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Welcome to Circuit Analysis and Design.
   As the foundational course in the majority of electrical and 
computer engineering curricula, an electric circuits course 
should serve four vital objectives:

(1) It should introduce the fundamental principles of circuit
analysis and equip the student with the skills necessary to 
analyze any planar, linear circuit, including those driven by 
dc or ac sources, or by more complicated waveforms such as 
pulses and exponentials.

(2) It should start the student on the journey of circuit
design.

(3) It should guide the student into the seemingly magical
world of domain transformations—such as the Laplace and 
Fourier transforms, not only as circuit analysis tools, but also 
as mathematical languages that are “spoken” by many fields 
of science and engineering.

(4) It should expand the student’s technical horizon by
introducing him/her to some of the many allied fields of 
science and technology.
   This book aims to accomplish exactly those objectives. 
Among its distinctive features are:

Technology Briefs: The book contains 32 Technology 
Briefs, each providing an overview of a topic that every 
electrical and computer engineering professional should 
become familiar with. Electronic displays, data storage 
media, sensors and actuators, supercapacitors, and 3-D imag-
ing are typical of the topics shared with the reader.  The 
Briefs are presented at a technical level intended to introduce 
the student to how the concepts in the chapter are applied in 
real-world applications and to interest the reader in pursuing 
the subject further on his/her own.  Technology Briefs cover 
applications in circuits, medicine, the physical world, optics, 
signals and systems, and more.

Application Notes: Most chapters include a section focused 
on how certain devices or circuits might be used in practical 
applications.  Examples include power supplies, CMOS 
inverters in computer processors, signal modulators, and 
several others.

Multisim and MathScript: Multisim is a SPICE circuit 
simulator available from National Instruments (see 
cad.eecs.umich.edu for details). Multisim is highlighted 
through many end-of-chapter demonstrations. The student 
is strongly encouraged to take advantage of this rich 
resource. The Math-Script software can perform matrix 
inversion and many other calculations, much like the 
MathWorks, Inc. MATLAB® software.

myDAQ: The myDAQ board does not come with this 
e-book, but it can be purchased directly from National
Instruments.

 The myDAQ is a convenient, portable measurement tool 
that turns a PC into a basic electrical engineering lab with a 
DVM, analog and digital power supplies, function generator, 
oscilloscope, Bode plot analyzer, and diode analyzer. A 
written myDAQ tutorial is available in Appendix F and 
online video tutorials are available at http://www.ni.com/mydaq.  
The book contains 53 integrative end-of-chapter problems, 
each intended to be solved analytically, by Multisim using 
software simulation, and by constructing the circuit and 
measuring its currents and voltages using myDAQ. The 
three-way complementary approach is an exceedingly 
valuable learning experience.

Preface
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Objectives

Learn to:

� Differentiate between active and passive devices;
analysis and synthesis; device, circuit, and system;
and dc and ac.

� Point to important milestones in the history of
electrical and computer engineering.

� Relate electric charge to current; voltage to
energy; power to current and voltage; and apply
the passive sign convention.

� Describe the properties of dependent and
independent sources.

� Describe the operation of SPST and SPDT
switches.

The iPhone is a perfect example of an integrated electronic
architecture composed of a large number of interconnected
circuits. Learning a new language starts with the alphabet.
This chapter introduces the terms and conventions used in the
language of electronics.

CHAPTER 1
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2 CHAPTER 1 CIRCUIT TERMINOLOGY

Overview

Electrical engineering is an exciting field through which we
interface with the world using electrical signals. In this chapter
you will learn about the basis of electrical engineering—voltage
and current—where they come from, what they mean, and how
to measure them. The chapter provides you the nomenclature
and symbols to draw and represent electric circuits.You will also
learn your first circuit analysis tool, Ohm’s law, which describes
the relationship between voltage, current, and resistance. In
the first section of this chapter, enjoy electrical engineering’s
innovative past, and in the micro-nano Technology Brief,
imagine the things you could do with it in the future. As
you explore this chapter and start to pick up the tools you
need in your engineering career, imagine an application that
particularly interests you, and how these concepts and ideas
apply to that application.

Cell-Phone Circuit Architecture

Electronic circuits are contained in just about every gadget we
use in daily living. In fact, electronic sensors, computers, and
displays are at the operational heart of most major industries,
from agricultural production and transportation to healthcare
and entertainment. The ubiquitous cell phone (Fig. 1-1), which
has become practically indispensable, is a perfect example of
an integrated electronic architecture made up of a large number
of interconnected circuits. It includes a two-way antenna (for
transmission and reception), a diplexer (which facilitates the
simultaneous transmission and reception through the antenna),
a microprocessor for computing and control, and circuits with
many other types of functions (Fig. 1-2). Factors such as
compatibility among the various circuits and proper electrical
connections between them are critically important to the overall
operation and integrity of the cell phone.

Usually, we approach electronic analysis and design through
a hierarchical arrangement where we refer to the overall entity
as a system, its subsystems as circuits, and the individual
circuit elements as devices or components. Thus, we may
regard the cell phone as a system (which is part of a much
larger communication system); its audio-frequency amplifier,
for example, as a circuit, and the resistors, integrated circuits
(ICs), and other constituents of the amplifier as devices. In
actuality, an IC is a fairly complex circuit in its own right,
but its input/output functionality is such that usually it can be
represented by a relatively simple equivalent circuit, thereby
allowing us to treat it like a device. Generally, we refer to
devices that do not require an external power source in order to
operate as passive devices; these include resistors, capacitors,

Figure 1-1: Cell phone.

and inductors. In contrast, an active device (such as a transistor
or an IC) cannot function without a power source.

This book is about electric circuits. A student once asked:
“What is the difference between an electric circuit and an
electronic circuit? Are they the same or different?” Strictly
speaking, both refer to the flow of electric charge carried
by electrons, but historically, the term “electric” preceded
“electronic,” and over time the two terms have come to signify
different things:

� An electric circuit is one composed of passive devices,
in addition to voltage and current sources, and possibly
some types of switches. In contrast, the term electronic
has become synonymous with transistors and other active
devices. �

The study of electric circuits usually precedes and sets the stage
for the study of electronic circuits, and even though a course on
electric circuits usually does not deal with the internal operation
of an active device, it does incorporate active devices in circuit
examples by representing them in terms of equivalent circuits.

An electric circuit, as defined by Webster’s English
Dictionary, is a “complete or partial path over which current
may flow.” The path may be confined to a physical structure
(such as a metal wire connecting two components), or it may
be an unbounded channel carrying electrons through it. An
example of the latter is when a lightning bolt strikes the
ground, creating an electric current between a highly charged
atmospheric cloud and the earth’s surface.
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3

Analog-to-Digital
and

Digital-to-Analog
Converters

Receiver

Microprocessor
Control

Human Interface,
Dialing, Memory

Battery Power Control

DiplexerAntenna

Transmit
Receive

Transmitter

Speech, 
Video, Data

In Out

Figure 1-2: Basic cell-phone block diagram. Each block consists of multiple circuits that together provide the required functionality.

Electrical engineering design is about how we use and control
voltages and currents to do the things we want to do. To interface
with the real world, sensors are the electrical tools that convert
real world inputs—like heat, sound, light, pressure, user inputs
like button presses or touch screen, motion, etc.—into voltages
and currents. We then manipulate these input voltages and
currents using various circuits. We may amplify them if they are
too small, switch them on or off, change their frequency (filter,
oscillate, modulate them), or convert them into a digital signal
a computer circuit can further analyze. In the end, we want to
have an output voltage or current we can use to interface back to
the real world—turn on a light, buzzer, alarm, motor/actuator,
or control a cell phone, car airplane, robot, medical device,
etc. Electrical engineers design both the input/output (I/O)
systems as well as the control and actuation circuits, and often
the software and algorithms as well. Electrical engineering is
about “what you can do to a voltage” and how to use it to do
something important in the real world.

The study of electric circuits consists of two complementary
tasks: analysis and synthesis (Fig. 1-3). Through analysis, we
develop an understanding of “how” a given circuit works. If
we think of a circuit as having an input—a stimulus—and an
output—a response, the tools we use in circuit analysis allow
us to mathematically relate the output response to the input
stimulus, enabling us to analytically and graphically “observe”
the behavior of the output as we vary the relevant parameters of
the input. An example might be a specific amplifier circuit,
in which case the objective of circuit analysis might be to
establish how the output voltage varies as a function of the
input voltage over the full operational range of the amplifier

parameters. By analyzing the operation of each circuit in a
system containing multiple circuits, we can characterize the
operation of the overall system.

As a process, synthesis is the reverse of analysis. In
engineering, we tend to use the term design as a synonym
for synthesis. The design process usually starts by defining
the operational specifications that a gadget or system should
meet, and then we work backwards (relative to the analysis
process) to develop circuits that will satisfy those specifications.
In analysis, we are dealing with a single circuit with a specific
set of operational characteristics. We may employ different
analysis tools and techniques, but the circuit is unique, and
so are its operational characteristics. That is not necessarily
the case for synthesis; the design process may lead to multiple

Circuit

Circuit

Functionality

Specs

Analysis

Analysis vs. Synthesis

Synthesis

(Design)

Figure 1-3: The functionality of a circuit is discerned by
applying the tools of circuit analysis. The reverse process,
namely the realization of a circuit whose functionality meets
a set of specifications, is called circuit synthesis or design.
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4 CHAPTER 1 CIRCUIT TERMINOLOGY

circuit realizations—each one of which exhibits or satisfies the
desired specifications.

Given the complementary natures of analysis and synthesis,
it stands to reason that developing proficiency with the tools
of circuit analysis is a necessary prerequisite to becoming a
successful design engineer. This textbook is intended to provide
you with a solid foundation of the primary set of tools and
mathematical techniques commonly used to analyze both direct
current (dc) and alternating current (ac) circuits, as well as
circuits driven by pulses and other types of waveforms. A dc
circuit is one in which voltage and current sources are constant
as a function of time, whereas in ac circuits, sources vary
sinusoidally with time. Even though this is not a book on circuit
design, design problems occasionally are introduced into the
discussion as a way to illustrate how the analysis and synthesis
processes complement each other.

Concept Question 1-1:What are the differences between
a device, a circuit, and a system? (See         )

Concept Question 1-2: What is the difference between
analysis and synthesis? (See         )

1-1 Historical Timeline

We live today in the age of electronics. No field of science or
technology has had as profound an influence in shaping the
operational infrastructure of modern society as has the field
of electronics. Our computers and communication systems are
at the nexus of every major industry. Even though no single
event marks the beginning of a discipline, electrical engineering
became a recognized profession sometime in the late 1800s (see
chronology). Alexander Graham Bell invented the telephone
(1876); Thomas Edison perfected his incandescent light bulb
(1880) and built an electrical distribution system in a small
area in New York City; Heinrich Hertz generated radio waves
(1887); and Guglielmo Marconi demonstrated radio telegraphy
(1901). The next 50 years witnessed numerous developments,
including radio communication, TV broadcasting, and radar for
civilian and military applications—all supported by electronic
circuitry that relied entirely on vacuum tubes. The invention of
the transistor in 1947 and the development of the integrated
circuit (IC) shortly thereafter (1958) transformed the field of
electronics by setting it on an exponentially changing course
towards “smaller, faster, and cheaper.”

Computer engineering is a relatively young discipline.
The first all-electronic computer, the ENIAC, was built and

demonstrated in 1945, but computers did not become available
for business applications until the late 1960s and for personal
use until the introduction of Apple I in 1976. Over the past 20
years, not only have computer and communication technologies
expanded at a truly impressive rate (see Technology Brief 1),
but more importantly, it is the seamless integration of the two
technologies that has made so many business and personal
applications possible.

Generating a comprehensive chronology of the events and
discoveries that have led to today’s technologies is beyond the
scope of this book, but ignoring the subject altogether would
be a disservice to both the reader and the subject of electric
circuits. The abbreviated chronology presented on the next few
pages represents our compromise solution.

Chronology: Major Discoveries, Inventions, and
Developments in Electrical and Computer
Engineering
ca. 1100 BC Abacus: the earliest known calculating device.

ca. 900 BC Magnetite: According to legend, a shepherd in northern Greece,
Magnus, experienced a pull on the iron nails in his sandals by the black
rock he was standing on. The rock later became known as magnetite [a
form of iron with permanent magnetism].

ca. 600 BC Static electricity: Greek philosopher Thales described how amber,
after being rubbed with cat fur, can pick up feathers.

1600 Electric: The term was coined by William Gilbert (English) after the
Greek word for amber (elektron). He observed that a compass needle
points north to south, indicating the Earth acts as a bar magnet.

1614 Logarithm: developed by John Napier (Scottish).

1642 First adding machine: built by Blaise Pascal (French) using multiple
dials.
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1733 Electric charge: Charles François du Fay (French) discovers that
charges are of two forms and that like charges repel and unlike charges
attract.

1745 Capacitor: Pieter van Musschenbroek (Dutch) invented the Leyden jar,
the first electrical capacitor.

1800 First electric battery: developed by Alessandro Volta (Italian).

1827 Ohm’s law: formulated by Georg Simon Ohm (German), relating electric
potential to current and resistance.

1827 Inductance: introduced by Joseph Henry (American), who built one
of the earliest electric motors. He also assisted Samuel Morse in the
development of the telegraph.

1837 Telegraph: concept patented by Samuel Morse (American), who used
a code of dots and dashes to represent letters and numbers.

1843 Computer algorithm: original concept and plan attributed to Ada Byron
Lovelace (British), the daughter of poet Lord Byron. The “Ada” software
language was developed in 1979 by the U.S. Department of Defense in
her honor.

1876 Telephone: invented by Alexander Graham Bell (Scottish-American):
the rotary dial became available in 1890, and by 1900, telephone systems
were installed in many communities.

1879 Incandescent light bulb: demonstrated byThomas Edison (American),
and in 1880, his power distribution system provided dc power to 59
customers in New York City.

1887 Radiowaves: Heinrich Hertz (German) built a system that could
generate electromagnetic waves (at radio frequencies) and detect them.

Courtesy of John Jenkins (sparkmuseum.com)

1888 ac motor: invented by Nikola Tesla (Croatian-American).

1893 Magnetic sound recorder: invented by Valdemar Poulsen (Danish)
using steel wire as recording medium.
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1895 X-rays: discovered by Wilhelm Röntgen (German). One of his first
X-ray images was of the bones in his wife’s hands. [1901 Nobel prize
in physics.]

1896 Radio wireless transmission: patented by Guglielmo Marconi
(Italian). In 1901, he demonstrated radio telegraphy across the Atlantic
Ocean. [1909 Nobel prize in physics, shared with Karl Braun (German).]

1897 Cathode ray tube (CRT): invented by Karl Braun (German). [1909 Nobel
prize, shared with Marconi.]

1897 Electron: discovered by Joseph John Thomson (English), who also
measured its charge-to-mass ratio. [1906 Nobel prize in physics.]

1902 Amplitude modulation: invented by Reginald Fessenden (American)
for telephone transmission. In 1906, he introduced AM radio broadcasting
of speech and music on Christmas Eve.

1904 Diode vacuum tube: patented by John Fleming (British).

1907 Triode tube amplifier: developed by Lee De Forest (American) for
wireless telegraphy, setting the stage for long-distance phone service,
radio, and television.

1917 Superheterodyne and frequency modulation (FM): invented by Edwin
Howard Armstrong (American), providing superior sound quality of
radio transmissions over AM radio.

1920 Commercial radio broadcasting: Westinghouse Corporation estab-
lished radio station KDKA in Pittsburgh, Pennsylvania.

1923 Television: invented by Vladimir Zworykin (Russian-American). In
1926, John Baird (Scottish) transmitted TV images over telephone wires
from London to Glasgow. Regular TV broadcasting began in Germany
(1935), England (1936), and the United States (1939).

1926 Transatlantic telephone service established between London and New
York.

1930 Analog computer: developed by Vannevar Bush (American) for solving
differential equations.

1935 Anti-glare glass: developed by Katharine Blodgett by transferring thin
monomolecular coatings to glass.
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1935 Radar: invented by Robert Watson-Watt (Scottish).

1944 Computer compiler: One of the earliest compilers was designed by
Grace Hopper for Harvard’s Mark I computer. She retired as a rear
admiral in the U.S. Navy in 1986.

1945 ENIAC: The first all-electronic computer was developed by John
Mauchly and J. Presper Eckert (both American).

1947 Transistor: invented by William Shockley, Walter Brattain, and John
Bardeen (all Americans) at Bell Labs. [1956 Nobel prize in physics.]

1948 Modern communication: Claude Shannon (American) published his
Mathematical Theory of Communication, which formed the foundation of
information theory, coding, cryptography, and other related fields.

1950 Floppy disk: invented by Yoshiro Nakama (Japanese) as a magnetic
medium for storing data.

1954 First AM transistor radio: introduced by Texas Instruments.

Courtesy of Dr. Steve Reyer

1955 Optical fiber: demonstrated by Narinder Kapany (Indian-American) as
a low-loss, light-transmission medium.

1956 FORTRAN: developed by John Backus (American), the first major
programming language.

1958 Laser: concept developed by Charles Townes and Arthur Schawlow
(both Americans). [Townes shared 1964 Nobel prize in physics with
Aleksandr Prokhorov and Nicolay Bazov (both Soviets).] In 1960
Theodore Maiman (American) built the first working model of a laser.

1958 Modem: developed by Bell Labs.

1958 Integrated circuit (IC): Jack Kilby (American) built the first IC on
germanium, and independently, Robert Noyce (American) built the first
IC on silicon.

1960 Echo: The first passive communication satellite was launched and
successfully reflected radio signals back to Earth. In 1962, the first
communication satellite, Telstar, was placed in geosynchronous orbit.
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1960 Microcomputer: introduced by Digital Equipment Corporation as the
PDP-1, which was followed with the PDP-8 in 1965.

1961 Thick-film resistor: one of 28 electronic devices patented by Otis
Boykin (African-American).

1962 MOSFET: invented by Steven Hofstein and Frederic Heiman (both
American), which became the workhorse of computer microprocessors.

1964 IBM’s 360 mainframe: became the standard computer for major
businesses.

1965 BASIC computer language: developed by John Kemeny and Thomas
Kurtz (both American).

1965 Programmable digital computer: developed by Konrad Zuse (Ger-
man) using binary arithmetic and electric relays.

1968 Word processor: demonstrated by Douglas Engelbart (American),
followed by the mouse pointing device and the use of a Windows-like
operating system.

1969 ARPANET: established by the U.S. Department of Defense, which later
evolved into the Internet.

1970 CD-ROM: patented by James Russell (American), as the first system
capable of digital-to-optical recording and playback.

1971 Pocket calculator: introduced by Texas Instruments.

Courtesy of Texas Instruments

1971 Intel 4004 four-bit microprocessor: capable of executing 60,000
operations per second.

1972 Computerized axial tomography scanner (CAT scan: developed
by Godfrey Hounsfield (British) and Alan Cormack (South African–
American) as a diagnostic tool. [1979 Nobel Prize in physiology or
medicine.]

1976 Laser printer: introduced by IBM.

1976 Apple I: sold by Apple Computer in kit form, followed by the fully
assembled Apple II in 1977, and the Macintosh in 1984.

1979 First cellular telephone network: built in Japan:

• 1983 cellular phone networks started in the United States.

• 1990 electronic beepers became common.

• 1995 cell phones became widely available.

1980 MS-DOS computer disk operating system: introduced by Microsoft:
Windows marketed in 1985.

1981 PC: introduced by IBM.

1984 Internet became operational worldwide.

1988 First transatlantic optical fiber cable: installed between the U.S. and
Europe.

1988 Touchpad: invented by George Gerpheide (American).

1989 World Wide Web: invented by Tim Berners-Lee (British) by introducing
a networking hypertext system.

1996 Hotmail: launched by Sabeer Bhatia (Indian-American) and Jack Smith
(American) as the first webmail service.
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1997 Palm Pilot: became widely available.

2007 White LED: invented by Shuji Nakamura (Japanese) in the 1990s. It
promises to replace Edison’s lightbulb in most lighting applications.

