helpful for developing personalized predictive models, where 

deployed models can adapt to make more accurate predictions learning from each individual’s data, 

given the inherent physiological differences among individuals. Even with cloud computing becoming 

increasingly available and absorbing much of the heavy lifting of computational tasks, it is still a large 

challenge for current hardware to sustain the energy and storage space required to complete data 

collection, data storage/transmission, model updates and real-time biofeedback. 

Advances in Science and Technology to Meet Challenges 

Recent advances in BioMeTs have improved PPG-based measurement of beat-to-beat heart rate, 

resting heart rate, heart rate variability, respiration, blood oxygen saturation, and more. There is 

strong evidence of their utility for detecting and monitoring diseases (e.g., arrhythmias, diabetes, 

influenza, COVID-19) (Goergen et al 2022, Dunn et al 2021, Shandhi et al 2022). Rapid adoption of 

wearable devices in the general population, with 85% and 21% of Americans owning smartphones and 

smartwatches, respectively, further increases the potential of these devices to augment the present 

healthcare ecosystem for remote monitoring of patients and for curbing the spread of infectious 

diseases. In addition, PPG-based BioMeTs have demonstrated promise in detecting key biomolecules 

that are important in health (e.g., interstitial glucose, blood glucose, hemoglobin, and glycated 

hemoglobin) (Dunn et al 2021, Bent et al 2021a). Despite the promise and potential that PPG-based 

BioMeTs have demonstrated in health monitoring, there is a lack of fundamental understanding of 

specific relationships and/or causality among certain diseases and physiologic processes that can be 

measured through digital biomarkers. For example, heart rate can change due to stress, disease, and 
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other external factors. As a result, algorithms based solely on heart rate monitoring may not be able 

to differentiate between these conditions, which will result in lesser real-world utility of the developed 

algorithms. Multimodal BioMeTs with multiple sensor types can gather more physiological 

information to improve the likelihood of differentiating among similar disease conditions.  

It is important to understand and be aware of the limitations of BioMeTs and the factors that can 

influence the accuracy of their measurements. Alarmingly, PPG-based pulse oximeters have recently 

been demonstrated to have lower accuracy in people with darker skin due to melanin’s absorption of 

light (Gottlieb et al 2022). To avoid such scenarios in the future, validation studies must include 

representative populations (Goldsack et al 2020). Mechanistic studies must also be performed to 

understand the underlying measurement mechanisms and isolate and learn how to address potential 

sources of error.  

To avoid the potential of exacerbating existing inequities, technological advancements are needed to 

decrease the cost of BioMeTs to ensure their equitable distribution so that people who are 

underserved by our existing health care infrastructure due to social determinants can also benefit 

from these novel technologies.  

Other challenges faced by BioMeTs include a lack of regulatory oversight, limited funding 

opportunities, cost of computation and storage, lack of standards and validation methods, general 

mistrust of sharing personal data, and a shortage of open-source data and code. The progress in the 

field of wearable health data has been further stymied by a lack of cohesion across related research 

endeavors. Technological advancements in hardware development to miniaturize sensors and to add 

on-board computation ability and in signal processing to improve algorithms and to compress data to 

reduce storage requirements and ease of transporting volumes of data between systems can improve 

the challenges with cost of computation and storage. There have been several notable efforts from 

academia, industry, and funding agencies to integrate and coordinate efforts in sharing BioMeT 

algorithms and datasets (e.g., the Digital Biomarker Discovery Pipeline (DBDP), Open Wearables 

Initiative (OWEAR), All of Us research program by NIH) and to standardize digital health data (Open 

mHealth, IEEE Wearables Working Group). We need to continue and expand our efforts to advance 

the state-of-the-art of BioMeTs and digital biomarker discovery, including the adoption of benchmark 

datasets for algorithm comparison, and to bridge gaps in evaluation and applications across academia, 

government, and industry to establish mobile and digital health as an evidence-based field worthy of 

our trust. 

Concluding Remarks 

The accessibility of mobile and wearable technology affords an unprecedented opportunity to provide 

healthcare globally, conveniently, and to populations with limited healthcare accessibility such as low-

income and rural populations. Mobile and digital health monitoring and interventions are promising 

because they can improve the health monitoring of patients who are unable to make frequent visits 

to a healthcare facility. Tools that allow for collaboration in improving algorithms, validating known 

digital biomarkers, and discovering new digital biomarkers will enable much-needed standardization 

and interoperability in this space. 
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Status 

Photoplethysmography (PPG) is a non-invasive optical technique widely used for studying and 

monitoring the pulsations associated with changes in blood volume in a peripheral vascular bed 

(Kyriacou and Allen, 2021). PPG is well-known for its well-established application in pulse oximetry, 

used for the continuous and non-invasive measurement of arterial blood oxygen saturation (SpO2). 