2007 iPhone: released by Apple.

2009 Cloud computing: went mainstream.

2011 Humans vs. supercomputer: IBM’s Watson supercomputer beat the top
two human contestants of Jeopardy! for a $1M prize.

2011 Text messages: 8 × 1012 (8 trillion) text messages sent worldwide.

2014 Mobile subscribers: Approximately 96% of the world population is a
mobile phone subscriber (7 billion people).

Concept Question 1-3: What do you consider to be the 
most important electrical engineering milestone that is 
missing from this historical timeline? (See        )

1-2 Units, Dimensions, and Notation

The standard system used in today’s scientific literature to
express the units of physical quantities is the International
System of Units (SI), abbreviated after its French name Système
Internationale. Time is a fundamental dimension, and the
second is the unit by which it is expressed relative to a specific
reference standard. The SI configuration is based on the seven
fundamental dimensions listed in Table 1-1, and their units
are called fundamental SI units. All other dimensions, such as
velocity, force, current, and voltage, are regarded as secondary
because their units are based on and can be expressed in terms
of the seven fundamental units. For example, electric current
is measured in amps, which is an abbreviation for coulombs/
second. Appendix A provides a list of the quantities used in this
book, together with their symbols and units.

Table 1-1: Fundamental and electrical SI units.

Dimension Unit Symbol

Fundamental:

Length meter m
Mass kilogram kg
Time second s
Electric charge coulomb C
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Electrical:

Current ampere A
Voltage volt V
Resistance ohm �

Capacitance farad F
Inductance henry H
Power watt W
Frequency hertz Hz

In science and engineering, a set of prefixes commonly
are used to denote multiples and submultiples of units. These
prefixes, ranging in value between 10−18 and 1018, are listed in
Table 1-2. An electric current of 3 × 10−6 A, for example, may
be written as 3 μA. The physical quantities we discuss in this
book (such as voltage and current) may be constant in time or
may vary with time.

Table 1-2: Multiple and submultiple prefixes.

Prefix Symbol Magnitude

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18
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Technology Brief 1
Micro- and Nanotechnology

Scale of Things

Our ability as humans to shape and control the
environment around us has improved steadily over time,
most dramatically in the past 100 years. The degree of
control is reflected in the scale (size) at which objects can
be constructed, which is governed by the tools available
for constructing them. This refers to the construction of
both very large and very small objects. Early tools—such
as flint, stone, and metal hunting gear—were on the order
of tens of centimeters. Over time, we were able to build
ever-smaller and ever-larger tools. The world’s largest
antenna* is the radio telescope at the Arecibo observatory
in Puerto Rico (Fig. TF1-1).The dish is 305 m (1000 ft) in
diameter and 50 m deep and covers nearly 20 acres. It is
built from nearly 40,000 perforated 1 m × 2 m aluminum
plates. On the other end of the size spectrum, some of
the smallest antennas today are nanocrescent antennas
that are under 100 nm long. These are built by sputtering
aluminum against glass beads and then removing the
beads to expose crescent-shaped antennas (Fig.TF1-2).

Miniaturization continues to move forward: the first
hydraulic valves, for example, were a few meters in
length (ca. 400 BCE); the first toilet valve was tens of

*http://www.naic.edu/general/

Figure TF1-1: Arecibo radio telescope.

Figure TF1-2: Nano-crescent antenna for use in the
ultraviolet range (320 nm to 370 nm wavelength). (Credit:
Miguel Rodriguez.)

centimeters in size (ca. 1596); and by comparison, the
largest dimension in a modern microfluidic valve used in
biomedical analysis-chips is less than 100 μm!

The chart in Fig.TF1-3 displays examples of manmade
and natural things whose dimensions fall in the range
between 0.1 nm (10−10 m) and 1 cm, which encompasses
both micrometer (1 μm = 10−6 m) and nanometer
(1 nm = 10−9 m) ranges. Microtechnology, which
refers to our ability to manipulate matter at a precision
of 1 μm or better, became possible in the 1960s,
ushering in an electronics revolution that led to the
realization of the laptop computer and the ubiquitous
cell phone. It then took another 30 years to improve the
manufacturing precision down to the nanometer scale
(nanotechnology), promising the development of new
materials and devices with applications in electronics,
medicine, energy, and construction.

Moore’s Law

With the invention of the semiconductor transistor in
1947 and the subsequent development of the integrated
circuit in 1959, it became possible to build thousands
(now trillions) of electronic components onto a single
substrate or chip. The 4004 microprocessor chip
(ca. 1971) had 2250 transistors and could execute 60,000
instructions per second; each transistor had a “gate”
on the order of 10 μm (10−5 m). In comparison, the
2006 Intel Core had 151 million transistors with each
transistor gate measuring 65 nm (6.5 × 10−8 m); it could
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FigureTF1-3:The scale of natural and man-made objects, sized from nanometers to centimeters. (Courtesy of U.S.Department
of Energy.)

perform 27 billion instructions per second. The 2011
Intel Core i7 “Gulftown” processors have 1.17 billion
transistors and can perform ∼ 150 billion instructions per
second. In recent years, the extreme miniaturization of
transistors (the smallest transistor gate in an i7 Core is
∼ 32 nanometers wide!) has led to a number of design
innovations and trade-offs at the processor level, as
devices begin to approach the physical limits of classic
semiconductor devices. Among these, the difficulty of
dissipating the heat generated by a billion transistors

has led to the emergence of multicore processors;
these devices distribute the work (and heat) between
more than one processor operating simultaneously on
the same chip (2 processors on the same chip are
called a dual core, 4 processors are called a quad
core, etc.). This type of architecture requires additional
components to manage computation between processors
and has led to the development of new software
paradigms to deal with the parallelism inherent in such
devices.
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Figure TF1-4: Moore’s Law predicts that the number of transistors per processor doubles every two years.

Moore’s Law and Scaling

In 1965, Gordon Moore, co-founder of Intel, predicted that
the number of transistors in the minimum-cost processor
would double every two years (initially, he had guessed
they would double every year). Amazingly, this prediction
has proven true of semiconductor processors for 40 years,
as demonstrated by Fig. TF1-4.

In order to understand Moore’s Law, we have to
understand the basics of how transistors are used
in computers. Computers carry all of their information
(numbers, letters, sounds, etc.) in coded strings of
electrical signals that are either “on” or “off.” Each “on”
or “off” signal is called a bit, and 8 bits in a row are called
a byte. Two bytes are a word, and (when representing
numbers) they provide 16-bit precision. Four bytes give
32-bit precision. These bits can be added, subtracted,
moved around, etc., by switching each bit individually on
or off, so a computer processor can be thought of as a big
network of (trillions of) switches. Transistors are the basic
switches in computers. We will learn more about them
in Chapter 3, but for now, the important thing to know is
that they can act as very tiny, very fast, very low power
switches. Trillions of transistors are built directly onto a
single silicon wafer (read more about how in Technology
Brief 7), producing very-large-scale integrated (VLSI)
circuits or chips. Transistors are characterized by their
feature size, which is the smallest line width that can

be drawn in that VLSI manufacturing process. Larger
transistors are used for handling more current (such as
in the power distribution system for the chip). Smaller
transistors are used where speed and efficiency are
critical. The 22 nm processes available today can make
lines and features ∼22 nm in dimension. They produce
transistors that are about 100 nm on a side, switched
on and off over 100 billion times a second (it would
take you over 2000 years to flip a light switch that many
times),† and can do about 751 billion operations per watt.‡
Even smaller, 5 nm transistors are expected to become
commercially viable by 2020. The VLSI design engineer
uses computer-aided design (CAD) tools to design
chips by combining transistors into larger subsystems
(such as logic gates that add/multiply/etc.), choosing the
smallest, fastest transistors that can be used for every
part of the circuit.

The following questions then arise: How small can we
go? What is the fundamental limit to shrinking down the
size of a transistor? As we ponder this, we immediately
observe that we likely cannot make a transistor smaller
than the diameter of one silicon or metal atom (i.e., ∼0.2
to 0.8 nm). But is there a limit prior to this? Well, as
we shrink transistors down to the point that they are

†http://download.intel.com/newsroom/kits/22nm/pdfs/22nm Fun Facts.pdf
‡https://newsroom.intel.com/servlet/JiveServlet/previewBody/2834-102-

1-5130/Intel%20at%20VLSI%20Fact%20Sheet.pdf
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Figure TF1-5: (a) Plot of heat power density generated by consumer processors over time, (b) comparison of heat power
generation of a light bulb with that of a typical processor.

made of just one or a few atomic layers (∼1 to 5 nm),
we run into issues related to the stochastic nature of
quantum physics. At these scales, the random motion
of electrons between both physical space and energy
levels becomes significant with respect to the size of
the transistor, and we start to get spurious or random
signals in the circuit.There are even more subtle problems
related to the statistics of yield. If a certain piece of
a transistor contained only 10 atoms, a deviation of
just one atom in the device (to a 9-atom or an 11-
atom transistor) represents a huge change in the device
properties! This would make it increasingly difficult to
economically fabricate chips with hundreds of millions
of transistors. Additionally, there is an interesting issue
of heat generation: Like any dissipative device, each
transistor gives off a small amount of heat. But when
you add up the heat produced by more than 1 billion
transistors, you get a very large number! Figure TF1-5
compares the power density (due to heat) produced by
different processors over time. The heat generated by
single core processors increased exponentially until the
mid-2000s when power densities began approaching 100
W/cm2 (in comparison, a nuclear reactor produces about
200 W/cm2!). The inability to practically dissipate that
much heat led, in part, to the development of multicore
processors and a leveling off of heat generation for
consumer processors.

None of these issues are insurmountable. Challenges
simply spur creative people to come up with innovative

solutions. Many of these problems will be solved,
and in the process, provide engineers (like you)
with jobs and opportunities. But, more importantly,
the minimum feature size of a processor is not
the end goal of innovation: it is the means to it.
Innovation seeks simply to make increasingly powerful
computation, not smaller feature sizes. Hence, the
move towards multicore processors. By sharing the
workload among various processors (called distributed
computing) we increase processor performance while
using less energy, generating less heat, and without
needing to run at warp speed. So it seems, as we
approach ever-smaller features, we simply will creatively
transition into new physical technologies and also new
computational techniques. As Gordon Moore himself
said, “It will not be like we hit a brick wall and
stop.”

Scaling Trends and Nanotechnology

It is an observable fact that each generation of tools
enables the construction of an even newer, smaller,
more powerful generation of tools. This is true not just
of mechanical devices, but electronic ones as well.
Today’s high-power processors could not have been
designed, much less tested, without the use of previous
processors that were employed to draw and simulate the
next generation. Two observations can be made in this
regard. First, we now have the technology to build tools
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Figure TF1-6: Time plot of computer processing power in MIPS per $1000. (From “When will computer hardware match the
human brain?” by Hans Moravec, Journal of Transhumanism, Vol. 1, 1998.)

to manipulate the environment at atomic resolution. At
least one generation of micro-scale techniques (ranging
from microelectromechanical systems—or MEMS—
to micro-chemical devices) has been developed that,
while useful in themselves, are also enabling the
construction of newer, nano-scale devices. These newer
devices range from 5 nm transistors to femtoliter (10−15)
microfluidic devices that can manipulate single protein
molecules. At these scales, the lines between mechanics,
electronics, and chemistry begin to blur! It is to these
ever-increasing interdisciplinary innovations that the term

nanotechnology rightfully belongs. Second, the rate
at which these innovations are occurring seems to be
increasing exponentially! (Consider Fig. TF1-6 and note
that the y axis is logarithmic and the plots are very
close to straight lines.) Keeping up with rapidly changing
technology is one of the exciting and challenging
aspects of an engineering career. Electrical engineers
use the Institute of Electrical and Electronic Engineers
(IEEE) to find professional publications, workshops, and
conferences to provide lifelong learning opportunities to
stay current and creative (see IEEE.org).
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As a general rule, we use:

• A lowercase letter, such as i for current, to represent
the general case:

i may or may not be time-varying

• A lowercase letter followed with (t) to emphasize
time:

i(t) is a time-varying quantity

• An uppercase letter if the quantity is not time-
varying; thus:

I is of constant value (dc quantity)

• A letter printed in boldface to denote that:

I has a specific meaning, such as a vector, a
matrix, the phasor counterpart of i(t), or the Laplace
or Fourier transform of i(t)

Exercise 1-1: Convert the following quantities to
scientific notation: (a) 52 mV, (b) 0.3 MV, (c) 136 nA,
and (d) 0.05 Gbits/s.

Answer:   (a) 5.2 × 10−2 V, (b) 3 × 105 V,  
(c) 1.36 × 10−7 A, and (d) 5 × 107 bits/s. (See )

Exercise 1-2: Convert the following quantities to a prefix
format such that the number preceding the prefix is
between 1 and 999: (a) 8.32×107 Hz, (b) 1.67×10−8 m,
(c) 9.79 × 10−16 g, (d) 4.48 × 1013V, and (e) 762 bits/s.

Answer: (a) 83.2 MHz, (b) 16.7 nm, (c) 979 ag,
(d) 44.8 TV, and (e) 762 bits/s. (See  )

Exercise 1-3: Simplify the following operations into
a single number, expressed in prefix format: (a)
A = 10 μV + 2.3 mV, (b) B = 4THz − 230 GHz, (c)
C = 3 mm/60 μm.

Answer: (a) A = 2.31 mV, (b) B = 3.77 THz, (c) 
C = 50. (See           )

1-3 Circuit Representation

When we design circuits, we first think of what we want the
circuit to do (its functional block diagram), then we design

circuits to do this (a circuit diagram). We then select and lay
out the components in the circuit (PCB layout) and build it. Let’s
consider a capacitive-touch sensor such as the touch screen on
the iphone. The circuit includes a flat conducting plate, two ICs,
one diode ( ), and several resistors and capacitors. When
the plate is touched by a finger, the capacitance introduced
by the finger causes the output voltage to rise above a preset
threshold, signifying the fact that the plate has been touched.
The voltage rise can then be used to trigger a follow-up circuit
such as a light-emitting diode (LED). Figure 1-4 contains four
parts: (a) a block diagram of a circuit designed as a capacitor-
touch-sensor, (b) a circuit diagram representing the circuit’s
electrical configuration, (c) the circuit’s printed-circuit-board
(PCB) layout, and (d) a photograph of the circuit with all of its
components.

The PCB layout shown in part (c) of Fig. 1-4 displays
the intended locations of the circuit elements and the printed
conducting lines needed to connect the elements to each other.
These lines are used in lieu of wires. The diagram in part (d)
is the symbolic representation of the physical circuit. In this
particular representation the resistors are drawn as rectangular
boxes instead of the more familiar symbol . Designing
the PCB layout and the circuit’s physical architecture is an
important step in the production process, but it is outside the
scope of this book. Our prime interest is to help the reader
understand how circuits work, and to use that understanding to
design circuits to perform functions of interest. Accordingly,
circuit diagrams will be regarded as true representations of the
many circuits and systems we discuss in this and the following
chapters.

1-3.1 Circuit Elements

Table 1-3 provides a partial list of the symbols used in this book
to represent circuit elements in circuit diagrams.

By way of an example, the diagram in Fig. 1-5 contains the
following elements:

• A 12V ac source, denoted by the symbol +
−~ .An ac source

varies sinusoidally with time (such as a 60 Hz wall outlet).

• A 6 V dc source, denoted by the symbol
+
_ . A dc source

is constant in time (such as a battery).

• Six resistors, all denoted by the symbol

• One capacitor, denoted by the symbol

• One inductor, denoted by the symbol
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(d) Actual circuit(c) Printed circuit board (PCB)

(a) Block diagram (b) Circuit diagram

Metal plate Capacitor IC Diode
5 V power supply to be connected here

Output voltage

Resistor

Sensor
Volt: 0

LED

Sensor
Volt: 1.5 V

Figure 1-4: (a) Block diagram, (b) circuit diagram, (c) printed-circuit-board (PCB) layout, (d) photograph of a touch-sensor circuit.

• An important integrated circuit known as an operational
amplifier (or op amp for short), denoted by a triangular
symbol (the internal circuit of the op amp is not shown).

1-3.2 Circuit Architecture

The vocabulary commonly used to describe the architecture of
an electric circuit includes a number of important terms. Short,
but precise, definitions follow.

• Node: electrical conductor(s) or wires that connect two
or more circuit elements. The node is not just a point, but
includes the entire set of wires between two or more circuit
elements. Nodes are color-coded in Fig. 1-5. For example,
node N1 is red, N2 is green, and N3 is orange. The dot at N1

is typically used to emphasize that the wires are actually
connected together. All conductors in a node always have
the same voltage.

• Ordinary node: an electrical connection point that
connects only two elements, such as all the yellow nodes
in Fig. 1-5.

• Extraordinary node: node connected to three or more
elements. Figure 1-5 contains four extraordinary nodes,
denoted N1 through N4, of which N4 has been selected as
a reference voltage node, often referred to as the ground
node. When two points with no element between them are
connected by a conducting wire, they are regarded as the
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Ordinary node
Extraordinary
node

Op amp

Same node
Ground

Conducting
wire

Loop 1
Loop 2

Capacitor

Inductor

Branch containing R1

N2

N3

N1

N4 N4

R1 R3

R2

R6R5
L

C

R4

+
_

+
_

+
−~υ1 = 12 cos (377t) V

υ2 = 6 V
dc source

ac source

Figure 1-5: Diagram representing a circuit that contains dc and ac sources, passive elements (six resistors, one capacitor, and one inductor),
and one active element (operational amplifier). Ordinary nodes are in yellow, extraordinary nodes in other colors, and the ground node in
black.

same node. Hence, all of the black wires together located
at the bottom of the circuit in Fig. 1-5 make up node N4.

• Branch: the trace between two consecutive nodes
containing one and only one element between them.

• Path: any continuous sequence of branches, provided that
no one node is encountered more than once. The path
between nodes N1 and N2 consists of two branches, one
containing R3 and another containing C.

• Loop: a closed path in which the start and end node is one
and the same. Figure 1-5 contains several loops, of which
two are shown explicitly.

• Mesh: a loop that encloses no other loop. In Fig. 1-5,
Loop 1 is a mesh, but Loop 2 is not.

• In series: path in which elements share the same current.
As you move along a series path you encounter only
ordinary nodes. Elements on these paths are in series. In
Fig. 1-6(a), the two light bulbs are in series because the
same current flows through both of them. Also, in Fig. 1-5,
the two sources and R1 are all in series, as are R2 and L,
and R3 and C.

(a) Series circuit

(b) Parallel circuit

Battery

+ _

+ _
I

V1 + _V2

Battery

+ _

I1

+ _V

+ _V

I2

Figure 1-6: Two light bulbs connected (a) in series and (b) in
parallel.
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Table 1-3: Symbols for common circuit elements.

Conductor
(wire)

Two conductors
electrically joined

at node A

orA A

Two conductors
not joined
electrically

Fixed-value
resistor

Variable resistor Capacitor

Inductor 10 V dc
battery

10 V
+
_

12 V ac
source

12 V +
−~

6 A current
source

6 A

Switch Operational
amplifier

+
_

Transistor Voltmeter

Volts

Ammeter

Amps

IVΩ

com

A

Dependent
voltage source

υs+

Dependent
current source

is

Light-emitting
diode (LED)

• In parallel: path in which elements share the same voltage,
which means they share the same pair of nodes. In
Fig. 1-6(b), the two bulbs are in parallel because they share
the same battery voltage across them. In Fig. 1-5 the series
combination (υ1 − υ2 − R1) is in parallel with the series
combination (R2 − L).

Table 1-4: Circuit terminology.

Node: An electrical connection between two or more
elements.

Ordinary node: An electrical connection node that
connects to only two elements.

Extraordinary node: An electrical connection node that
connects to three or more elements.

Branch: Trace between two consecutive nodes with only
one element between them.

Path: Continuous sequence of branches with no node
encountered more than once.

Extraordinary path: Path between two adjacent extraor-
dinary nodes.

Loop: Closed path with the same start and end node.

Independent loop: Loop containing one or more branches
not contained in any other independent loop.

Mesh: Loop that encloses no other loops.

In series: Elements that share the same current. They have
only ordinary nodes between them.

In parallel: Elements that share the same voltage. They
share two extraordinary nodes.

A summary of circuit terminology is given in Table 1-4.

Example 1-1: In Series and In Parallel

(a) For the circuit in Fig. 1-7(a):

(1) Which current is the same as I2?

(2) Under what circumstance would I1 = I2?

(b) For the circuit in Fig. 1-7(b):

(1) Which node voltages are at the same voltage as
node 4?

(2) Which node voltages are the same as the ground
voltage?

(c) Which elements, or combinations of elements, in the
circuits of Fig. 1-7 are connected in series and which are
connected in parallel?
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(a)

(b)

2 Ω 6 V4 Ω 2 Ω 4 Ω
+
_

V1V2

V5

V3

V4 V6

V7

12 V 5 V6 Ω4 Ω

1 Ω 8 Ω

1 V

+_+_

+ _

+
_

+
_

+ _

I1

I2

I5 I3

I4

Figure 1-7: Circuits for Example 1-1.

Solution: (a) Two currents are the same if they flow in the
same branch and in the same direction. Hence:

(1) I2 = I4.

(2) I1 = I2 only if I3 = I5 = 0.

(b) Two nodes are electrically the same if the only connection
between them is a short circuit. Hence:

(1) V1 = V2 = V3 = V4 = V6, relative to the ground node.
Hence, all five nodes are electrically the same.

(2) Nodes V5 and V7 are the same as the ground node.

(c) Two or more elements are connected electrically in series
if the same current flows through all of them, and they are
connected in parallel if they share the same nodes.

Circuit in Fig. 1-7(a):

In series: 8 � resistor and 5 V voltage source (call it
combination 1).

In series: 1 � resistor and 12 V voltage source (call it
combination 2).

In parallel: 6 � resistor and combination 1. (Call this
combination 3.)

In parallel: 4 � resistor and combination 2. (Call this
combination 4.)

Also, combination 3, combination 4, and the 1 V source
are all in series.

Circuit in Fig. 1-7(b):

In series: none.

In parallel: all five elements.

1-3.3 Planar Circuits

� A circuit is planar if it is possible to draw it on a two-
dimensional plane without having any two of its branches
cross over or under one another (Fig. 1-8). �

If such a crossing is unavoidable, then the circuit is nonplanar.
This concept becomes particularly important when we construct
circuit boards (see Fig. 1-4) or layers on an integrated circuit.
To clarify what we mean, we start by examining the circuit
in Fig. 1-8(a). An initial examination of the circuit topology
might suggest that the circuit is nonplanar because the branches
containing resistors R3 and R4 appear to cross one another
without having physical contact between them (absence of a
solid dot at crossover point). However, if we redraw the branch
containing R4 on the outside, as shown in configuration (b) of
Fig. 1-8, we would then conclude that the circuit is planar after
all, and that is so because it is possible to draw it in a single
plane without crossovers. In contrast, the circuit in Fig. 1-8(c) is
indeed nonplanar because no matter how we might try to redraw
it, it will always include at least one crossover of branches.

� Circuits in this book will be presumed to be planar. �

Concept Question 1-4: What is the difference between
the symbol for a dc voltage source and that for an ac 
source? (See        )

Concept Question 1-5: What differentiates an extraordi-
nary node from an ordinary node? A loop from a mesh? 
(See        )



“book” — 2015/5/4 — 6:55 — page 20 — #20

20 CHAPTER 1 CIRCUIT TERMINOLOGY

(b) Redrawn

(c) Nonplanar circuit

(a) Original circuit

R1
R3

υ0

R5

R4

R2+
-
+
_

R1
R3

R4

υ0

R5

R2
+
-
+
_

Not a connection

R1
R3

R4
υ0

R5

R2

R7R9R8R6

+
-
+
_

Figure 1-8: The branches containing R3 and R4 in (a) appear to
cross over one another, but redrawing the circuit as in (b) avoids
the crossover, thereby demonstrating that the circuit is planar.

Concept Question 1-6: Color-code all of the nodes in
Fig. 1-8(b), using Fig. 1-5 as a model. (See        )

1-4 Electric Charge and Current

1-4.1 Charge

At the atomic scale, all matter contains a mixture of neutrons,
positively charged protons, and negatively charged electrons.
The nature of the force induced by electric charge was
established by the French scientist Charles Augustin de
Coulomb (1736–1806) during the latter part of the 18th century.
This was followed by a series of experiments on electricity
and magnetism over the next 100 years, culminating in J. J.
Thompson’s discovery of the electron in 1897. Through these
and more recent investigations, we can ascribe to electric charge
the following fundamental properties:

1. Charge can be either positive or negative.

2. The fundamental (smallest) quantity of charge is that
of a single electron or proton. Its magnitude usually
is denoted by the letter e.

3. According to the law of conservation of charge, the
(net) charge in a closed region can neither be created
nor destroyed.

4. Two like charges repel one another, whereas two
charges of opposite polarity attract.

The unit for charge is the coulomb (C) and the magnitude of e

is

e = 1.6 × 10−19 (C). (1.1)

The symbol commonly used to represent charge is q. The charge
of a single proton is qp = e, and that of an electron, which is
equal in magnitude but opposite in polarity, is qe = −e. It is
important to note that the term charge implies “net charge,”
which is equal to the combined charge of all protons present
in any given region of space minus the combined charge of all
electrons in that region. Hence, charge is always an integral
multiple of e.

The actions by charges attracting or repelling each other
are responsible for the movement of charge from one
location to another, thereby constituting an electric current.
Consider the simple circuit in Fig. 1-9 depicting a battery of
voltage V connected across a resistor R using metal wires. The
arrangement gives rise to an electric current I given by Ohm’s
law (which is discussed in more detail in Chapter 2):

I = V

R
. (1.2)
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RV
I

e-

e- e-

Atom

Expanded view of wire

Electron

+
_

Figure 1-9: The current flowing in the wire is due to electron
transport through a drift process, as illustrated by the magnified
structure of the wire.

As shown in Fig. 1-9:

� The current flows from the positive (+) terminal of
the battery to its negative (−) terminal, along the path
external to the battery. �

Through chemical or other means, the battery generates a supply
of electrons at its negatively labeled terminal by ionizing some
of the molecules of its constituent material.A convenient model
for characterizing the functionality of a battery is to regard the
internal path between its terminals as unavailable for the flow
of charge, forcing the electrons to flow from the (−) terminal,
through the external path, and towards the (+) terminal to
achieve neutrality. It is important to note that:

� The direction of electric current I is defined to be
the same as the direction of flow that positive charges
would follow, which is opposite to the direction of flow
of electrons e−. �

Even though we talk about electrons flowing through the wires
and the resistor, in reality the process is a drift movement
rather than free-flow. The wire material consists of atoms
with loosely attached electrons. The positive polarity of the
(+) terminal exerts an attractive force on the electrons of the
hitherto neutral atoms adjacent to that terminal, causing some

i

60 m

t = 0

Switch

Wire

100 Ω8 V
+
_

Figure 1-10: After closing the switch, it takes only 0.2 μs to
observe a current in the resistor.

of the loosely attached electrons to detach and jump to the (+)
terminal. The atoms that have lost those electrons now become
positively charged (ionized), thereby attracting electrons from
their neighbors and compelling them to detach from their hosts
and to attach themselves to the ionized atoms instead. This
process continues throughout the wire segment (between the
(+) battery terminal and the resistor), into the longitudinal path
of the resistor, and finally through the wire segment between
the resistor and the (−) terminal. The net result is that the
(−) terminal loses an electron and the (+) terminal gains one,
making it appear as if the very same electron that left the (−)
terminal actually flowed through the wires and the resistor and
finally appeared at the (+) terminal. It is as if the path itself
were not involved in the electron transfer, which is not the case.

The process of sequential migration of electrons from one
atom to the next is called electron drift, and it is this process
that gives rise to the flow of conduction current through a
circuit. To illustrate how important this process is in terms of
the electronic transmission of information, let us examine the
elementary transmission experiment represented by the circuit
shown in Fig. 1-10. The circuit consists of an 8-volt battery
and a switch on one end, a resistor on the other end, and a
60 m long two-wire transmission line in between. The wires
are made of copper, and they have a circular cross section with
a 2 mm diameter.After closing the switch, a current starts to flow
through the circuit. It is instructive to compare two velocities
associated with the consequence of closing the switch, namely
the actual (physical) drift velocity of the electrons inside the
copper wires and the transmission velocity (of the information
announcing that the switch has been closed) between the battery
and the resistor. For the specified parameters of the circuit
shown in Fig. 1-10, the electron drift velocity—which is the
actual physical velocity of the electrons along the wire—can
be calculated readily and shown to be on the order of only
10−4 m/s. Hence, it would take about 1 million seconds (∼ 10
days) for an electron to physically travel over a distance of
120 m. In contrast, the time delay between closing the switch at
the sending end and observing a response at the receiving end
(in the form of current flow through the resistor) is extremely
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−

−

−

−

−

−

−

−

i
Current direction

Direction of 
electron flow

Electron

Cross sectionWire

Figure 1-11: Direction of (positive) current flow through a
conductor is opposite that of electrons.

short (≈ 0.2 μs). This is because the transmission velocity is
on the order of the velocity of light c = 3 × 108 m/s. Thus:

� The rate at which information can be transmitted
electronically using conducting wires is about 12 orders
of magnitude faster than the actual transport velocity of
the electrons flowing through those wires! �

This fact is at the heart of what makes electronic communication
systems viable.

1-4.2 Current

Moving charge gives rise to current.

� Electric current is defined as the time rate of transfer
of electric charge across a specified cross section. �

For the wire segment depicted in Fig. 1-11, the current i flowing
through it is equal to the amount of charge dq that crosses the
wire’s cross section over an infinitesimal time duration dt , given
as

i = dq

dt
(A), (1.3)

and the unit for current is the ampere (A). In general, both
positive and negative charges may flow across the hypothetical
interface, and the flow may occur in both directions.

� By convention, the direction of i is defined to be the
direction of the net flow of (net) charge (positive minus
negative). �

Circuit 5 A Circuit −5 A

(a) (b)

=

Figure 1-12: A current of 5 A flowing “downward” is the same
as −5 A flowing “upward” through the wire.

The circuit segment denoted with an arrow in Fig. 1-12(a)
signifies that a current of 5 A is flowing through that wire
segment in the direction of the arrow. The same information
about the current magnitude and direction may be displayed as
in Fig. 1-12(b), where the arrow points in the opposite direction
and the current is expressed as −5 A.

When a battery is connected to a circuit, the resultant current
that flows through it usually is constant in time (Fig. 1-13(a))—
at least over the time duration of interest—in which case we
refer to it as a direct current or dc for short. In contrast, the
currents flowing in household systems (as well as in many

(b)(a)

dc

t

I

(d)(c)

Decaying

t

i(t)

Rising

t

i(t)

(e)

Damped oscillatory
i(t)

t

ac

t

i(t)

Figure 1-13: Graphical illustrations of various types of current
variations with time.
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electrical systems) are called alternating currents or simply ac,
because they vary sinusoidally with time (Fig. 1-13(b)). Other
time variations also may occur in circuits, such as exponential
rises and decays (Fig. 1-13(c) and (d)), exponentially damped
oscillations (Fig. 1-13(e)), and many others.

� As a reminder, we use uppercase letters, such as V

and I , to denote dc quantities (with no time variation), and
lowercase letters, such as υ and i, to denote the general
case, which may be either dc or ac. �

Even though in the overwhelming majority of cases the
current flowing through a material is dominated by the
movement of electrons (as opposed to positively charged ions),
it is advisable to start thinking of the current in terms of positive
charge, primarily to avoid having to keep track of the fact that
current direction is defined to be in opposition to the direction
of flow of negative charges.

Example 1-2: Charge Transfer

In terms of the current i(t) flowing past a reference cross section
in a wire:

(a) Develop an expression for the cumulative chargeq(t) that
has been transferred past that cross section up to time t . Apply
the result to the exponential current displayed in Fig. 1-14(a),
which is given by

i(t) =
{

0 for t < 0,

6e−0.2t A for t ≥ 0.
(1.4)

(b) Develop an expression for the net charge �Q(t1, t2) that
flowed through the cross section between times t1 and t2, and
then compute �Q for t1 = 1 s and t2 = 2 s.

Solution: (a) We start by rewriting Eq. (1.3) in the form:

dq = i dt.

Then by integrating both sides over the limits −∞ to t , we have

t∫
−∞

dq =
t∫

−∞
i dt,

which yields

q(t) − q(−∞) =
t∫

−∞
i dt, (1.5)

(a)

Current

Charge

(b)

t

i(t)

6 A

t

q(t)

30 C

Figure 1-14: The current i(t) displayed in (a) generates the
cumulative charge q(t) displayed in (b).

where q(−∞) represents the charge that was transferred
through the wire “at the beginning of time.” We choose −∞
as a reference limit in the integration, because it allows us to
set q(−∞) = 0, implying that no charge had been transferred
prior to that point in time. Hence, Eq. (1.5) becomes

q(t) =
t∫

−∞
i dt (C). (1.6)

For i(t) as given by Eq. (1.4), i(t) = 0 for t < 0. Upon changing
the lower integration limit to zero and inserting the expression
for i(t) in Eq. (1.6), the integration leads to

q(t) =
t∫

0

6e−0.2t dt = −6

0.2
e−0.2t

∣∣∣t
0

= 30[1 − e−0.2t ] C.

A plot of q(t) versus t is displayed in Fig. 1-14(b). The
cumulative charge that would transfer after a long period of time
is obtained by setting t = +∞, which yields q(+∞) = 30 C.

(b) The cumulative charge that has flowed through the cross
section up to time t1 is q(t1), and a similar definition applies
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to q(t2). Hence, the net charge that flowed through the cross
section over the time interval between t1 and t2 is

�Q(t1, t2) = q(t2) − q(t1) =
t2∫

−∞
i dt −

t1∫
−∞

i dt =
t2∫

t1

i dt.

For t1 = 1 s, t2 = 2 s, and i(t) as given by Eq. (1.4),

�Q(1, 2) =
2∫

1

6e−0.2t dt = 6e−0.2t

−0.2

∣∣∣∣
2

1

= −30(e−0.4 − e−0.2) = 4.45 C.

Example 1-3: Current

The charge flowing past a certain location in a wire is given by

q(t) =
{

0 for t < 0,

5te−0.1t C for t ≥ 0.

Determine (a) the current at t = 0 and (b) the instant at which
q(t) is a maximum and the corresponding value of q.

Solution: (a) Application of Eq. (1.3) yields

i = dq

dt
= d

dt
(5te−0.1t ) = 5e−0.1t − 0.5te−0.1t

= (5 − 0.5t)e−0.1t A.

Setting t = 0 in the expression gives i(0) = 5 A.
Note that i �= 0, even though q(t) = 0 at t = 0.

(b) To determine the value of t at which q(t) is a maximum,
we find dq/dt and then set it equal to zero:

dq

dt
= (5 − 0.5t)e−0.1t = 0,

which is satisfied when

5 − 0.5t = 0 or t = 10 s,

as well as when

e−0.1t = 0 or t = ∞.

The first value (t = 10 s) corresponds to a maximum and the
second value (t = ∞) corresponds to a minimum (which can

be verified either by graphing q(t) or by taking the second
derivative of q(t) and evaluating it at t = 10 s and at t = ∞).

At t = 10 s,

q(10) = 5 × 10e−0.1×10 = 50e−1 = 18.4 C.

Concept Question 1-7: What are the four fundamental
properties of electric charge? (See         )  

Concept Question 1-8: Is the direction of electric current
in a wire defined to be the same as or opposite to the 
direction of flow of electrons? (See         )

Concept Question 1-9: How does electron drift lead to
the conduction of electric current?  (See         )

Exercise 1-4: If the current flowing through a given
resistor in a circuit is given by i(t) = 5[1 − e−2t ] A for
t ≥ 0, determine the total amount of charge that passed
through the resistor between t = 0 and t = 0.2 s. 

Answer: �Q(0, 0.2) = 0.18 C. (See       C3 )

Exercise 1-5: If q(t) has the waveform shown
in Fig. E1.5, determine the corresponding current
waveform.

q(t)

t (s)
4 6 7 8

2 C

51 32

Figure E1.5

Answer:

i(t)

t (s)
6

2 A

−2 A
51 2 4 7 83

(See  C3)
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1-5 Voltage and Power

1-5.1 Voltage

The two primary quantities used in circuit analysis are electrical
current and voltage. Current is associated with the movement
(flow) of electric charge and voltage is associated with the
displacement or concentration of that charge. Before we offer
a formal definition for voltage, let us consider a water analogy.
Suppose we were to take a very small (differential) amount of
water of mass dm from ground level at elevation z = b and
raise it (pump it up) to an elevation z = a to fill a water tank,
as depicted in Fig. 1-15(a). Doing so requires the expenditure
of kinetic energy dw, which is gained by mass dm in the form
of gravitational potential energy. [Were we to open a valve to
allow the water to flow back down (under the force of gravity),
the water would expend its potential energy by converting it into
kinetic energy as it flows downward.] At height a, mass dm has
potential energy dw relative to the ground surface.Accordingly,
we can define a “gravitational voltage” Vab as

Vab = dw

dm
. (1.7a)

Thus, Vab is a measure of the potential energy change dw, per
differential mass dm, between heights a and b.

Next, we consider the electrical voltage associated with
the electrical force of attraction between charges of opposite
polarity. Let us examine the energy implications of polarizing
a hitherto neutral material, thereby establishing opposite
electrical polarities on its two ends. Suppose we have a piece of
material (such as a resistor) to which we connect two short wires
and label their end points a and b, as shown in Fig. 1-15(b). At
each point, we have two small metal plates, the combination of
which constitutes a capacitor. Starting out with an electrically
neutral structure, assume that we are able to detach an electron
from one of the atoms at point a and move it to point b. Moving
a negative charge from the (remaining) positively charged
atom against the attraction force between them requires the
expenditure of a certain amount of energy. Voltage is a measure
of this expenditure of energy relative to the amount of charge
involved, and it always involves two spatial locations:

� Voltage often is denoted υab to emphasize the fact that
it is the voltage difference between points a and b. �

The two points may be two locations in a circuit or any two
points in space.

Against this background, we now offer the following formal
definition for voltage:

(b) Moving charge from a to b

(a) Raising water from ground level at b to height a

υab

a

b

e
_

e
_

e
_

+ +

_ _

z = a

z = b

h

Figure 1-15: Moving charge dq through the material in (b) is
analogous to raising mass dm in (a).

� The voltage υab between location a and location b is
the ratio of dw to dq, where dw is the energy in joules
(J) required to move (positive) charge dq from b to a (or
negative charge from a to b). �

That is,

υab = dw

dq
, (1.7b)

and the unit for voltage is the volt (V), named after the inventor
of the first battery, Alessandro Volta (1745–1827). Voltage also
is called potential difference. In terms of that terminology, if
υab has a positive value, it means that point a is at a potential
higher than that of point b. Accordingly, points a and b in
Fig. 1-15(b) are denoted with (+) and (−) signs, respectively.
If υab = 5 V, we often use the terminology: “The voltage rise
from b to a is 5 V,” or “The voltage drop from a to b is 5 V.”
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Circuit 12 V

a

b

Circuit −12 V

a

b

(a) (b)

=

Figure 1-16: In (a), with the (+) designation at node a,
Vab = 12 V. In (b), with the (+) designation at node b,
Vba = −12 V, which is equivalent to Vab = 12 V. [That is,
Vab = −Vba .]

Just as 5 A of current flowing from a to b in a circuit
conveys the same information as −5 A flowing in the opposite
direction, a similar analogy applies to voltage. Thus, the two
representations in Fig. 1-16 convey the same information with
regard to the voltage between terminals a and b. Also, the terms
dc and ac defined earlier for current apply to voltage as well.
A constant voltage is called a dc voltage and a sinusoidally
time-varying voltage is called an ac voltage.