Over the past few decades, there has been a plethora of research in the field of PPG with potential 

applications beyond pulse oximetry, especially with the recent growth of wearable technologies 

utilising the technique of PPG. Despite the widespread use and acceptability of PPG, still the origin of 

the PPG signal has been the subject of continuing discussion and debate (Challoner and Ramsay, 1974; 

Mannheimer et. al., 2007; Kamshilin et. al., 2015; Sidorov et al., 2016; Moço et. al., 2018; Chatterjee 

et. al., 2020, Kyriacou and Chatterjee, 2021).  

During the 1980s, there was a plethora of research on the fundamental questions related to the origin 

of the PPG. After gaining a rudimentary understanding of PPG, the research mainly focussed on 

technological developments of PPG sensors and signal analysis techniques to extract various 

physiological information from the PPG. Also, the overwhelming acceptance of pulse oximeters in both 

the clinical and home settings in a way diminished and somewhat overshadowed progress towards 

further fundamental PPG research. Such research has regained momentum in recent years, prompted 

by research aiming to extend the application of PPG beyond pulse oximetry, especially for PPG-based 

wearable technologies. Hence the simple question was raised again: ‘Where is the PPG signal coming 

from and what does it represent?’  

With the advancement in computational modelling and imaging technology, it has been possible to 

look deeper into the light-tissue interactions associated with PPG and perhaps to contribute further 

to the knowledge relating to the origin of the PPG, beyond what has been reported in the literature in 

the past decades. A wide spectrum of research has been carried out to investigate PPG in relation to; 

changes in haemodynamics, vascular mechanics and hemorheology; contributions of various 

absorbers and scatterers present in blood and tissue-layers; the effect of the tissue-anatomy and 

sensor location; the influence of pulsatile blood flow; the selection of optical wavelengths, and much 

more (Reuss, 2005; Mannheimer, 2007; Kamshilin et. al., 2015; Sidorov et al., 2016; Moço et. al., 2018; 

Chatterjee et. al., 2020). 

Current and future challenges 

Photoplethysmography utilises the absorptivity of light resulting from the variations in the 

physiological properties of the tissue components during the cardiac cycle. During systole, blood 

pumped out of the heart rushes throughout the body, including all the peripheral tissue sites. This 

systolic increase in blood volume results in increased absorbance of light in tissue compared to the 

diastolic state. The PPG waveform is formed by the unabsorbed light detected by the optical sensor 

(photodiode). In general terms, this relative change in light absorbance gives rise to the PPG pulsatile 

waveform synchronous with each heartbeat (Kyriacou and Chatterjee, 2021).  
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Research into the origin of the PPG over the years has so far identified three main contributing factors 

relating to the origin of the PPG signal: (a) the red blood cell (RBC) orientation and deformation, (b) 

the volumetric distribution of the absorbers and blood volume variations, and (c) the mechanical 

movements of the capillaries. 

Some of the initial findings in this subject suggested that the changes in red blood cell orientation with 

the cardiac cycle are the leading causes of forming a PPG wave. This hypothesis is based on the 

electrophysiological characteristics, where at the end of diastole (i.e., low blood flow), the red blood 

cells orient themselves randomly due to reduced shear stress; as blood flow increases, the red blood 

cells tend to align themselves along with the flow; and during systole, the alignment is parallel to the 

direction of the flow (Kyriacou and Chatterjee, 2021). Previously, in-vitro and ex-vivo experiments 

were carried out by several research groups (Hertzman, 1938; Challoner and Ramsay, 1974) who also 

concluded that blood cell orientation and deformation have a potential role in the origin of the PPG 

signal. Additionally, this hypothesis is supported by the experimental observation by Lindberg and 

Oberg suggesting that the light transmission and reflection from an artificial blood vessel with 

continuous blood flow are dependent on blood volume changes and orientation as well as the 

deformability of the red blood cells (Lindberg and Oberg, 1993). A similar observation has been 

reported from a more recent investigation by Shvartsman and Fine who simulated pulsatile blood flow 

and confirmed that PPG-like signals are associated with geometric changes in red blood cell 

aggregation (Shvartsman and Fine, 2003). All these experimental verifications confirm the 

contribution of the red blood cell orientation / deformation, however, whether this is the only source 

of the PPG signal or not remains a question.  