Ground

Let us look again at the water and circuit analogies in
Fig. 1-15. We originally considered only a very localized
potential difference as we pumped the water up into the tank.
But its total potential energy (the ability to create water pressure
in your shower!) is different if this tank is on a hill or in a valley.
In order to design a water system for a city, we have to define
some location to be the real “ground” point from which all
other heights are measured. For convenience, this is typically
the lowest elevation in the terrain.

Similarly, for the electrical system we originally considered
only a very localized potential difference as we moved electric
charge from one plate of the capacitor to the other. But the
potential of such a capacitor (the ability to turn on a light bulb)
depends not only on how much energy it has, but also on how
and where it is connected in the rest of the circuit. In order to
design an electrical system, we have to define some location to
be the real “ground” location from which all other voltages are
calculated. For convenience, this is typically the lowest voltage
in the system. For mobile systems, this is usually the chassis
or metal structure (called chassis ground), and for buildings
and fixed systems, this is typically the Earth ground (usually
physical rods or poles are buried in the dirt near the structure).

Since by definition voltage is not an absolute quantity but
rather the difference in electric potential between two locations,
it is often convenient to select a reference point in the circuit,

(a) Ground = Node 4
Voltage reference (ground)

R1 V1 = 6 V V2 = 4 VR2

R3
12 V

V3 = 12 V

V4 = 0

R4

Node 1
Node 2Node 3

Node 4

+
_

(b) Ground = Node 1

Voltage reference

R1

V1 = 0
V2 = −2 VR2

R3
12 V

V3 = 6 V

V4 = −6 V

R4

Node 1
Node 2Node 3

Node 4

+
_

Figure 1-17: Ground is any point in the circuit selected to serve
as a reference point for all points in the circuit.

label it ground, and then define the voltage at any point in the
circuit with respect to that ground point. Thus, when we say that
the voltage V1 at node 1 in Fig. 1-17(a) is 6 V, we mean that the
potential difference between node 1 and the ground reference
point (node 4) is 6 V, which is equivalent to having assigned
the ground node a voltage of zero. Also, since V1 = 6 V and
V2 = 4 V, it follows that

V12 = V1 − V2 = 6 − 4 = 2 V.

The voltage at node 3 is V3 = 12 V, relative to node 4. This is
because nodes 3 and 4 are separated by a 12 V voltage source
with its (+) terminal next to node 3 and (−) terminal next to
node 4.

Had we chosen a node other than node 4 as our ground node,
node voltages V1 to V4 would have had entirely different values
(see Example 1-4). The takeaway message is:
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� Node voltages are defined relative to a specific
reference (ground) node whose voltage is assigned a
voltage of zero. If a different node is selected as ground,
the values of the node voltages may change to reflect the
fact that the reference node has changed. �

Voltage difference is defined between any two nodes. It is
often denoted with two subscripts, as in V12 = V1 − V2, where
V1 and V2 are the voltages at nodes 1 and 2, with both defined
to a common reference (ground).

Example 1-4: Node Voltages

In Fig. 1-17(a), node 4 was selected as the ground node.
Suppose node 1 is selected as the ground node instead, as shown
in Fig. 1-17(b). Use the information in Fig. 1-17(a) to determine
node voltages V2 to V4 when defined relative to V1 at node 1.

Solution: In the circuit of Fig. 1-17(a), V2 is 2 V lower
in level than V1 (4 V compared to 6 V). Hence, in the new
configuration in Fig. 1-17(b), V2 will still be 2 V lower
than V1, and since V1 = 0, it follows that V2 = −2 V. Similarly,
V3 = 6 V and V4 = −6 V.

To summarize:

node 4 = ground node 1 = ground
V1 = 6 V 0
V2 = 4 V −2 V
V3 = 12 V 6 V
V4 = 0 V −6 V

When a circuit is constructed in a laboratory, the chassis
often is used as the common ground point—in which case it
is called chassis ground. As discussed later in Section 10-1,
in a household electrical network, outlets are connected to
three wires—one of which is called Earth ground because it is
connected to the physical ground next to the house.

Measuring voltage and current

The voltmeter is the standard instrument used to measure the
voltage difference between two points in a circuit. To measure
V12 in the circuit of Fig. 1-18, we connect the (+) red terminal
of the voltmeter to terminal 1 and the (−) black terminal to
terminal 2 in parallel with V12. To measure a node voltage,
we connect the (+) red terminal to the node and the (−) black
terminal to the ground node. Connecting the voltmeter to the
circuit does not require any changes to the circuit, and in the
ideal case, the presence of the voltmeter has no effect on any of

(a) Voltmeter and ammeter connections

(b) Voltmeters connected to measure voltage difference
Vab and node voltage Va (relative to ground)

V12

Vs

Volts

Amps
I

R+

Voltmeter

1 2
Ammeter

Node Va

Measures
Vab

Measures Va
(relative to

ground)
Node Vb

R1

R2

Vs
+

_

_

Figure 1-18: An ideal voltmeter measures the voltage
difference between two points (such as nodes 1 and 2 in (a))
without interfering with the circuit (i.e., no current runs through
the voltmeter). Similarly, an ideal ammeter measures the current
magnitude and direction with no voltage drop across itself. In (b),
one voltmeter is used to measure voltage difference Vab and
another to measure node voltage Va . Note the polarity of the
meters. The red leads are connected to the + terminals of the
voltages or currents, and the black leads are connected to the −
terminals of the voltages or currents. For the voltmeter, the red
port on the left is (+) and the black port in the center is (−), and
for the ammeter the red port on the right is the (+).

the voltages and currents associated with the circuit. In reality,
the voltmeter has to extract some current from the circuit in
order to perform the voltage measurement, but the voltmeter is
designed such that the amount of extracted current is so small
as to have a negligible effect on the circuit.

To measure the current flowing through a wire, it is necessary
to insert an ammeter in series in that path, as illustrated by
Fig. 1-18(a). The ammeter is connected so that positive current
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R1

V34 = 0I12 = 0

R2
V

Open circuit Short circuit

1 2 3 4

+
_

Figure 1-19: Open circuit between terminals 1 and 2, and short
circuit between terminals 3 and 4.

flows from the (+) red lead to the (−) black lead. The voltage
drop across an ideal ammeter is zero.

Open and short circuits

� An open circuit refers to the condition of path
discontinuity (infinite resistance) between two points. No
current can flow through an open circuit, regardless of the
voltage across it. �

The path between terminals 1 and 2 in Fig. 1-19 is an open
circuit.

� In contrast, a short circuit constitutes the condition of
complete path continuity (with zero electrical resistance)
between two points, such as between terminals 3 and 4 in
Fig. 1-19. �

� No voltage drop occurs across a short circuit, regardless
of the magnitude of the current flowing through it. �

Switches

Switches come in many varieties, depending on the intended
function. They can be manual (such as an ordinary household
light switch) or electrically controlled by a voltage or current
(such as a circuit breaker). The simple ON/OFF switch depicted
in Fig. 1-20(a) is known as a single-pole single-throw (SPST)
switch. The ON (closed) position acts like a short circuit,
allowing current to flow while extracting no voltage drop across
the switch’s terminals; the OFF (open) position acts like an
open circuit. The specific time t = t0 denoted below or above
the switch (Fig. 1-20(a)) refers to the time t0 at which it opens
or closes.

(b) Switch initially connected to terminal 1,
then moved to terminal 2 at t = t0

(a)

SPST switches

SPDT switch
t = t0

1

2

Switch initially open,
then closes at t = t0

Switch initially closed,
then opens at t = t0

t = t0 t = t0

Figure 1-20: (a) Single-pole single-throw (SPST) and
(b) single-pole double-throw (SPDT) switches.

If the purpose of the switch is to combine two switching
functions so as to connect a common terminal to either of
two other terminals, then we need to use the single-pole
double-throw (SPDT) switch illustrated in Fig. 1-20(b). Before
t = t0, the common terminal is connected to terminal 1; then at
t = t0, that connection ceases (becomes open), and it is replaced
with a connection between the common terminal and terminal 2.

1-5.2 Power

The circuit shown in Fig. 1-21(a) consists of a battery and a
light bulb connected by an SPST switch in the open position.
No current flows through the open circuit, but the battery
has a voltage Vbat across it, due to the excess positive and
negative charges it has at its two terminals. After the switch
is closed at t = 5 s, as indicated in Fig. 1-21(b), a current I

will flow through the circuit along the indicated direction. The
battery’s excess positive charges flow from its positive terminal
downward through the light bulb towards the battery’s negative
terminal, and (since current direction is defined to coincide with
the direction of flow of positive charge) the current direction is
as indicated in the figure.

The consequences of current flow through the circuit are: (1)
The battery acts as a supplier of power and (2) The light bulb
acts as a recipient of power, which gets absorbed by its filament,
causing it to heat up and glow, resulting in the conversion of
electrical power into light and heat.
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(a)

(b)

Vbat Vbulb

Switch closes at t = 5 s

+
+

I

+
Vbat

Switch open

_

_
_

Figure 1-21: Current flow through a resistor (light-bulb
filament) after closing the witch.

� A power supply, such as a battery, offers a voltage rise
across it as we follow the current from the terminal at
which it enters (denoted with a (−) sign) to the terminal
from which it leaves (denoted with a (+) sign). In contrast,
a power recipient (such as a light bulb) exhibits a voltage
drop across its corresponding terminals. This set of
assignments of voltage polarities relative to the direction
of current flow for devices generating power versus those
consuming power is known as the passive sign convention
(Fig. 1-22). We will adhere to it throughout the book. �

Our next task is to establish an expression for the power p

delivered to or received by an electrical device. By definition,
power is the time rate of change of energy,

p = dw

dt
(W), (1.8)

and its unit is the watt (W), named after the Scottish engineer
and inventor James Watt (1736–1819), who is credited with the
development of the steam engine from an embryonic stage into
a viable and efficient source of power. Using Eqs. (1.3) and
(1.7b), we can rewrite Eq. (1.8) as

p = dw

dt
= dw

dq
· dq

dt

Passive Sign Convention

p > 0 power delivered to device
p < 0 power supplied by device

Note that i direction is defined as entering
  (+) side of υ.

i Device
p = υi

υ

Figure 1-22: Passive sign convention.

or simply

p = υi (W). (1.9)

Consistent with the passive sign convention:

� The power delivered to a device is equal to the voltage
across it multiplied by the current entering through its (+)
voltage terminal. �

For example, a 100 W light bulb in a 120 V household electrical
system draws 0.83 A of current.

If the algebraic value of p is negative, then the device is a
supplier of energy. For an isolated electric circuit composed of
multiple elements, the law of conservation of power requires
that the algebraic sum of power for the entire circuit be always
zero. That is, for a circuit with n elements,

n∑
k=1

pk = 0, (1.10)

which means that the total power supplied by the circuit always
must equal the total power absorbed by it.

Power supplies are sometimes assigned ratings to describe
their capacities to deliver energy. A battery may be rated as
having an output capacity of 200 ampere-hours (Ah) at 9 volts,
which means that it can deliver a current I over a period of
time T (measured in hours) such that IT = 200 Ah, and it
can do so while maintaining a voltage of 9 V. Alternatively, its
output capacity may be expressed as 1.8 kilowatt-hours (kWh),
which represents the total amount of energy it can supply,
namely W = V IT (with T in hours).
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Technology Brief 2
Voltage: How Big Is Big?

Electrical voltage plays a central role in all of our electrical
circuits, our bodies, and many other effects seen in the
natural world. Table TT2-1 gives some perspective on
really little and really big voltages.

Big Voltages: Lightning

Lightning begins with clouds and the water cycle.
Storm clouds have tremendous amounts of turbulent air
(updrafts and downdrafts). This results in a thunderhead,
a cumulonimbus cloud that has the typical vertical shape
we all associate with a storm coming on. These clouds
can build quite suddenly from otherwise mild skies, thus
bringing on the classic afternoon thunderstorm. Freezing
and collisions of the water particles in the cloud break
some of the electrons away from the particles, making the
storm clouds positively charged at the top and negatively
charged at the bottom (Fig.TF2-1).This creates a voltage

Figure TF2-1: Turbulent air causes negative charges to build up on the bottom of cumulonimbus clouds, separated from the
positive charges on the top. The negative charges attract positive charges from the Earth, which move to the top of tall objects.
A lightning strike can occur between the negative cloud and positive Earth charges.

Table TT2-1: A wide range of voltage levels.

Bird standing on a power line 10 mV
(foot to foot)

Neuron action potential 55 mV
Cardiac action potential 100 mV
AA battery 1.5 V
TTL digital logic gates 5 V
Residential electricity (US) 110 V / 220 V
High voltage lines 110 kV +
Static electricity 20 to 25 kV
Lightning 1 billion volts

difference, similar to a battery, with values around a billion
volts!

Like a battery, these charges cannot just travel through
the air, because air is a good insulator. Normally, a
wire or other metal conductor would be needed in
order to carry the current from a battery. Not so with
lightning. The separation of charges (voltage difference)
creates an electric field. When the electric field is high
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enough (around 3 MV/m), the air breaks down and partially
ionizes. This means it changes from an insulator (that
cannot conduct electricity) to a conductor (that can).
The air breakdown creates ozone, and the “fresh
air” smell associated with lightning storms. The path
of ionized air is called a step leader. The negative
charges on the bottom of the cloud begin drawing
positive charge towards the Earth’s surface. The positive
charges are pulled as close to the negative cloud
charges as possible. They concentrate on the tops
of things that are tall, like trees, golfers, farmers on
their tractors, and hikers in the mountains. These
positive charges create streamers, reaching towards
the negative cloud charges. When a positive streamer
and a negative step leader meet, they can form a
complete path (like a wire) for lightning to travel from
the cloud to the ground (other types of lightning follow
a slightly different process). Silently, the lightning strike
occurs.

But the ionized air is only a partial conductor.When the
current of lightning passes through the resistive air, the
air heats up and expands so much and so quickly that
it causes a shock wave that produces a sound wave to
radiate away from the strike path. That’s thunder.

What should you do if a lightning storm approaches?
First, go indoors if you can, and stay away from water lines
and electrical appliances. Unplug sensitive electronics.
Lightning may strike the building, but the currents will pass
through the walls or the electrical system, to ground. If you
are outdoors, avoid high places, move off the ridges and
into draws and lowlands.

Also stay away from high, pointy things (such as tall
trees, flag poles, and raised golf clubs). Objects that are
pointy will concentrate the charge (and create a stronger
streamer) than things that are smooth and rounded.
Lightning rods use this principle to protect buildings and
structures. The lightning rod produces a much stronger
streamer than the rest of the building, so it is more
likely to be struck. The current from the lightning bolt can
then (hopefully safely) go down the cable to a ground
rod buried under the building. Figure TF2-2 shows an
example on the old rock church at Sleepy Hollow. Every
chimney and the weather vane on the steeple has a
separate lightning rod and cable. People and animals
also make good lightning rods. We are about 2/3 salt
water, which is a pretty good conductor, and we are tall
and pointy, similar to a lightning rod. Thus, people (and
other animals) are very capable of sending up positive
streamers that attract negative step leaders. Consider
your profile if you are golfing, hiking, horseback riding,

FigureTF2-2: Lightning rod and grounding cable on Old
Rock Church at Sleepy Hollow, New York. The lightning
rod attracts the strike by concentrating charges at its tip.
The cable shunts the current to ground, carrying it on the
outside of the (rock) church, rather than on the inside
where materials (wood, plaster, etc.) are more flammable.
The cable is large enough in diameter to carry the current
without burning, although it will still be hot to the touch after
a lightning strike.

riding on a tractor or mower. In all cases, you are the
tallest thing around. Golfers and farmers on tractors have
some of the highest incidences of lightning strikes. So,
avoid being a lightning rod. Avoid being the tallest thing
around.
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Figure TF2-3: Radial, dendritic pattern of scorched grass caused by lightning strike of golf course pin flag. [From National
Geographic, Colton, 1950.]

The most common cause of lightning injury is not
a direct strike, but the ground current. When lightning
strikes, it brings negative charges from the cloud down
to the positively charged Earth. It then spreads those
charges until all of the negative lightning charges are
combined with positive Earth charges. Some of the
charge spreads over the surface of the ground. (See for
example the pattern on the ground by the golf flag in
Fig.TF2-3.) Some current also penetrates deeper into the
Earth.The charges spreading on the surface of the Earth
are called ground currents, and they are real currents that
can cause injury.

Electrical Safety

Electrical safety is a function of the current that goes
through your body. From Ohm’s Law we know that
I = V/R, so the current depends on the voltage and
resistance. The voltage depends on the source (see
Table TT2-1). The resistance depends on how you
connect to the voltage source—did you touch it with a dry
finger, a sweaty shoulder, or were you walking across a
wet field when lightning produced a ground current? Were
you wearing rubber soled tennis shoes or golf shoes with
metal cleats?

The minimum current a human can feel (the threshold
of sensation) depends on the frequency and whether
the current is ac, dc, or pulsed. Most people can feel
5 mA at dc or 1 mA at household 60 Hz ac. This

is generally considered benign, although most people
are not comfortable with the sensation. You will feel
a mildly painful current if you briefly touch a 9 V
battery to your tongue. A more dangerous condition
occurs around 10 mA when the muscles lock up and
cannot release an electrified object. This is the “let go
threshold” and is a criterion in electrical regulations
for shock hazard. Additional risk is associated with
sensitive organs, particularly those that are controlled
by electrical signals such as the heart and brain. As
little as 10 μV applied directly to the heart can cause
fibrillation. Typical voltages used to deliberately pace
the heart with internal defibrillators or pace makers are
−100 to 35 mV. You might have noticed a change
in units from current to voltage in this description.
Some disciplines use voltage, others use current,
mainly due to what they find easiest to measure. We
know they are related via Ohm’s law, although more
information is always needed to define the resistance
and the specific conditions under which it is assumed,
calculated, or measured. The ANSI/IEEE Standard 80-
1986 uses 1 k� for the body resistance. Adding dry
shoes and standing on dry ground, the total resistance
is 5–10 k�.

Current flow requires two contact points (a node
where the current enters the body and a node where it
leaves). The resistance R is made up of a combination
of series and parallel resistances between these two
nodes. For example, in the case of lightning-induced
ground current, the current will typically enter one foot,
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Figure TF2-4: Current path from a lightning strike.

travel through the body, and exit through the other foot.
The total resistance will be the sum of resistance from
one shoe (Rshoe), the series and parallel resistances
as the current travels through the body to the other
foot (Rbody), and the resistance of the other shoe
(Rshoe). The total resistance R = Rshoe + Rbody + Rshoe
(see Fig. TF2-4). There is another resistance here too,
the resistance through the ground, which is parallel
to R, and it is controlled by soil type and moisture
content.

The resistance between the source of the current
and the body is often called the contact resistance
(in this case, it is Rshoe). In applications where you
want to maximize the current in the body or other
object (such as reading the voltages from the heart with
an electromyogram (EMG)), you want to minimize the
contact resistance. This is often done by using large,
conducting electrodes to connect to the body, and placing
conductive gels between the electrode and the body. In
applications where you want to minimize the current in the
body (such as protection from electric shock), you want
to maximize the contact resistance. This can be done by
minimizing the surface area of the body in contact with
the current source and making sure the contact area
is dry and insulating (for instance wearing rubber-soled
shoes).

Electrical engineers protect people, buildings, circuits,
etc., in several ways. Preventing contact between the

source and a person or animal can be done with locked
buildings and fences, warning signs, and insulators as
simple as rubber handles on tools and fiberglass (rather
than aluminum) ladders. Circuit protection devices such
as circuit breakers and fuses limit the current by tripping
(opening the circuit up) if the current exceeds their
maximum rating. In circuit breakers, a bimetal junction
heats up when current passes through the element.
One metal heats up faster than the other, bending/
breaking away and disconnecting the circuit. Fuses
use a thin metal filament that burns away when its
current rating is exceeded, opening the circuit. Current
limiting resistors in series with other circuit elements
such as potentiometers prevent the resistance from
going to zero, thereby preventing large currents. Current
limiting devices are effective within moderate ranges
of voltage, but very high voltages such as lightning
can simply “jump the gaps” even when the circuit is
opened up. Rather than trying to simply “stop” the current,
protection from very high currents typically relies on
shunting the current away from more sensitive circuits,
sending it straight to ground. The lightning rod/cable
system is one example of this. The cable is a short
circuit straight to ground and is sized large enough to
carry these very large currents without melting. Other
lightning protection circuits use bypass capacitors or
various types of filters in parallel with the circuit being
protected.
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Example 1-5: Conservation of Power

For each of the two circuits shown in Fig. 1-23, determine how
much power is being delivered to each device and whether it is
a power supplier or recipient.

Solution: (a) For the circuit in Fig. 1-23(a), the current
entering the (+) terminal of the device is 0.2 A. Hence, the
power P (where we use an uppercase letter because both the
current and voltage are dc) is:

P = V I = 12 × 0.2 = 2.4 W,

and since P > 0, the device is a recipient of power. As we
know, the law of conservation of power requires that if the
device receives 2.4 W of power, then the battery has to deliver
exactly that same amount of power. For the battery, the current
entering its (+) terminal is −0.2 A (because 0.2 A of current is
shown leaving that terminal), so according to the passive sign
convention, the power that would be absorbed by the battery
(had it been a passive device) is

Pbat = 12(−0.2) = −2.4 W.

The fact that Pbat is negative is confirmation that the battery
is indeed a supplier of power.

(b) For device 1 in Fig. 1-23(b), the current entering its (+)
terminal is 3 A. Hence,

P1 = V1I1 = 18 × 3 = 54 W,

and the device is a power recipient.
For device 2,

P2 = V2I2 = (−6) × 3 = −18 W,

and the device is a supplier of power (because P2 is negative).
By way of confirmation, the power associated with the battery

is

Pbat = 12(−3) = −36 W,

thereby satisfying the law of conservation of power, which
requires the net power of the overall circuit to be exactly zero.

(a)

(b)

12 V 12 V

0.2 A

+
_

12 V 6 V

18 V

3 A

Device 2

Device

Device 1

+
_

Figure 1-23: Circuits for Example 1-5.

Example 1-6: Energy Consumption

A resistor connected to a 100V dc power supply was consuming
20 W of power until the switch was turned off, after which the
voltage decayed exponentially to zero. If t = 0 is defined as the
time at which the switch was turned to the off position and if
the subsequent voltage variation is given by

υ(t) = 100e−2t V for t ≥ 0

(where t is in seconds), determine the total amount of energy
consumed by the resistor after the switch was turned off.

Solution: Before t = 0, the current flowing through the
resistor was I = P/V = 20/100 = 0.2 A. Hence, the resis-
tance R of the resistor is

R = V

I
= 100

0.2
= 500 �,

and the current variation after the switch was turned off is

i(t) = υ(t)

R
= 0.2e−2t A for t ≥ 0.
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The instantaneous power is

p(t) = υ(t) · i(t) = (100e−2t )(0.2e−2t ) = 20e−4t W.

We note that the power decays at a rate (e−4t ) much faster
than the rate for current and voltage (e−2t ). The total energy
dissipated in the resistor after engaging the switch is obtained
by integrating p(t) from t = 0 to infinity (the integral equation
form of Eq. (1.8)), namely

W =
∞∫

0

p(t) dt =
∞∫

0

20e−4t dt = −20

4
e−4t

∣∣∣∞
0

= 5 J.

Concept Question 1-10: Explain how node voltage 
relates to voltage difference. To what do the (+) and (−) 
leads of the voltmeter connect to in each case? 
(See         )

Exercise 1-6: If a positive current is flowing through a
resistor from its terminal a to its terminal b, is υab positive
or negative?

Answer: υab > 0. (See       C3 )

Exercise 1-7: A certain device has a voltage difference
of 5 V across it. If 2 A of current is flowing through it
from its (−) voltage terminal to its (+) terminal, is the
device a power supplier or a power recipient, and how
much energy does it supply or receive in 1 hour?

Answer: P = V I  = 5(−2) = −10 W. Hence, the 
device is a power supplier. Since p(t) = (not time-
varying), |W | = |P | �t = 36 kJ. (See       C)

Exercise 1-8:A car radio draws 0.5 A of dc current when
connected to a 12 V battery. How long does it take for the
radio to consume 1.44 kJ?

Answer: 4 minutes. (See  )

1-6 Circuit Elements

Electronic circuits used in functional systems employ a wide
range of circuit elements, including transistors and integrated
circuits. The operation of most electronic circuits and devices—
no matter how complex—can be modeled (represented) in
terms of an equivalent circuit composed of basic elements

with idealized characteristics. The equivalent circuit offers a
circuit behavior that closely resembles the behavior of the actual
electronic circuit or device over a certain range of specified
conditions, such as the range of input signal level or output
load resistance. The set of basic elements commonly used in
circuit analysis include voltage and current sources; passive
elements (which include resistors, capacitors, and inductors);
and various types of switches. The basic attributes of switches
were covered in Section 1-5.1. The nomenclature and current–
voltage relationships associated with the other two groups are
the subject of this section.

1-6.1 i–υ Relationship

The relationship between the current flowing through a device
and the voltage across it defines the fundamental operation of
that device. As was stated earlier, Ohm’s law states that the
current i entering into the (+) terminal of the voltage υ across
a resistor is given by

i = υ

R
.

This is called the i–υ relationship for the resistor. We note
that the resistor exhibits a linear i–υ relationship, meaning
that i and υ always vary in a proportional manner, as shown
in Fig. 1-24(a), so long as R remains constant. A circuit
composed exclusively of elements with linear i–υ responses
is called a linear circuit. The linearity property of a circuit
is an underlying requirement for the various circuit analysis
techniques presented in this and future chapters. Diodes
and transistors exhibit nonlinear i–υ relationships. To apply
the analysis techniques specific to linear circuits to circuits
containing nonlinear devices, we can represent those devices in
terms of linear subcircuits that contain dependent sources. The
concept of a dependent source and how it is used is introduced
in Section 1-6.4.

1-6.2 Independent Voltage Source

An ideal, independent voltage source provides a specified
voltage across its terminals, independent of the type of load
or circuit connected to it (so long as it is not a short circuit).
Hence, for a voltage source with a specified voltage Vs, its i–υ

relationship is given by

υ = Vs for any i �= ∞.

The i–υ profile of an ideal voltage source is a vertical line, as
illustrated in Fig. 1-24(b).
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(a)

Resistor

Slope =

υ
R

1
R

i =
i

υ

(c)

VCVS

(b)

Slope = α

υs = αυx

υx

υs

Ideal voltage source

Ideal current source
i = Is

υ = Vs

Vs

Is

i

υ

Figure 1-24: i–υ relationships for (a) an ideal resistor, (b) ideal,
independent current and voltage sources, and (c) a dependent,
voltage-controlled voltage source (VCVS).

The circuit symbol used for independent sources is a
circle, as shown in Table 1-5, although for dc voltage
sources the traditional “battery” symbol is used as well. A
household electrical outlet connected through an electrical
power-distribution network to a hydroelectric- or nuclear-
power generating station provides continuous power at an
approximately constant voltage level. Hence, it may be
classified appropriately as an independent voltage source. On a
shorter time scale, a flashlight’s 9-volt battery may be regarded
as an independent voltage source, but only until its stored charge
has been used up by the light bulb. Thus, strictly speaking, a
battery is a storage device (not a generator), but we tend to treat
it as a generator so long as it acts like a constant voltage source.

In reality, no sources can provide the performance
specifications ascribed to ideal sources. If a 5 V voltage source

(a) Realistic voltage source connected to load RL

υs

Rs

RL

LoadRealistic voltage source

+
_

(b) Realistic current source connected to load RL

is RLRs

LoadRealistic current source

Figure 1-25: (a) A realistic voltage source has a nonzero series
resistance Rs, which can be replaced with a short circuit if Rs
is much smaller than the load resistance RL. (b) A realistic
current source has a nonzero parallel resistance Rs, which can
be replaced with an open circuit if Rs � RL.

is connected across a short circuit, for example, we run into
a serious problem of ambiguity. From the standpoint of the
source, the voltage is 5 V, but by definition, the voltage
across the short circuit is zero. How can it be both zero and
5 V simultaneously? The answer resides in the fact that our
description of the ideal voltage source breaks down in this
situation. Most often, in such cases, the circuit malfunctions as
well. Short-circuiting a battery will draw more current than the
battery is intended to provide, thereby overheating it, damaging
it, and possibly causing a fire or explosion.

� A more realistic model for a voltage source includes an
internal series resistor, as shown in Fig. 1-25(a). �

A real voltage source (which may have an elaborate
circuit configuration) behaves like a combination of an
equivalent, ideal voltage source υs in series with an equivalent
resistance Rs. Usually, the voltage source is designed such that
its series resistanceRs is much smaller than the resistance values
of the types of loads it is intended to energize. Under such a
condition, Rs becomes inconsequential and can be ignored, in
which case the realistic voltage source behaves approximately
the same as an ideal voltage source.
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Table 1-5: Voltage and current sources.

Independent Sources
Ideal Voltage Source Realistic Voltage Source

or

dc source Any source*Battery

Vs
+
-

υs +
−
+
_+

−Vs
+
_

Any source

υs

Rs

+
-
+
_

Ideal Current Source Realistic Current Source

dc source Any source

Is is

Any source

is Rs

Dependent Sources
Voltage-Controlled Voltage Source (VCVS) Voltage-Controlled Current Source (VCCS)

υs = αυx+� is = gυx

Current-Controlled Voltage Source (CCVS) Current-Controlled Current Source (CCCS)

υs = rix+� is = βix

Note: α, g, r , and β are constants; υx and ix are a specific voltage and a specific current elsewhere in the
circuit. ∗Lowercase υ and i represent voltage and current sources that may or may not be time-varying,
whereas uppercase V and I denote dc sources.

1-6.3 Independent Current Source

Based on our common experience with stand-alone chemical
batteries used in cars, flashlights, and other systems, we readily
accept the notion of an electric circuit acting like a voltage
source by providing at its output terminals a specified voltage
level Vs. By contrast, there is no such thing as a “current battery,”
one that provides a constant current to flow through the load

connected to its terminals. Nevertheless, we can build an electric
circuit that behaves like a current source.An ideal, independent
current source provides a specified current flowing through it,
regardless of the voltage across it (except when connected to
an open circuit). Its i–υ relationship is

i = Is for any υs �= ∞.



“book” — 2015/5/4 — 6:55 — page 38 — #38

38 CHAPTER 1 CIRCUIT TERMINOLOGY

The i–υ profile of an ideal current source is a horizontal line,
as shown in Fig. 1-24(b). A current source may be built from a
voltage source with a current limiter, so long as the voltage
source can supply the desired current independently of the
attached load.

In the same way that a realistic voltage source consists of
an ideal voltage source in series with a resistor Rs, a realistic
current source consists of an ideal current source is in parallel
with a resistor Rs (Fig. 1-25(b)). In a well-designed current
source, Rs is very large, thereby extracting from the current
source a very small fraction in comparison to the current that
flows into the load.

Example 1-7: AA Battery

The circuit shown in Fig. 1-26(a) represents anAA battery, with
voltage Vs and internal resistance Rs, connected to a light bulb
represented by a load resistance RL = 10 �. If Vs = 1.5 V and
independent of ambient temperature, and Rs is as profiled in
Fig. 1-26(b), use the voltage division equation (which will be
derived later in Chapter 2) given by

VL =
(

RL

Rs + RL

)
Vs

(a) Battery circuit

(b) Temperature profile of Rs of AA battery

Vs

Rs
RL

LoadAA battery

+
_ VL

+
_

B
at

te
ry

 re
si

st
an

ce
 R

s (
Ω

)

Rs

T (˚C)

Temperature (˚C)
−20−40 20 40

1.0
0.8
0.6
0.4
0.2

0
0

Figure 1-26: Circuit and temperature profile of battery’s Rs of
Example 1-7.

to determine VL at (a) room temperature (20 ◦C) and (b) in
Antarctica at −40 ◦C.

Solution: (a) From the plot in Fig. 1-26(b), Rs ≈ 0.15 � at
T = 20 ◦C. Hence,

VL =
(

10

0.15 + 10

)
× 1.5 = 1.4778 V,

which is within 1.5% of Vs = 1.5 V.
(b) At T = −40 ◦C, Rs = 0.9 �. Hence,

VL =
(

10

0.9 + 10

)
× 1.5 = 1.376 V.

In this case, ignoring Rs altogether would lead to an error
of about 8%. At low temperatures, batteries are less efficient
and often cease to provide the desired voltage and current, as
anyone whose car battery has “died” on a cold winter day has
discovered.

1-6.4 Dependent Sources

As alluded to in the opening paragraph of Section 1-6, we often
use equivalent circuits to model the behavior of transistors and
other electronic devices. The ability to represent complicated
devices by equivalent circuits composed of basic elements
greatly facilitates not only the circuit analysis process but
the design process as well. Such circuit models incorporate
the relationships between various parts of the device through
the use of a set of artificial sources known as dependent
sources. The voltage level of a dependent voltage source is
defined in terms of a specific voltage or current elsewhere in
the circuit. An example of circuit equivalence is illustrated
in Fig. 1-27. In part (a) of the figure, we have a Model 741
operational amplifier (op amp), denoted by the triangular
circuit symbol, used in a simple amplifier circuit intended to
provide a voltage amplification factor of −2; that is, the output
voltage υ0 = −2υs, where υs is the input signal voltage. The op
amp, which we will examine later in Chapter 4, is an electronic
device with a complex architecture composed of transistors,
resistors, capacitors, and diodes, but in practice, its circuit
behavior can be represented by a rather simple circuit consisting
of two resistors (input resistor Ri and output resistor Ro) and a
dependent voltage source, as shown in Fig. 1-27(b). The voltage
υ2 on the right-hand side of the circuit in Fig. 1-27(b) is given
by υ2 = Aυi, where A is a very large constant (> 104) and υi
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(a) Op-amp circuit (b) Equivalent circuit with dependent voltage source

υs

+

_
741

15 kΩ

30 kΩ

υo

+_ Op amp υs υoυi

15 kΩ

30 kΩ

Ro = 75 Ω

Ri = 3 MΩ + υ2 = Aυi+_ _

Op-amp
equivalent

Figure 1-27: An operational amplifier is a complex device, but its circuit behavior can be represented in terms of a simple equivalent
circuit that includes a dependent voltage source.

is the voltage across the resistor Ri located on the left-hand
side of the equivalent circuit. In this case, the magnitude of
υ2 always depends on the magnitude of υi, which depends in
turn on the input signal voltage υs and on the values chosen for
some of the resistors in the circuit. Since the controlling quantity
υi is a voltage, υ2 is called a voltage-controlled voltage source
(VCVS). Had the controlling quantity been a current source, the
dependent source would have been called a current-controlled
voltage source (CCVS) instead. A parallel analogy exists for
voltage-controlled and current-controlled current sources.

� The characteristic symbol for a dependent source is the
diamond (Table 1-5). �

Proportionality constant α in Table 1-5 relates voltage to
voltage. Hence, it is dimensionless, as is β, since it relates
current to current. Constants g and r have units of (A/V)
and (V/A), respectively. Because dependent sources are
characterized by linear relationships, so are their i–υ profiles.
An example is shown in Fig. 1-24(c) for the VCVS.

Example 1-8: Dependent Source

Find the magnitude of the voltage V1 of the dependent source
in Fig. 1-28. What type of source is it?

Solution: Since V1 depends on current I1, it is a current-
controlled voltage source with a coefficient of 4 V/A.

V1 = 4I110 V

5 Ω

2 Ω

I1

+_
+
_

Figure 1-28: Circuit for Example 1-8.

The 10 V dc voltage is connected across the 2 � resistor.
Hence, the current I1 along the designated direction is

I1 = 10

2
= 5 A.

Consequently,

V1 = 4I1 = 4 × 5 = 20 V.

Example 1-9: Switches

The circuit in Fig. 1-29 contains one SPDT switch that changes
position at t = 0, one SPST switch that opens at t = 0, and one
SPST switch that closes at t = 5 s. Generate circuit diagrams
that include only those elements that have current flowing
through them for (a) t < 0, (b) 0 ≤ t < 5 s, and (c) t ≥ 5 s.

Solution: See Fig. 1-30.
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+

−
V0

R1

R6

R7

R2

R5

R3

R4

t = 0

t = 0

t = 5 s

SPDT

SPST

SPST

Figure 1-29: Circuit for Example 1-9.

(a) t < 0

(b) 0 < t < 5 s

(c) t > 5 s

R1

R6

R7

R2
V0

+
−

V0

R1

R7

R3

R4

+
−

V0

R1

R6

R7

R5

R3

R4

+
−

Figure 1-30: Solutions for circuit in Fig. 1-29.

Concept Question 1-11: What is the difference between
an SPST switch and an SPDT switch? (See         )

Concept Question 1-12: What is the difference between
an independent voltage source and a dependent voltage
source? Is a dependent voltage source a real source of 
power? (See         )

Concept Question 1-13: What is an “equivalent-circuit”
model? How is it used? (See         )

Exercise 1-9: Find Ix from the diagram in Fig. E1.9.

5 Ω

2 Ω

5 A Ix =
V1

V1

4

+ _

Figure E1.9

Answer: Ix = 2.5 A. (See  )

Exercise 1-10: In the circuit of Fig. E1.10, find I at (a)
t < 0 and (b) t > 0.

3 Ω 4 Ω
12 V

t = 0

SPDTI

+
_

Figure E1.10

Answer: (a) I = 4 A, (b) I = 3 A. (See  )
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Summary

Concepts

• Active devices (such as transistors and ICs) require an
external power source to operate; in contrast, passive
devices (resistors, capacitors, and inductors) do not.

• Analysis and synthesis (design) are complementary
processes.

• Current is related to charge by i = dq/dt ; voltage
between locations a and b is υab = dw/dq, where dw

is the work (energy) required to move dq from b to a;
and power p = υi.

• Passive sign convention assigns i direction as entering

the (+) side of υ; if p > 0, the device is recipient
(consumer) of power, and if p < 0, it is a supplier of
power.

• Node voltage refers to the voltage difference between
the node and ground by selecting Vground = 0.

• Independent voltage and current sources are real
sources of energy; dependent sources are artificial
representations used in modeling the nonlinear behavior
of active devices (transistors and integrated circuits) in
terms of an equivalent linear circuit.

Mathematical and Physical Models

Ohm’s law i = υ/R

Current i = dq/dt

Direction of i = direction of flow of (+) charge

Charge transfer q(t) =
t∫

−∞
i dt

�Q = q(t2) − q(t1) =
t2∫

t1

i dt

Voltage = potential energy difference per unit charge

Passive sign convention

p > 0 power delivered to device
p < 0 power supplied by device

Note that i direction is defined as entering
  (+) side of υ.

i Device
p = υi

υ

Energy w =
∞∫

0

p(t) dt

Important Terms Provide definitions or explain the meaning of the following terms:

ac
active device
Alexander Graham Bell
all-electronic computer
alternating current
ampere-hours
analysis
basic elements
branch
chassis ground
circuit
circuit diagram
conduction current
cumulative charge

current-controlled
voltage source

dc
dependent voltage source
dependent source
design
device
dimension
direct current
drift
drift velocity
Earth ground
electric circuit
electric current

electron drift
electronic
electronic circuit
equivalent circuit
equivalent, ideal

voltage source
equivalent resistance
external
extraordinary node
functional block diagram
fundamental dimension
fundamental SI unit
ground
Guglielmo Marconi
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Important Terms (continued)

Heinrich Hertz
i–υ relationship
ideal, independent

current source
ideal, independent

voltage source
in parallel
in series
input/output
integrated circuit
International System of Units
ionized
kilowatt-hours
law of conservation of power
linear circuit
linear i–υ relationship
loop
mesh

net charge
nonplanar
Ohm’s law
op amp
open circuit
operational amplifier
ordinary node
passive device
passive sign convention
path
PCB layout
planar
potential difference
prefix
printed circuit board
printed conducting lines
real voltage source

realistic current source
response
secondary dimension
short circuit
single-pole single-throw
single-pole double-throw
stimulus
synthesis
system
Thomas Edison
transistor
transmission velocity
unit
voltage-controlled

voltage source
voltage drop
voltage rise

PROBLEMS

Sections 1-2 to 1-4: Dimensions, Charge, and Current

1.1 Use appropriate multiple and submultiple prefixes to
express the following quantities:

(a) 3,620 watts (W)

*(b) 0.000004 amps (A)

(c) 5.2 × 10−6 ohms (�)

*(d) 3.9 × 1011 volts (V)

(e) 0.02 meters (m)

(f) 32 × 105 volts (V)

1.2 Use appropriate multiple and submultiple prefixes to
express the following quantities:

(a) 4.71 × 10−8 seconds (s)

(b) 10.3 × 108 watts (W)

(c) 0.00000000321 amps (A)

(d) 0.1 meters (m)

(e) 8,760,000 volts (V)

(f) 3.16 × 10−16 hertz (Hz)

∗
Answer(s) available in Appendix G.