Advances in science and technology to meet challenges 

In recent years researchers utilised the volumetric model for investigating the origin of the PPG 

(Chatterjee et al., 2020). The PPG signals originate from the pulsatile arterioles that branch from the 

upper blood net dermis, having a maximum density in the reticular dermis. The pulsatile vessel 

movement corresponding to the cardiac cycle results in periodic variations in the volumetric 

distribution of blood. Consequently, the optical absorbance in the vascular tissue bed periodically 

changes, forming the PPG signal. This supports the blood volume variation (BVV) model presented by 

Moco et. al. (Moco et. al., 2018) who validated the hypothesis through Monte Carlo simulations 

followed by experimental verifications using diffuse reflectance spectroscopy and 

videocapillaroscopy. Their investigation concluded that the PPG is formed due to the absorbance of 

light through the dermal arterioles, however, they still did not eliminate the possibility of co-

occurrence of another source contributing to the PPG signal formation. 

Blue and green light can also produce detectable PPG signals even though these wavelengths do not 

reach the pulsatile arterioles (Chatterjee et. al., 2020). The origin of green PPG seems to support the 

hypothesis by Kamshilin et. al. that the PPG formation is due to the modulation of the blood volume 

in the capillary bed due to the mechanical movements of capillaries (Kamshilin et. al., 2015; Sidorov 

et. al., 2016). More recently, the modulation in the optical properties of non-vascularised epidermis 

corresponding to the heart rate has also been reported by Martinelli (Martinelli et al., 2019) where 

they suggest that the mechanical changes in the arterioles and capillaries cumulatively induce changes 

in the epidermis mechanical properties. Though a direct investigation regarding the effect of such 

epidermal changes on PPG has not been carried out yet, it is likely to be one of the factors affecting 

the PPG shape and hence its contribution to the origin of the PPG. Green light is widely used in many 

werables devices, especially those focusing on heart rate estimation, due to its high absorptivity for 
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both deoxyhaemoglobin and oxyhemoglobin (Van Kampen and Zijlstra, 1965). In addition green PPGs 

have been found to be more resistant to motion artefact, yielding high Signal-to-Noise (SNR) PPGs 

(Sun and Thakor, 2016). 

In order to investigate the origin of the PPG more comprehensively, it is crucial to have a profound 

understanding of the underlying light-tissue interactions. Investigating PPG light-tissue interactions 

has been challenging due to the limitations in the traditional analytical models. Diffusion 

approximation is used for analysing the light-tissue interactions in near-infrared spectroscopy, 

photoacoustic tomography, and optical coherence tomography, however, it fails to produce accurate 

results in small source-detector separations, a geometry usually used in PPG probes (Schmitt, 1991). 

With the advancement of computational techniques, it has been now possible to explore Monte Carlo 

models for simulating light-tissue interactions in PPG (Reuss, 2005; Chatterjee et al., 2020). The 

comprehensive analysis of variables such as optical pathlength, depth of penetration and absorbance 

could lead to a more qualitative and quantitative assessment of the PPG origin.   

Concluding remarks 

Understanding the origins of the PPG signal is an ongoing endeavour, and it will continue to challenge 

many researchers. Based on the investigations to date, it is inferred that all three of the hypotheses 

relating to the origin of the PPG, i.e., blood cell orientation, blood volume variations and mechanical 

movements of capillaries, indeed contribute towards the formation of the PPG signal. The current 

significant increase in the applications of PPG technologies and their potential contributions in 

applications in healthcare and wellbeing has motivated many researchers to revisit the challenging 

question, of ‘where does the PPG signal come from?’ The more we know about the origin of the PPG 

the more we can “unlock” its relationship with various pathophysiological phenomena. Such new 

knowledge can lead to disruptive non-invasive technologies for monitoring in healthcare and 

wellbeing beyond the current state of the art. 
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Status 

Photoplethysmography (PPG) is an optical technique that can detect blood volume changes in the 

microvascular tissue bed.  By using a pair of light emitting diode (LED) and detector, the pulsation of 

blood at a peripheral site (e.g. the fingertip, toe, ear lobe, forehead) can be measured, digitized and 

displayed in details.   