1.3 Convert:

(a) 16.3 m to mm

(b) 16.3 m to km

*(c) 4 × 10−6 μF (microfarad) to pF (picofarad)

(d) 2.3 ns to μs

(e) 3.6 × 107 V to MV

(f) 0.03 mA (milliamp) to μA

1.4 Convert:

(a) 4.2 m to μm

(b) 3 hours to μseconds

(c) 4.2 m to km

(d) 173 nm to m

(e) 173 nm to μm

(f) 12 pF (picofarad) to F (farad)

1.5 For the circuit in Fig. P1.5:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.
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4 Ω 5 Ω2 Ω

1 Ω 3 Ω

16 V
+
_

Figure P1.5: Circuit for Problem 1.5.

1.6 For the circuit in Fig. P1.6:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.

2 Ω

4 Ω 4 Ω

8 V12 V
+
_

+
_

+
_

+
_

Figure P1.6: Circuit for Problem 1.6.

1.7 For the circuit in Fig. P1.7:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.

1 Ω
0.1 Ω

0.2 Ω

0.3 Ω

0.4 Ω

1 Ω
4 V

+
_

Figure P1.7: Circuit for Problem 1.7.

1.8 For the circuit in Fig. P1.8:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.

25 Ω
40 Ω

30 Ω

10 Ω

20 Ω

60 Ω
5 Ω

12 V

15 Ω

+
_

Figure P1.8: Circuit for Problem 1.8.

1.9 For the circuit in Fig. P1.9:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.

3 Ω 6 Ω

2 Ω
2 Ω 4 Ω

4 A

48 V
+
_

Figure P1.9: Circuit for Problem 1.9.

1.10 For the circuit in Fig. P1.10:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.
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(d) Identify pairs of circuit elements that are connected in
parallel.

6 Ω16 Ω
32 Ω10 Ω 8 Ω

4 Ω12 V
+
_

Figure P1.10: Circuit for Problem 1.10.

1.11 For the circuit in Fig. P1.11:

(a) Identify and label all distinct nodes.

(b) Which of those nodes are extraordinary nodes?

(c) Identify all combinations of 2 or more circuit elements that
are connected in series.

(d) Identify pairs of circuit elements that are connected in
parallel.

6 Ω

2 Ω

4 Ω

3 Ω

1 Ω

5 Ω
20 V

+_ +_

Figure P1.11: Circuit for Problem 1.11.

1.12 The total charge contained in a certain region of space
is −1 C. If that region contains only electrons, how many does
it contain?

*1.13 A certain cross section lies in the x–y plane. If 3 × 1020

electrons go through the cross section in the z direction in 4
seconds, and simultaneously 1.5 × 1020 protons go through
the same cross section in the negative z direction, what is the
magnitude and direction of the current flowing through the cross
section?

1.14 Determine the current i(t) flowing through a resistor if
the cumulative charge that has flowed through it up to time t is
given by

(a) q(t) = 3.6t mC

(b) q(t) = 5 sin(377t) μC

*(c) q(t) = 0.3[1 − e−0.4t ] pC

(d) q(t) = 0.2t sin(120πt) nC

1.15 Determine the current i(t) flowing through a certain
device if the cumulative charge that has flowed through it up to
time t is given by

(a) q(t) = −0.45t3 μC

(b) q(t) = 12 sin2(800πt) mC

(c) q(t) = −3.2 sin(377t) cos(377t) pC

*(d) q(t) = 1.7t[1 − e−1.2t ] nC

1.16 Determine the net charge �Q that flowed through a
resistor over the specified time interval for each of the following
currents:

(a) i(t) = 0.36 A, from t = 0 to t = 3 s

*(b) i(t) = [40t + 8] mA, from t = 1 s to t = 12 s

(c) i(t) = 5 sin(4πt) nA, from t = 0 to t = 0.05 s

(d) i(t) = 12e−0.3t mA, from t = 0 to t = ∞
1.17 Determine the net charge �Q that flowed through a
certain device over the specified time intervals for each of the
following currents:

(a) i(t) = [3t + 6t3] mA, from t = 0 to t = 4 s

*(b) i(t) = 4 sin(40πt) cos(40πt) μA, from t = 0 to
t = 0.05 s

(c) i(t) = [4e−t − 3e−2t ] A, from t = 0 to t = ∞
(d) i(t) = 12e−3t cos(40πt) nA, from t = 0 to t = 0.05 s

1.18 If the current flowing through a wire is given by
i(t) = 3e−0.1t mA, how many electrons pass through the wire’s
cross section over the time interval from t = 0 to t = 0.3 ms?

1.19 The cumulative charge in mC that entered a certain
device is given by

q(t) =

⎧⎪⎨
⎪⎩

0 for t < 0,

5t for 0 ≤ t ≤ 10 s,

60 − t for 10 s ≤ t ≤ 60 s

(a) Plot q(t) versus t from t = 0 to t = 60 s.

(b) Plot the corresponding current i(t) entering the device.

*1.20 A steady flow resulted in 3 × 1015 electrons entering a
device in 0.1 ms. What is the current?
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1.21 Given that the current in (mA) flowing through a wire is
given by:

i(t) =

⎧⎪⎨
⎪⎩

0 for t < 0

6t for 0 ≤ t ≤ 5 s

30e−0.6(t−5) for t ≥ 5 s,

(a) Sketch i(t) versus t .

(b) Sketch q(t) versus t .

1.22 The plot in Fig. P1.22 displays the cumulative amount
of charge q(t) that has entered a certain device up to time t .
What is the current at

(a) t = 1 s

*(b) t = 3 s

(c) t = 6 s

q(t)

t
2 s 4 s

−4 C

4 C

0
6 s 8 s

Figure P1.22: q(t) for Problem 1.22.

1.23 The plot in Fig. P1.23 displays the cumulative amount
of charge q(t) that has exited a certain device up to time t . What
is the current at

*(a) t = 2 s

(b) t = 6 s

(c) t = 12 s

q(t)

t4 s 8 s

2 C

0

4 C
4e−0.2(t−8)

Figure P1.23: q(t) for Problem 1.23.

1.24 The plot in Fig. P1.24 displays the cumulative charge
q(t) that has entered a certain device up to time t . Sketch a plot
of the corresponding current i(t).

q

t (s)
1 2

20 C

−20 C

0
3 54

Figure P1.24: q(t) for Problem 1.24.

Sections 1-5 and 1-6: Voltage, Power, and Circuit Elements

1.25 In the circuit of Fig. P1.25, node V1 was selected as the 
ground node.

*(a) What is the voltage at node V2?

(b) What is the voltage difference V32 = V3 − V2?

(c) What are the voltages at nodes 1, 3, 4, and 5 if node 2 is
selected as the ground node instead of node 1?

R1

R3

R4

V2

V3 = 32 V
V5 = 20 VV4 = 10 V

48 V

R5

R2

+
_

V1 = 0

Figure P1.25: Circuit for Problem 1.25.

1.26 In the circuit of Fig. P1.26, node V1 was selected as the
ground node.

*(a) What is the voltage difference across R6?

(b) What are the voltages at nodes 1, 3, and 4 if node 2 is
selected as the ground node instead of node 1?
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R2

R3

R4
R1

R6

10 V

R5

+
_

20 V

V1 = 0 V2 = 4 V

V3 = 6 V

+
_

V4 = 12 V

Figure P1.26: Circuit for Problem 1.26.

1.27 For each of the eight devices in the circuit of Fig. P1.27,
determine whether the device is a supplier or a recipient of
power and how much power it is supplying or receiving.

+ _
+ _

6 V

4 A 3 A

16 V

1 A

1 A

2 A

+ _12 V

+

+
__ 10 V

+
_ 9 V

+

_

7 V

4 V+ _8 V

1

2

3

4 5

6

7

8

Figure P1.27: Circuit for Problem 1.27.

1.28 For each of the seven devices in the circuit of Fig. P1.28,
determine whether the device is a supplier or a recipient of
power and how much power it is supplying or receiving.

*1.29 An electric oven operates at 120 V. If its power rating is
0.6 kW, what amount of current does it draw, and how much
energy does it consume in 12 minutes of operation?

1.30 A 9 V flashlight battery has a rating of 1.8 kWh. If
the bulb draws a current of 100 mA when lit; determine the
following:

(a) For how long will the flashlight provide illumination?

+ _6 V

+ _4 V

5 A

4 A

2 A3 A

1 A

2 A

24 V
+

_

10
 V 6 V

12
 V

+
_

+
_

+
_

+
_

8 V

1

2

3 4

5

6 7

Figure P1.28: Circuit for Problem 1.28.

(b) How much energy in joules is contained in the battery?

(c) What is the battery’s rating in ampere-hours?

1.31 The voltage across and current through a certain device
are given by

υ(t) = 5 cos(4πt) V, i(t) = 0.1 cos(4πt) A.

Determine:

*(a) The instantaneous power p(t) at t = 0 and t = 0.25 s.

(b) The average power pav, defined as the average value of
p(t) over a full time period of the cosine function (0 to
0.5 s).

1.32 The voltage across and current through a certain device
are given by

υ(t) = 100(1 − e−0.2t ) V, i(t) = 30e−0.2t mA.

Determine:

(a) The instantaneous power p(t) at t = 0 and t = 3 s.

(b) The cumulative energy delivered to the device from t = 0
to t = ∞.

1.33 The voltage across a device and the current through it
are shown graphically in Fig. P1.33. Sketch the corresponding
power delivered to the device and calculate the energy absorbed
by it.

1.34 The voltage across a device and the current through it
are shown graphically in Fig. P1.34. Sketch the corresponding
power delivered to the device and calculate the energy absorbed
by it.
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10 A

5 A

1 s 2 s

i(t)

t

5 V

0

0
1 s 2 s

υ(t)

t

Figure P1.33: i(t) and υ(t) of the device in Problem 1.33.

10 A

1 s 2 s

i(t)

t

5 V

1 s 2 s

υ(t)

t

0

0

Figure P1.34: i(t) and υ(t) of the device in Problem 1.34.

1.35 The voltage across a device and the current through it
are shown graphically in Fig. P1.35. Sketch the corresponding
power delivered to the device and calculate the energy absorbed
by it.

*1.36 After t = 0, the current entering the positive terminal of
a flashlight bulb is given by

i(t) = 2(1 − e−10t ) (A),

and the voltage across the bulb is υ(t) = 12e−10t (V).
Determine the maximum power level delivered to the flashlight.

10 A

4 s

i(t)

t
1 s 3 s

4 s

1 s

3 s

0

2 s

υ(t)

t

−5 V

0

5 V

Figure P1.35: i(t) and υ(t) of the device in Problem 1.35.

P4 = ?
2

6

4

5

1 3 7

Figure P1.37: Circuit for Problem 1.37.

1.37 Apply the law of conservation of power to determine
the amount of power delivered to device 4 in the circuit of
Fig. P1.37, given that that the amounts of power delivered to
the other devices are: p1 = −100 W, p2 = 30 W, p3 = 22 W,
p5 = 67 W, p6 = −201 W, and p7 = 120 W.

*1.38 Determine Vy in the circuit of Fig. P1.38.

1.39 Determine V , the voltage of the dependent voltage
source in the circuit of Fig. P1.39.

*1.40 Determine Vz in the circuit of Fig. P1.40.

1.41 Determine Ix in the circuit of Fig. P1.41.
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10 Ω 2 Ω

5 Ω

Vy12 V

1.2 A
+

_

Vx
I = 0.1Vx+ _

+
_

Figure P1.38: Circuit for Problem 1.38.

20 Ω

10 V

Ix

30 Ω

5 Ω

10 Ω
V = 2Ix

+ _

+
_ 15 V

+
_

Figure P1.39: Circuit for Problem 1.39.

2 Ω

5 Ω

4 Ω
2 Ω

Vz 19 V

2.5 A

Vx

Iy = 0.1Vx

+

+
_

+
_

Figure P1.40: Circuit for Problem 1.40.

6 A 2 Ω

2 Ω

4 Ω

V1

6 V

Ix =
V1
2

+ _

Figure P1.41: Circuit for Problem 1.41.

1.42 For the circuit in Fig. P1.42, generate circuit diagrams
that include only those elements that have current flowing
through them for

(a) t < 0

(b) 0 < t < 2 s

(c) t > 2 s

+
_V0

R1
R2 R3

R4

R6R5

t = 2 s

t = 0

Figure P1.42: Circuit for Problem 1.42.

1.43 For the circuit in Fig. P1.43, generate circuit diagrams
that include only those elements that have current flowing
through them for

(a) t < 0

(b) 0 < t < 2 s

(c) t > 2 s

V1

V2

R1 SPST

SPST

SPDT R2R3
R4

R6

R5+
_

+
_

t = 0

t = 0

t = 2 s

1
2

Figure P1.43: Circuit for Problem 1.43.
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1.44 The switch in the circuit of Fig. P1.44 closes at t = 0.
Which elements are in series and which are in parallel at (a)
t < 0 and (b) t > 0?

+
_υs R4

R6R5

R3R1

R2
t = 0

2

1

3 4

Figure P1.44: Circuit for Problem 1.44.

Potpourri Questions

1.45 What aspect of electrical engineering particularly
interests you? Check out http://spectrum.ieee.org/ to learn
more.

1.46 Will the prediction of Moore’s Law continue to hold true
indefinitely? If not, why not?

1.47 Provide a definition of what the term “nanotechnology”
means to you.

1.48 What is the typical voltage level associated with
lightning? With a bird standing on a power line (foot to foot)?



“book” — 2015/5/4 — 6:57 — page 50 — #1

Resistive Circuits
Contents

Overview, 51
2-1 Ohm’s Law, 51
TB3 Superconductivity, 57
2-2 Kirchhoff’s Laws, 60
2-3 Equivalent Circuits, 67
TB4 Resistive Sensors, 70
2-4 Wye–Delta (Y–�) Transformation, 80
2-5 The Wheatstone Bridge, 84
2-6 Application Note: Linear versus

Nonlinear i–υ Relationships, 86
TB5 Light-Emitting Diodes (LEDs), 90
2-7 Introducing Multisim, 94

Summary, 100
Problems, 101

Objectives

Learn to:

� Apply Ohm’s law and explain the basic properties
of piezoresistivity and superconductivity.

� State Kirchhoff’s current and voltage laws; apply
them to resistive circuits.

� Define circuit equivalency, combine resistors in
series and in parallel, and apply voltage and
current division.

� Apply source transformation between voltage and
current sources and Y–� circuits.

� Describe the operation of the Wheatstone-bridge
circuit and how it is used to measure small
deviations.

� Use Multisim and myDAQ to analyze simple
circuits.

Microfabricated pressure sensor

The basic laws of circuit theory are used to develop
fluency in analyzing resistive circuits and characterizing their
performance.

CHAPTER 2
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Overview

The study of any field of inquiry starts with nomenclature:
defining the terms specific to that field. That is exactly what
we did in the preceding chapter. We introduced and defined
electric current, voltage, power, open and closed circuits, and
dependent and independent voltage and current sources, among
others. Now, we are ready to acquire our first set of circuit-
analysis tools, which will enable us to analyze a variety of
different types of circuits. We limit our discussion to resistive
circuits, namely those circuits containing only sources and
resistors. (In future chapters, we will extend these tools to
circuits containing capacitors, inductors, and other elements.)
Our new toolbox includes three simple, yet powerful laws—
Ohm’s law and Kirchhoff’s voltage and current laws—and
several circuit simplification and transformation techniques.
You will learn how to divide the voltage (using voltage dividers)
and current (using current dividers), how to combine resistors
in series and parallel combinations, how to analyze resistive
sensors using Wheatstone bridges, how to use diodes to control
the direction of a current, plus how to use a light-emitting diode
(LED) as a visual output, warning light, etc.You will also learn
how to use Multisim to simulate and analyze your circuits,
and how to build a circuit on a circuit board and measure its
properties using your computer via the NI myDAQ.

2-1 Ohm’s Law

� The conductivity σ of a material is a measure of how
easily electrons can drift through the material when an
external voltage is applied across it. Resistivity (ρ) is the
inverse (1/σ ) of conductivity. �

Materials are classified as conductors (primarily metals),
semiconductors, or dielectrics (insulators) according to the
magnitudes of their conductivities. Tabulated values of σ

expressed in units of siemens per meter (S/m) are given in
Table 2-1 for a select group of materials. The siemen is the
inverse of the ohm, S = 1/�, and the inverse of σ is called the
resistivity ρ,

ρ = 1

σ
(�-m), (2.1)

which is a measure of how well a material impedes the flow of
current through it. The conductivity of most metals is on the
order of 107 S/m, which is 17 or more orders of magnitude

Table 2-1: Conductivity and resistivity of some common
materials at 20 ◦C.

Material Conductivity σ Resistivity ρ

(S/m) (�-m)

Conductors
Silver 6.17 × 107 1.62 × 10−8

Copper 5.81 × 107 1.72 × 10−8

Gold 4.10 × 107 2.44 × 10−8

Aluminum 3.82 × 107 2.62 × 10−8

Iron 1.03 × 107 9.71 × 10−8

Mercury (liquid) 1.04 × 106 9.58 × 10−7

Semiconductors
Carbon (graphite) 7.14 × 104 1.40 × 10−5

Pure germanium 2.13 0.47
Pure silicon 4.35 × 10−4 2.30 × 103

Insulators
Paper ∼ 10−10 ∼ 1010

Glass ∼ 10−12 ∼ 1012

Teflon ∼ 3.3 × 10−13 ∼ 3 × 1012

Porcelain ∼ 10−14 ∼ 1014

Mica ∼ 10−15 ∼ 1015

Polystyrene ∼ 10−16 ∼ 1016

Fused quartz ∼ 10−17 ∼ 1017

Common materials
Distilled water 5.5 × 10−6 1.8 × 105

Drinking water ∼ 5 × 10−3 ∼ 200
Sea water 4.8 0.2
Graphite 1.4 × 10−5 71.4 × 103

Rubber 1 × 10−13 1 × 1013

Biological tissues
Blood ∼ 1.5 ∼ 0.67
Muscle ∼ 1.5 ∼ 0.67
Fat ∼ 0.1 10

greater than the conductivity of typical insulators. Common
semiconductors, such as silicon and germanium, fall in the in-
between range on the conductivity scale.

The values of σ and ρ given in Table 2-1 are specific
to room temperature at 20 ◦C. In general, the conductivity
of a metal increases with decreasing temperature. At
very low temperatures (in the neighborhood of absolute
zero), some conductors become superconductors, because
their conductivities become practically infinite and their
corresponding resistivities approach zero. To learn more about
superconductivity, refer to Technology Brief 3.
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A

σ

l

R =
l

σA

Figure 2-1: Longitudinal resistor of conductivity σ , length �,
and cross-sectional area A.

2-1.1 Resistance

� The resistance R of a device incorporates two factors:
(a) the inherent bulk property of its material to conduct
(or impede) current, represented by the conductivity σ (or
resistivity ρ), and (b) the shape and size of the device. �

For a longitudinal resistor (Fig. 2-1), R is given by

R = �

σA
= ρ

�

A
(�), (2.2)

where � is the length of the device and A is its cross-sectional
area. In addition to its direct dependence on the resistivity ρ, R is
directly proportional to �, which is the length of the path that
the current has to flow through, and inversely proportional to A,
because the larger A is, the more electrons can drift through the
material.

Every element of an electric circuit has a certain resistance
associated with it. This even includes the wires used to connect
devices to each other, but we usually treat them like zero-
resistance segments because their resistances are so much
smaller than the resistances of the other devices in the circuit. To
illustrate with an example, let us consider a 10 cm long segment
of one of the wire sizes commonly found in circuit boards, such
as the AWG-18 copper wire. According to Table 2-2, which
lists the diameter d for various wire sizes as specified by the
American Wire Gauge (AWG) system, the AWG-18 wire has a
diameter d = 1 mm. Using the values specified for � and d and
the value for ρ of copper given in Table 2-1, we have

R = ρ
�

A
= ρ

�

π(d/2)2 = 1.72 × 10−8 × 0.1

π(0.5 × 10−3)2

= 2.2 × 10−3 � = 2.2 m�.

Table 2-2: Diameter d of wires, according to the American
Wire Gauge (AWG) system.

AWG Size Designation Diameter d (mm)

0 8.3
2 6.5
4 5.2
6 4.1

10 2.6
14 1.6
18 1.0
20 0.8

� Thus, R of a 10 cm long AWG-18 copper wire is on the
order of milliohms. If the wire segment connects to circuit
elements with resistances of ohms or larger, ignoring the
resistance of the wire would have no significant impact
on the overall behavior of the circuit. �

The preceding justification should be treated with some
degree of caution. While it is true that a piece of wire
may be treated like a short circuit in the majority of circuit
configurations, there are certain situations for which such an
assumption may not be valid. One obvious example is when
the wire is very long, as in the case of a kilometers long
electric power-transmission cable. Another is when very thin
wires or channels with micron-size diameters are used in
microfabricated circuits.

Resistive elements used in electronic circuits are fabricated in
many different sizes and shapes to suit the intended application
and requisite circuit architecture. Discrete resistors usually are
cylindrical in shape and made of a carbon composite. Hybrid
and miniaturized circuits use film-shaped metal or carbon
resistors. In integrated circuits, resistive elements are fabricated
through a diffusion process (see Technology Brief 7).

Figure 2-2 displays photographs of three types of resistors,
amongst which the tubular-shaped resistor is the most familiar.
Resistors are generally marked with a banded color code to
denote the resistor’s specifications:

(a) 4-Band color code: b1 b2 b4 b5

Note that a wider spacing exists between b4 and b5 than between
the earlier bands. The resistor value is given by

R = (b1b2) × 10b4 ± b5,

with the values of b1, b2, b4, and b5 specified by the color code
shown in Fig. 2-2. For example,

= 25 × 100 ± 10% = 25 ± 10% �.
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Potentiometer resistor

Potentiometer 

4  1  2  k ± 1%   5 ppm /˚C

1 2
3

Rotating dial

Resistive
material

Screw-top potentiometer

Rotatable-shaft potentiometer

Rmax
R23

R13

1

2

3

Movable
wiper

4-, 5-, and 6-band color code system
1st digit 2nd digit 3rd digit # of zeros ppm /˚C

Multiplier
× 10b4

Tolerance Temperature
coefficient

4 bands

5 bands

6 bands

Silver
Gold

Black
Brown

Red
Orange
Yellow
Green

Blue
Purple

Gray
White

25 Ω, 10%

62 MΩ, 5%

500 kΩ, 0.25%, 15 ppm

100 ppm
50 ppm

10%0.01
0.1

101
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

100
1K

10K
100K
1M

10M

1000
5%

1%
2%

0.5%
0.25%
0.1%

15 ppm
25 ppm

b1 b2 b3

b4 b5

b6

10 ppm
5 ppm

Figure 2-2: Various types of resistors. Tubular-shaped resistors usually are color-coded by 4-, 5-, or 6-band systems.

(b) 5-Band color code: b1 b2 b3 b4 b5

In this case

R = (b1b2b3) × 10b4 ± b5.

(c) 6-Band color code: b1 b2 b3 b4 b5 b6

This code adds one more piece of information in the form
of b6 which denotes the temperature coefficient of the resistor,
measured in parts-per-million/ ◦C.
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Table 2-3: Common resistor terminology.

Thermistor R sensitive to temperature
Piezoresistor R sensitive to pressure
Light-dependent R (LDR) R sensitive to light intensity
Rheostat 2-terminal variable resistor
Potentiometer 3-terminal variable resistor

For some metal oxides, the resistivity ρ exhibits a strong
sensitivity to temperature. A resistor manufactured of such
materials is called a thermistor (Table 2-3), and it is used
for temperature measurement, temperature compensation, and
related applications. Another interesting type of resistor is the
piezoresistor, which is used as a pressure sensor in many
household appliances, automotive systems, and biomedical
devices. More coverage on resistive sensors is available in
Technology Brief 4.

Certain applications, such as volume adjustment on a radio,
may call for the use of a resistor with variable resistance. The
rheostat and the potentiometer are two standard types of variable
resistors in common use. The rheostat [Fig. 2-3(a)] is a two-
terminal device with one of its terminals connected to one end of
a resistive track and the other terminal connected to a movable
wiper. Movement of the wiper across the resistive track, through
rotation of a shaft, can change the resistance between the
two terminals from (theoretically) zero resistance to the full
resistance value of the track. Thus, if the total resistance of the
track is Rmax, the rheostat can provide any resistance between
zero and Rmax.

(a) Rheostat (b) Potentiometer

Rmax

R

Terminal 1

Terminal 2

Movable
wiper

Rmax
R23

R13

1

2

3

Movable
wiper

Figure 2-3: (a) A rheostat is used to set the resistance between
terminals 1 and 2 at any value between zero and Rmax; (b) the
wiper in a potentiometer divides the resistance Rmax among R13
and R23.

The potentiometer is a three-terminal device. Terminals 1
and 2 in Fig. 2-3(b) are connected to the two ends of the
track (with total resistance Rmax) and terminal 3 is connected
to a movable wiper. When terminal 3 is at the end next to
terminal 1, the resistance between terminals 1 and 3 is zero
and that between terminals 2 and 3 is Rmax. Moving terminal 3
away from terminal 1 increases the resistance between terminals
1 and 3 and decreases the resistance between terminals 2 and 3.
A potentiometer can be used as a rheostat by connecting to only
terminals 1 and 3.

2-1.2 i–υ Characteristics of Ideal Resistor

Based on the results of his experiments on the nature of
conduction in circuits, German physicist Georg Simon Ohm
(1787–1854) formulated in 1826 the i–υ relationship for a
resistor, which has become known as Ohm’s law. He discovered
that the voltage υ across a resistor is directly proportional to
the current i flowing through it, namely

υ = iR, (2.3)

with the resistance R being the proportionality factor.

� In compliance with the passive sign convention, current
enters a resistor at the “+” side of the voltage across it.

υab = υa − υb

+ _R

i
υbυa

i = υa − υb

R �

An ideal linear resistor is one whose resistance R is constant
and independent of the magnitude of the current flowing through
it, in which case its i–υ response is a straight line (Fig. 2-4(a)).
In practice, the i–υ response of a real linear resistor is indeed
approximately linear, as illustrated in Fig. 2-4(b), so long as i

remains within the linear region defined by −imax to imax. The
slope of the curve is the resistance R. Outside this range, the
response deviates from the straight-line model. When we use
Ohm’s law as expressed by Eq. (2.3), we tacitly assume that the
resistor is being used in its linear range of operation.

Some resistive devices exhibit highly nonlinear i–υ

characteristics. These include diode elements and light-bulb
filaments, among others. Unless noted otherwise, the common
use of the term resistor in circuit analysis and design usually
refers to the linear resistor exclusively.
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(b) Real resistor

(a) Ideal resistor

υ

i

Linear region

imax

−imax

υ

0.5 mA 1 mA

2 V

1 V

R = ∞
R = 2 kΩ

R = 1 kΩ
R

i

R = 0

υ

i

+
_

Figure 2-4: i–υ responses of ideal and real resistors.

The flow of current in a resistor leads to power dissipation
in the form of heat (or the combination of heat and light in the
case of a light bulb’s filament). Using Eq. (2.3) in Eq. (1.9)
provides the following expression for the power p dissipated in
a resistor:

p = iυ = i2R = υ2

R
(W). (2.4)

� The power rating of a resistor defines the maximum
continuous power level that the resistor can dissipate
without getting damaged. Excessive heat can cause
melting, smoke, and even fire. �

For electric circuits with a fixed voltage (such as a 120 V for
a house), the power rating refers to the maximum current limit.

(a) Same current flows through all elements

(b) Same voltage exists across R4 and R5

V

com

R4

V2 R5

+
_

I

R1

V1

R2 R3
+
_ A

Figure 2-5: In-series and in-parallel connections.

Current-limiting devices, such as fuses and circuit breakers, are
used to protect against dangerous overloading of circuits.

2-1.3 In-Series and In-Parallel Connections

Recall from Chapter 1 that two or more elements are considered
to be connected in series if the same current flows through all
of them. This is indeed the case for voltage source V1 and the
resistors shown in Fig. 2-5(a). For two or more elements to be
in parallel, they have to share the same voltage, which is the
case for R4 and R5 in Fig. 2-5(b).

Example 2-1: Series Connection Resistances for a dc
Motor

A 12 V car battery is connected via a 6 m long, twin-wire cable
to a dc motor that drives the wiper blade on the rear window.
The cable is copper AWG-10 and the motor exhibits to the rest
of the circuit an equivalent resistance Rm = 2 �. Determine:
(a) the resistance of the cable and (b) the fraction of the power
contributed by the battery that gets delivered to the motor.

Solution: The circuit described in the problem statement is
represented by Fig. 2-6.
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12 V

Car battery

Wire (6 m long)

Wire

Rm (motor
resistance)

Rc = resistance of both wires

Rtop

Rbottom

+
_

Figure 2-6: Circuit for Example 2-1.

(a) We need to include both the top wire and the bottom wire,
as each represents a resistor through which the current flows,
and therefore contributes to the resistive losses of the circuit.
With � = 12 m (total for twin wires), ρ = 1.72 × 10−8 �-m
for copper, A = π(d/2)2, and d = 2.6 mm for AWG-10, the
cable resistance Rc is

Rc = ρ
�

A
= 1.72 × 10−8 × 12

π(1.3 × 10−3)2 = 0.04 �.

(b) The total resistance in the circuit is equal to the sum of
the cable and motor resistances. [In a later section, we will learn
that the resistance of two resistors connected in series is simply
equal to the sum of their resistances.] Hence,

R = Rc + Rm = 0.04 + 2 = 2.04 �.

Consequently, the current flowing through the circuit is

I = V

R
= 12

2.04
= 5.88 A,

and the power contributed by the battery P and the power
delivered to the motor Pm are:

P = IV = 5.88 × 12 = 70.56 W

and

Pm = I 2Rm = (5.88)2 × 2 = 69.15 W,

and the fraction of P delivered to the load (motor) is

Fraction = Pm

P
= 69.15

70.56
= 0.98 or 98 percent.

Thus, 2 percent of the power is dissipated in the cable.

Concept Question 2-1: If the terminals of the battery 
in Fig. 2-6 were corroded, how would that change the 
problem and the results? (See         )

Same as positive terminal of υs(t)

Same as negative terminal of υs(t)

i

i1

R1 R2 R3

i2 i3
+
_υs(t) 1 kΩ 500 Ω 250 Ω

Figure 2-7: Circuit for Example 2-2.

Example 2-2: Parallel Loads

Three loads—a 1 k� light bulb, a 500 � computer, and a 250 �

TV, each represented by a resistor, are connected in parallel to a
household ac voltage source as shown in Fig. 2-7. The source is
cosinusoidal in time at a frequency of 60 Hz and its amplitude
is 170 V. Hence, it can be described as

υs(t) = 170 cos(2π × 60t) = 170 cos(377t) V.

Determine the currents supplied by the source to the three loads.

Solution: All three loads share the same positive terminal
(node) ofυs(t)on one end and the same negative terminal (node)
on the other. Consequently, application of Ohm’s law leads to

i1(t) = υs(t)

R1
= 170

103 cos(377t) = 0.17 cos(377t) A,

i2(t) = υs(t)

R2
= 170

500
cos(377t) = 0.34 cos(377t) A,

i3(t) = υs(t)

R3
= 170

250
cos(377t) = 0.68 cos(377t) A.

As we see in the next section, the current i supplied by the
source is the sum of the three load currents,

i(t) = i1 + i2 + i3 = 1.19 cos(377t) A.

Concept Question 2-2: How does the magnitude of the 
conductivity of a metal, such as copper, compare with that 
of a typical insulator, such as mica? (See         )

Concept Question 2-3:What is piezoresistivity, and how
is it used? (See         )
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Technology Brief 3
Superconductivity

When an electric voltage is applied across two points in a 
conductor, such as copper or silver, current flows between 
them. The relationship between the voltage difference V 
and the current I is given by Ohm’s law, V = IR, where R 
is the resistance of the conducting material between the 
two points. It is helpful to visualize the electric current 
as a fluid of electrons flowing through a dense forest 
of sturdy metal atoms, called the lattice. Under the 
influence of the electric field (induced by the applied 
voltage), the electrons can attain very high instantaneous 
velocities, but their overall forward progress is impeded 
by the frequent collisions with the lattice atoms. Every 
time an electron collides and bounces off an atom, some 
of that electron’s kinetic energy is transferred to the 
atom, causing the atom to vibrate—which heats up the 
material—and causing the electron to slow down. The 
resistance R is a measure of how much of an obstacle the 
resistor poses to the flow of current, as well as a measure 
of how much heat it generates for a given current. The 
power dissipated in R is I 2R if I is a dc current, and it is

2
1 I 2R if the current is ac with an amplitude I .

Can a conductor ever have zero resistance? The 
answer is most definitely yes! In 1911, the Dutch physicist 
Heike Kamerlingh Onnes developed a refrigeration 
technique so powerful that it could cool helium down 
low enough to condense it into liquid form at 4.2 K 
(0 kelvin = −273 ◦C). Into his new liquid helium 
container, he immersed (among other things) mercury; 
he soon discovered that the resistance of a solid piece 
of mercury at 4.2 K was zero! The phenomenon, which 
was completely unexpected and not predicted by 
classical physics, was coined superconductivity. 
According to quantum physics, many materials 
experience an abrupt change in behavior (called a 
phase transition) when cooled below a certain critical 
temperature TC.

Superconductors have some amazing properties. The 
current in a superconductor can persist with no external 
voltage applied. Even more interesting, currents have 
been observed to persist in superconductors for many 
years without decaying. When a magnet is brought close 
to the surface of a superconductor, the currents induced 
by the magnetic field are mirrored exactly by the 
superconductor (because the superconductor’s 
resistance is zero), and consequently the magnet is 
repelled (Fig. TF3-1). This property has been used to 
demonstrate magnetic levitation and is the basis of some 
super-fast maglev trains (Fig. TF3-2) being

Figure TF3-1: The Meissner effect, or strong diamag-
netism, seen between a high-temperature superconductor
and a rare earth magnet. (Courtesy of Pacific Northwest
National Laboratory.)

Figure TF3-2: Maglev train. (Courtesy of Central Japan
Railway Company.)

used around the world. The same phenomenon is used
in the Magnetic Resonance Imaging (MRI) machines
that hospitals use to perform 3-D scans of organs and
tissues (Fig. TF3-3) and in Superconducting Quantum
Interference Devices (SQUIDs) to examine brain activity
at high resolution.
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Figure TF3-3: Magnetic Resonance Imaging machine. (Courtesy GE Healthcare.)

Superconductivity is one of the last frontiers in solid-
state physics (see Table TT3-1). Even though the physics
of low-temperature superconductors (like mercury, lead,
niobium nitride, and others) is now fairly well understood,
a different class of high-temperature superconductors
still defies complete theoretical explanation. This class
of materials was discovered in 1986 when Alex Müller
and Georg Bednorz, at IBM Research Laboratory
in Switzerland, created a ceramic compound that
superconducted at 30 K. This discovery was followed
by the discovery of other ceramics with even higher
TC values; the now-famous YBCO ceramic discovered
at the University of Alabama-Huntsville (1987) has

a TC of 92 K, and the world record holder is a
group of mercury-cuprate compounds with a TC of
138 K (1993). New superconducting materials and
conditions are still being found; carbon nanotubes,
for example, were recently shown to have a TC of
15 K (Hong Kong University, 2001). Are there higher-
temperature superconductors? What theory will explain
this higher-temperature phenomenon? Can so-called
room-temperature superconductors exist? For engineers
(like you) the challenges are just beginning: How can
these materials be made into useful circuits, devices, and
machines? What new designs will emerge? The race is
on!

Table TT3-1: Critical temperatures.

Critical Temperature Tc [K] Material Type

138 HgBa2Ca2Cu3Ox

138 Bi2Sr2Ca2Cu3O10 (BSCCO) Copper-oxide superconductors
92 YBa2Cu3O7 (YBCO)

55 SmFeAs
41 CeFeAs Iron-based superconductors
26 LaFeAs

18 Nb3Sn
10 NbTi Metallic low-temperature
9.2 Nb superconductors
4.2 Hg (mercury)
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Concept Question 2-4: What is meant by the linear
region of a resistor? Is it related to its power rating? 
(See         )

Exercise 2-1: A cylindrical resistor made of carbon has
a power rating of 2 W. If its length is 10 cm and its
circular cross section has a diameter of 1 mm, what is
the maximum current that can flow through the resistor 
without damaging it?

Answer: 1.06 A. (See  )

Exercise 2-2: A rectangular bar made of aluminum has
a current of 3 A flowing through it along its length. If its
length is 2.5 m and its square cross section has 1 cm sides,
how much power is dissipated in the bar at 20 ◦C?

Answer: 5.9 mW.  (See        )
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Figure 2-8: p-n junction diode (a) configuration, (b) reverse biased, (c) forward biased, (d) typical i-υ plots for LEDs, and (e) LED
equivalent circuit.

2-1.4 i–υ Characteristics of LEDs

A resistor is a bidirectional device, meaning that current
can flow through it in either direction. This is because it is
constructed of the same material along the dimension between
its two terminals. In contrast, a diode allows current to flow
in only one direction. It is built of two sections of different
semiconductor materials, denoted p and n in Fig. 2-8(a). The
p-type material has excess positive charges and the n-type
material has excess negative charges. When connected to a
voltage source, the diode acts like a resistor in one direction,
but like an open circuit in the other. Specifically:

(a) Reverse bias: If the voltage VD applied across the diode is
negative (relative to its own terminals), as shown in Fig. 2-8(b),
no current flows through it, which is equivalent to having infinite
resistance. That is, the diode behaves like an open circuit.

(b) Forward bias: If the voltage VD is positive, as in
Fig. 2-8(c), current will flow through the diode, but the
relationship between I and VD is not a constant. For a
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resistor, VD/I = R and R is a constant, but for a diode the
relationship between VD and I is more complicated. However,
its i–υ relationship can be approximated by

I = aV 2
D (VD > 0),

where a is a constant that depends on the semiconductor
material used to build the LED.

A light-emitting diode is a special kind of diode in that it emits
light if I exceeds a certain threshold. Figure 2-8(d) displays
plots of I versus VD for five LEDs of different colors. The
color of light emitted by an LED depends on the semiconductor
compounds from which it is constructed. The voltage at which
the diode becomes approximately linear is the forward bias
voltage VF, and it becomes part of the diode model shown in
Fig. 2-8(e). For the typical family of LEDs shown in Fig. 2-8(d),
the current I has to exceed 20 mA in order for the LED to fully
light up. This current threshold has a corresponding voltage
threshold called the forward voltage VF. Below this threshold,
the diode conducts little or no current and is considered “OFF”
(although it does generate a small amount of light). For the red
LED, for example, VF = 1.6 V, and the current flowing through
the LED at that voltage is exactly 20 mA. Higher values of VF
are required to cause the LEDs of the other colors to emit light.