Brief History and Milestones 

The research on PPG can be dated back to the 1930's (Allen, 2007); however, the field did not gain a 

lot of momentum until mid-1990’s (see Figure 31), when PPG pulses obtained from the subjects’ toe 

were first classified by artificial intelligence for detecting peripheral vascular disease (Allen and 

Murray, 1995).  Since then, the applications of PPG have widened, for example, to correct physiological 

motion effects in functional magnetic resonance imaging (fMRI) (Glover et al., 2000) and to build a 

biometric-based security scheme for sensor network in telemedicine and mobile health (Poon et al., 

2006). Furthermore, when fusing information from multiple LEDs and sensors at different wavelengths 

(i.e. multi-wavelength PPG), or other cardiovascular signals such as electrocardiogram, or 

ballistocardiogram, a spectrum of vital signs related to the vascular system can be estimated.  These 

include but are not limited to the blood oxygen level, blood loss, respiratory rate, depth of anaesthesia 

during surgery, and even the cuff-less measurement of blood pressure (Poon and Zhang, 2005).  More 

recently, a large-scale assessment of a smartwatch to identify atrial fibrillation was also reported, in 

which 2,161 subjects were screened out of 419,297 participants using consumer PPG-based wearables 

and subsequently asked to wear an electrocardiography patch for 7 days to confirm the presence or 

absence of atrial fibrillation (Perez et al., 2019). 
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Current and Future Challenges 

Understanding the Vasculature and its Biology using PPG and Other Alternatives 

Although PPG has been proposed independently to measure blood flow, blood pressure, and blood 

content analysis, these physical and biochemical quantities in fact represent different aspects of a 

vascular system.  PPG, even with multi-wavelength analysis, may not be able to reflect the entire 

complex mix-up of the peripheral vasculature.  In many cases, the measurement of one parameter is 

based on the assumption that many other parameters remain constant during the measurement 

period.  This is an assumption that often holds valid only when the biological system is under certain 

stable conditions, but may be weakened when the body is in a disease state or during acute and 

transient phases.  Understanding the vasculature using PPG is a big research challenge, as the 

vasculature involves not only the mechanical and physical properties of the vessels that give the 

pulsatile blood volume changes captured by PPG, but also many other components.  For example, 

some other important aspects that must be considered include: the electrolyte analysis of the salts 

and minerals found in blood; the electrical impulses generated and communicated with other organ 

systems; and the protein-rich fluid that transport back and forth the circulatory system and lymphatic 

vessels to serve the important immune surveillance function.  Alternatives to PPG can therefore 

provide different angles to understand the vasculature and its biology, for example, to understand 

systemic atherosclerotic disease (Geng et al., 2022). 

 

 

Figure 31. The number of publications in photoplethysmography and selected highly cited works in this field.  A wide range of topics 

in photoplethysmography have been documented, for example, (a) the assessment of an artificial neural-network for the detection of 

peripheral vascular-disease from lower-limb pulse wave-forms (Allen & Murray, 1995); (b) the correction of physiological motion 

effects in fMRI (Glover et al., 2000); (c) the concept of a biometric security scheme in telemedicine and mobile health (Poon et al., 

2006); (d) the remote plethysmographic imaging using ambient light (Verkruysse et al., 2008); and (e) the large-scale assessment of a 

smartwatch using consumer PPG-based wearables to identify atrial fibrillation (Perez et al., 2019). 
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Limitations of Wearable PPG with respect to Other Alternatives 

Although PPG has been extensively used in clinical settings, its utility in daily life is yet to be seen.  

Several big research issues need to be solved before wearable PPG can be widely used in our daily 

lives.  First, PPG signals are susceptible to motion artefacts, especially when used during exercise, in a 

free living condition, or in an environment where the ambient light varies.  Second, PPG sensors often 

need to be firmly attached to the human body at a constant pressure in order to ensure good signal 

quality.  The design becomes challenging when long-term measurements across days or large-scale 

population-wide screening using PPG in a crowded area are needed, where sometimes other non-

contact RGB camera-based imaging techniques are preferred (Verkruysse et al., 2008, Sun and Thakor, 

2016).  Third, PPG is often considered as a power-hungry sensing technique compared to other sensing 

methods.  Therefore, an energy-efficient sampling technique is needed, especially when a wearable 

device designed with PPG is to be used together with other ambulatory devices over a 24-hour period 

or longer (Zheng et al., 2016). 

Advances in Science and Technology to Meet Challenges 

Targeting the limitations of PPG, other complementary alternatives have been studied either 

independently, or together with PPG in order to better understand the human vasculature (see Figure 

32).  Different methods including processing techniques and various sensor types have been proposed, 

and the interested reader is referred to (Meng et al., 2022) for further details of several sensing 

techniques. 

Acceleration Plethysmography 

Acceleration plethysmography (APG) or acceleration PPG uses the second derivative of the waveform 

of a digital PPG to stabilize the baseline and to separate components of the waveform more easily 

(Takazawa et al., 1998).  Five waves can normally be found in APG.  They are called a, b, c, d, and e 

waves, respectively (see Figure 32). 

Triboelectric Sensing 

A triboelectric sensor also generates an electric potential when pressure is applied to it, with the 

particular advantage of producing a high signal-to-noise ratio. The plethysmogram obtained is similar 

to the second derivative of the photoplethysmogram (Ouyang et al., 2017). 

Piezoresistive Sensing 

The resistance of a piezoresistive sensor changes when either pressure is applied to it, or the sensor 

is strained (Meng et al., 2022). This allows a pulse wave signal to be obtained, as studied for digitizing 

the radial pulse to estimate cuff-less blood pressure (Luo et al., 2016).  Compared to 

photoplethysmography, piezoresistive sensors have the advantage of having lower power 

requirements. 

Piezoelectric Sensing 

A piezoelectric sensor generates an electric potential when pressure is applied to it (Meng et al., 2022). 

The plethysmogram obtained by a piezoelectric sensor has been found to be similar to the first 

derivative of the photoplethysmogram (Qananwah et al., 2020). 

Capacitive Sensing 

The capacitance of a capacitive sensor changes when pressure is applied to it (Meng et al., 2022). The 

use of a capacitance sensor to measure the pulse wave at the radial artery was demonstrated in 

(Schwartz et al., 2013). 
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Magnetoelastic Sensing 

The magnetism of a magnetoelastic sensor changes when pressure is applied to it (Meng et al., 2022). 

Recently, textile magnetoelastic sensors have been developed for pulse wave monitoring which are 

waterproof and suitable for use in sweaty conditions (Zhao et al., 2021). 

Magnetic Induction Plethysmography 

The use of a magnetic field-sensing semiconductor Hall sensor is another alternative to PPG (Kim et 

al., 2018).  By placing a series of permanent magnets of 200 G together with some magnetoresistance 

sensors in the close vicinity of a peripheral artery, e.g. the radial artery, the pulse waveform can be 

reconstructed. The systolic and diastolic blood pressure can then be estimated from the signals. 

Doppler Ultrasound and Acoustic Sensing 

Doppler ultrasound has long been used for detecting blood flow.  More recently, a wireless carotid 

neckband Doppler system with wearable ultrasound sensors has been demonstrated to be capable of 

continuously monitoring the carotid flow velocity pulse wave and displaying the blood flow dynamics 

and the peak systolic velocity on an external smartphone (Song et al., 2019).  The system was designed 

with two 2.5-MHz ultrasonic sensors and quantized the acquired Doppler signals by 14-bit analog-to-

digital-converters at 40 MHz.  Moreover, other acoustic sensors, which can be used for measuring 

chest sounds, detecting cardiac output, and diagnosing heart problems, have been designed as 

wearables for sensing pulse waves at the radial artery (Sharma et al., 2019, Sharma and Rodriguez-

Villegas, 2021). 

Impedance Plethysmography 

Impedance plethysmography detects changes in the conductivity of a region of the body caused by 

changes in the volumes of tissues. It is already used for respiratory monitoring, and has recently been 

used to monitor the pulse wave at the upper leg (Haapala et al., 2021). 

Speckle Plethysmography 

Speckle plethysmography is a form of laser imaging which measures the speed of moving light-

scattering particles (Ghijsen et al., 2018). It can be used to obtain a pulse wave, which originates from 

the scattering of moving red blood cells (Ghijsen et al., 2018). 
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Concluding Remarks 

PPG is becoming a mature technology commonly implemented in wearable sensing devices.  

Nevertheless, various alternatives to PPG are emerging to better understand vascular biology and to 

meet the needs of wider usage in free living and ambient light varying conditions. These 

complementary methods can be used to study the vasculature and the effects of diseases on the 

vasculature.  Although the measurement of PPG and its alternatives are often made at the periphery, 

signals collected from them often carry information that is related to the central aorta of a human 

body.  Future works that test PPG and their alternatives in controlled patient groups will be valuable 

to understand these techniques and their potential applications during the progression of various 

diseases. 
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