When we analyze a circuit containing an LED, the LED can
be modeled as an ideal diode with a voltage drop of VF in series
with a small internal resistance RD, as shown in Fig. 2-8(e).
We can determine the approximate LED resistance RD from
the slope of the linear section (above VF) of the i–υ curve in
Fig. 2-8(d); i.e., RD ≈ �VD/�I .

Exercise 2-3:A certain type of diode exhibits a nonlinear
relationship between υ—the voltage across it—and i—
the current entering into its (+) voltage terminal. Over its
operational voltage range (0 to 1 V), the current is given
by

i = 0.5υ2 for 0 ≤ υ ≤ 1 V.

Determine how the diode’s effective resistance varies
with υ and calculate its value at υ = 0, 0.01 V, 0.1 V,
0.5 V, and 1 V.

Answer: R = 2

υ
,

υ R

0 ∞
0.01 V 200 �

0.1 V 20 �

0.5 V 4 �

1 V 2 �

(See             )

2-1.5 Conductance

The reciprocal of resistance is called conductance,

G = 1

R
(S), (2.5)

and its unit is �−1, which is called the siemen (S, or sometimes
called “mho”). In terms of G, Ohm’s law can be rewritten in
the form

i = υ

R
= Gυ, (2.6)

and the expression for power becomes

p = iυ = Gυ2 (W). (2.7)

Since G = 1/R, what is the point in dealing with both G

and R? The answer is: convenience. In some circuit solutions it
is easier to work with R for all resistors in the circuit, whereas
in other circuit configurations (especially those in parallel) it
may be easier to work with conductances instead.

2-2 Kirchhoff’s Laws

Circuit theory—encompassing both analysis and synthesis—
is built upon a foundation comprised of a small number of
fundamental laws. Among the cornerstones are Kirchhoff’s
current and voltage laws. Kirchhoff’s laws, which constitute
the subject of this section, were introduced by the German
physicist Gustav Robert Kirchhoff (1824–1887) in 1847, some
21 years after a fellow German, Georg Simon Ohm, developed
his famous law.

2-2.1 Kirchhoff’s Current Law (KCL)

As defined earlier, a node is a connection point for two or
more branches. As such, it is not a real circuit element, and
therefore it cannot generate, store, or consume electric charge.
This assertion, which follows from the law of conservation
of charge, forms the basis of Kirchhoff’s current law (KCL),
which states that:

� The algebraic sum of the currents entering a node must
always be zero. �
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i1

i2 i3

i4

Figure 2-9: Currents at a node.

Mathematically, KCL can be expressed by the compact form:

N∑
n=1

in = 0 (KCL), (2.8)

where N is the total number of branches connected to the node,
and in is the nth current.

� A common convention is to assign a positive “+++” sign
to a current if it is entering the node and a negative “−−−”
sign if it is leaving it. �

For the node in Fig. 2-9, the sum of currents entering the node
is

i1 − i2 − i3 + i4 = 0, (2.9)

where currents i1 and i4 were assigned positive signs because
they are labeled in the figure as entering the node, and i2 and i3
were assigned negative signs because they are leaving the node.

� Alternatively, the sum of currents leaving a node is
zero, in which case we assign a “+” to a current leaving
the node and a “−” to a current entering it. �

Either convention is equally valid so long as it is applied
consistently to all currents entering and leaving the node.

By moving i2 and i3 to the right-hand side of Eq. (2.9), we
obtain the alternative form of KCL, namely

i1 + i4 = i2 + i3, (2.10)

which states that:

� The total current entering a node must be equal to the
total current leaving it. �

How do we know which way a current is flowing in a circuit?
Often, we do not. So, we guess by assigning a direction to each
current, and then applying Kirchhoff’s laws to compute the
currents. If the value for a particular current is a positive number,
then our guess was correct, but if it is a negative number, then
the direction of the current is opposite the one we assigned it.

Example 2-3: KCL Equations

Write the KCL equations at nodes 1 through 5 in the circuit of
Fig. 2-10.

Solution:

At node 1: −I1 − I3 + I5 = 0
At node 2: I1 − I2 + 2 = 0
At node 3: −2 − I4 + I6 = 0
At node 4: −5 − I5 − I6 = 0
At node 5: I3 + I4 + I2 + 5 = 0

R1

V1

I1

I5

I3

I2

I4

I6

R2

R3 R4

R5
R6

5 A 

2 A

1

2

3

4

5

++
_

Figure 2-10: Circuit for Example 2-3.
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Example 2-4: Applying KCL

If V4, the voltage across the 4 � resistor in Fig. 2-11, is 8 V,
determine I1 and I2.

1

2

10 A
10 V

1 Ω

2 Ω

4 Ω

3 Ω

I1

I2

V4 +_

+
−
+
_

Figure 2-11: Circuit for Example 2-4.

Solution: The designated direction of I2 is such that it enters
the negative (−) terminal of V4, whereas according to Ohm’s
law, the current should enter through the positive (+) terminal
of the voltage across a resistor. Hence, in the present case, we
should include a negative sign in the relationship between I2
and V4, namely

I2 = −V4

4
= −8

4
= −2 A.

Thus, the true direction of the current flowing through the 4 �

resistor is opposite of that of I2.
Using the KCL convention that defines a current as positive

if it is leaving a node and negative if it is entering it, at node 2:

10 − I1 + I2 = 0,

which leads to

I1 = 10 + I2 = 10 − 2 = 8 A.

2-2.2 Kirchhoff’s Voltage Law (KVL)

The voltage across an element represents the amount of energy
expended in moving positive charge from the negative terminal
to the positive terminal, thereby establishing a potential energy
difference between those terminals. The law of conservation
of energy mandates that if we move electric charge around a
closed loop, starting and ending at exactly the same location,
the net gain or loss of energy must be zero. Since voltage is a
surrogate for potential energy:

� The algebraic sum of the voltages around a closed loop
must always be zero. �

This statement defines Kirchhoff’s voltage law (KVL). In
equation form, KVL is given by

N∑
n=1

υn = 0 (KVL), (2.11)

where N is the total number of branches in the loop and υn is
the nth voltage across the nth branch. Application of Eq. (2.11)
requires the specification of a sign convention to use with it. Of
those used in circuit analysis, the sign convention we chose to
use in this book consists of two steps.

Sign Convention

• Add up the voltages in a systematic clockwise
movement around the loop.

• Assign a positive sign to the voltage across an
element if the (+) side of that voltage is encountered
first, and assign a negative sign if the (−) side is
encountered first.

Hence, for the loop in Fig. 2-12, starting at the negative terminal
of the 4 V voltage source, application of Eq. (2.11) yields

−4 + V1 − V2 − 6 + V3 − V4 = 0. (2.12)

V4

V3

V2

V1

R4

R3

R1

R2

4 V

6 V

-

+

_
+

+

_

_

+ _

+
_

+_

Figure 2-12: One-loop circuit.
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Table 2-4: Equally valid, multiple statements of
Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage
Law (KVL).

KCL

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

• Sum of all currents entering a node = 0

[i = “+” if entering; i = “−” if leaving]
• Sum of all currents leaving a node = 0

[i = “+” if leaving; i = “−” if entering]
• Total of currents entering = Total of currents

leaving

KVL

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

• Sum of voltages around closed loop = 0

[υ = “+” if + side encountered first

in clockwise direction]
• Total voltage rise = Total voltage drop

�An alternative statement of KVL is that the total voltage
rise around a closed loop must equal the total voltage drop
around the loop. �

Recalling that a voltage rise is realized by moving from the (−)
voltage terminal to the (+) terminal across the element, and
voltage drop is the converse of that, the clockwise movement
around the loop in Fig. 2-12 gives

4 + V2 + 6 + V4 = V1 + V3, (2.13)

which mathematically conveys the same information contained
in Eq. (2.12).

Table 2-4 provides a summary of KCL and KVL statements.

Concept Question 2-5: Explain why KCL is (in essence)
a statement of the law of conservation of charge. 
(See         )

Concept Question 2-6: Explain why KVL is a statement
of conservation of energy. What sign convention is used 
with KVL? (See         )

Example 2-5: Applying KVL

Determine the value of current I in the circuit of Fig. 2-13(a).

Solution: For the specified direction of I , we designate
voltages V1, V2, and V3 across the three resistors, as shown in
Fig. 2-13(b). In each case, the positive polarity of the voltage
across a resistor is placed at the terminal at which the current
enters the resistor.

Starting at the negative terminal of the 12 V voltage source
and moving clockwise around the loop, KVL gives

−12 + V1 + V2 + V3 = 0.

By Ohm’s law, V1 = 10I , V2 = 20I , and V3 = 30I . Hence,

−12 + 10I + 20I + 30I = 0,

which leads to

60I = 12,

or

I = 12

60
= 0.2 A.

(b) After labeling voltages across resistors

+
_

+ _ + _

+
_12 V

V1 = 10I

30 Ω

10 Ω

V2 = 20I

20 Ω

V3 = 30I

I

(a) Circuit for Example 2-5

+
_12 V 30 Ω

10 Ω 20 Ω

I

Figure 2-13: Circuit for Example 2-5 before and after labeling
voltages across the three resistors with polarities consistent with
Ohm’s law.
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KCL/KVL Solution Recipe

• Use KCL, KVL, and Ohm’s law to develop as
many independent equations as the number of
unknowns (N ).

(a) Write as many KVL loop equations as you can,
picking up at least one additional circuit element
for each loop. Let M be the number of such loop
equations. Exclude loops that go through current
sources.

(b) Write (N−M) KCL equations, making sure each
node picks up an additional current.

• Write the equations in standard form (see Eq. (B.2)
in Appendix B).

• Cast the standard-form equations in matrix form, as
in Eqs. (B.19) and (B.20) of Appendix B.

• Apply matrix inversion to compute the values of the
circuit unknowns (Appendix B).

Example 2-6: Matrix Inversion of KVL/KCL Equations

For the circuit in Fig. 2-14(a): (a) identify all N unknown
branch currents and assign them preliminary directions, (b)
develop M KVL loop equations through all possible elements
(while excluding loops containing current sources), (c) develop
(N − M) KCL node equations, (d) arrange the equations in
matrix form, (e) solve by matrix reduction to find the unknown
branch currents, (f) determine the power dissipated in R5, and
(g) find the voltages of all extraordinary nodes relative to the
negative terminal of the voltage source. The element values
are: V0 = 10 V, I0 = 0.8 A, R1 = 2 �, R2 = 3 �, R3 = 5 �,
R4 = 10 �, and R5 = 2.5 �.

Solution:

(a) Identify unknown currents

Excluding the branch containing I0 (since we know that the
current in that branch is I0 = 0.8 A), we have 4 unknown
branch currents, which we denote I1 to I4 in Fig. 2-14(b). Also,
with the negative terminal of the voltage source denoted as the
voltage reference (ground), we have two extraordinary nodes,
with designated voltages Va and Vb.

(a) Original circuit

(b)

+
_ I0R5R3

R4R1 R2

V0

Loop 1 Loop 2

R5

R4R1 R2

V0
R3+

_

I1

I2

Va Vb

I4

I3

I0

Figure 2-14: Circuit for Example 2-6.

(b) KVL equations

The circuit contains two independent loops that do not contain
the current source I0. The associated KVL equations are:

−V0 + I1R1 + I1R2 + R3I2 = 0 (Loop 1),

−I2R3 + I3R4 + I4R5 = 0 (Loop 2).

Alternatively, we can replace either of the two loop equations
with the KVL equation for the perimeter loop that includes both
of them, namely the loop that starts at the ground node, then
goes clockwise through V0, R1, R2, R4, and R5, and back to the
ground node. Either approach leads to the same final result.

(c) KCL equations

We have two extraordinary nodes (in addition to the ground
node). We designate their voltages as shown in Fig. 2-14(b).
With current defined as positive when entering a node, their
KCL equations are

I1 − I2 − I3 = 0 (Node a),

I3 − I4 + I0 = 0 (Node b).
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(d) Arrange equations in matrix form

⎡
⎢⎢⎣

(R1 + R2) R3 0 0
0 −R3 R4 R5
1 −1 0
0 0 1 −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣

I1
I2
I3
I4

⎤
⎥⎥⎦

︸ ︷︷ ︸
I

=

⎡
⎢⎢⎣

V0
0
0

−I0

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

.

This is in the form

AI = B.

(e) Matrix inversion

After replacing the sources and resistors with their specified
numerical values, matrix reduction, per MATLAB, MathScript,
or the procedure outlined in Appendix B-2, leads to

I1 = 1.1 A, I2 = 0.9 A,

I3 = 0.2 A, I4 = 1 A, .

(f) Power in R5

P = I 2
4 R5 = 12 × 2.5 = 2.5 W.

(g) Node voltages

Va = I2R3 = 0.9 × 5 = 4.5 V,

Vb = I4R5 = 1 × 2.5 = 2.5 V.

Example 2-7: Two-Source Circuit

Determine Vab in the circuit of Fig. 2-15(a).

Solution: The circuit contains two independent loops and
two extraordinary nodes, which we label node 1 and node 2
in Fig. 2-15(b). At extraordinary node 1, we assign currents
I1, I2, and I3. Their directions are chosen arbitrarily; for I1,
for example, if the solution yields a positive value, then the
direction we assigned it is indeed the correct direction, and if
the solution yields a negative value, then its true direction is the
opposite of what we had assigned it.

Once the directions of I1 to I3 are specified at node 1,
continuity of current automatically specifies their directions at
node 2, as shown in Fig. 2-15(b). Since we have 3 unknowns
(I1, I2, and I3), we need N = 3 equations.

(a) Given circuit

(b) After assigning currents at nodes 1 and 2

(c) After completing solution

+
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+
_

12 V
24 V

2 Ω

6 Ω

3 Ω

a 4 Ω
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+
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+
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12 V
24 V

2 Ω

6 Ω

3 Ω V4 = 3I1

V1 = 2I2

V3 = 6I3

V2 = 4I2

a 4 Ω

b
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+

+
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+ _Node 1 Node 2
I2 I2
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I3 I3
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12 V

24 V

2 Ω

6 Ω

3 Ω

a 4 Ω

b

+

+

_

_

+_+_
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6 V

6 V
+
_
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Node 1 Node 2

1 A

2 A

1 A

Figure 2-15: Circuit for Example 2-7.
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In terms of the labeled voltages, application of KVL around
the two loops gives

−12 + V4 + V1 + V2 + 24 = 0, (KVL for Loop 1)
(2.14a)

V3 − V2 − V1 = 0. (KVL for Loop 2)
(2.14b)

Using Ohm’s law for the four resistors, the two KVL equations
become

−12 + 3I1 + 2I2 + 4I2 + 24 = 0, (KVL for Loop 1)
(2.15a)

6I3 − 4I2 − 2I2 = 0. (KVL for Loop 2)
(2.15b)

The two simultaneous equations contain three unknowns,
namely I1 to I3. A third equation is supplied by KCL at node 1
or node 2:

I1 = I2 + I3. (KCL @ node 1 or 2) (2.16)

Equations (2.15a), (2.15b), and (2.16) constitute 3 equations in
3 unknowns. We can solve for I1 to I3 either by the substitution
method or by matrix inversion (Appendix B). To apply the latter,
we need to cast the three equations in standard form:

3I1 + 6I2 = −12,

−6I2 + 6I3 = 0,

I1 − I2 − I3 = 0.

In matrix form:⎡
⎣3 6 0

0 −6 6
1 −1 −1

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣−12

0
0

⎤
⎦ .

Matrix inversion, as outlined in Appendix B, leads to

I1 = −2 A, I2 = −1 A, I3 = −1 A.

Hence, the true directions of the three currents are exactly
opposite those we supposed , and so are the polarities of the
voltages across the resistors. Incorporating both the calculated
magnitudes and signs of I1 to I3 leads to the diagram shown
in Fig. 2-15(c). To calculate Vab, we start at node b and move
clockwise towards node a in loop 1, while keeping track of
voltage rises and drops. From node b to the (+) terminal of the
12 V source is a voltage rise of 12 V, from there to node 1 is a

voltage rise of 6 V, and from node 1 to node b is a third voltage
rise of 2 V. Hence

Vab = 12 + 6 + 2 = 20 V.

Alternatively, we can calculate Vab by moving from node b to
node a counterclockwise through node 2. In that case

Vab = 24 − 4 = 20 V,

which is identical to the earlier result.

Example 2-8: Circuit with Dependent Source

The circuit in Fig. 2-16 includes a current-dependent voltage
source.Apply KVL and KCL to determine the amount of power
consumed by the 12 � resistor.

Solution: We start by assigning currents I2 and I3 at node 1,
and using those currents to designate the voltages across the
three resistors. Note that in all cases, the designated (+) side of

(a) Given circuit

(b) After assigning currents at node 1

+
_20 V

4 Ω

8 Ω

12 Ω

+_

I1

8I1

8I2
+
_

Node 1

L1 L2

+
_20 V 8I1

4 Ω 12 Ω

+_8 Ω

I1

I2

I3

12I3
+ _

4I1
+ _

Node 2

Figure 2-16: Circuit for Example 2-8.
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the voltage corresponds to the terminal at which the current is
entering.

For loops 1 and 2, KVL gives

−20 + 4I1 + 8I2 = 0, (KVL for Loop 1)

−8I2 + 12I3 − 8I1 = 0. (KVL for Loop 2)

Note that there is another loop in the circuit, namely the
perimeter loop around the whole circuit, but if we write a
KVL equation for that loop, it would not provide an equation
independent of the other loop equations because it would not
include any circuit element not already included in loops L1
and L2.

At node 1, KCL states that

I1 = I2 + I3.

The combination of the three equations in unknowns I1, I2,
and I3 leads to the solution

I1 = 25

7
A,

I2 = 5

7
A,

I3 = 20

7
A.

Hence, the power dissipated in the 12 � resistor is

P = I 2
3 R =

(
20

7

)2

× 12 = 97.96 W.

Exercise 2-4: If I1 = 3 A in Fig. E2.4, what is I2?

I1

I2

2 A10 V 2 Ω

4 Ω

+
_

Figure E2.4

Answer: I2 = −1 A. (See         )

Exercise 2-5: Apply KCL and KVL to find I1 and I2 in
Fig. E2.5.

I1

I2

4 A20 V 2 Ω

4 Ω

+
_

Figure E2.5

Answer: I1 = 6 A, I2 = 2 A. (See  )

Exercise 2-6: Determine Ix in the circuit of Fig. E2.6.

Figure E2.6

4 Ω

2 Ω

2 Ω

8 Ω

4 A

+_ 2Ix

Ix

Answer: Ix = 1.33 A. (See )

2-3 Equivalent Circuits

Even though Kirchhoff’s current and voltage laws can be used
to write down the requisite number of node and loop equations
that are necessary to solve for all of the voltages and currents
in a circuit, it is often easier to determine a certain unknown
voltage or current by first simplifying the other parts of the
circuit. The simplification process involves the use of circuit
equivalence, wherein a circuit segment connected between two
nodes (such as the original circuit segment connected between
nodes 1 and 2 in Fig. 2-17) is replaced with another, simpler,
circuit whose behavior is such that the voltage difference
(υ1 − υ2) between the two nodes—as well as the currents
entering into them (or exiting from them)—remain unchanged.
That is:
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υ1i1

υ2i2
Original
circuit 

segment

Circuit Equivalence

Equivalent
circuit

Rest of
the circuit

υ1i1

υ2i2
Rest of

the circuit

1

2

1

2

Figure 2-17: Circuit equivalence requires that the equivalent
circuit exhibit the same i–υ characteristic as the original circuit.

� Two circuits connected between a pair of nodes are
considered to be equivalent—as seen by the rest of the
circuit—if they exhibit identical i–υ characteristics at
those nodes. �

To the rest of the circuit, the original and equivalent circuit
segments appear identical. The equivalent-circuit technique
can be applied on the source side of a circuit, as well as on
the load side.

We now will examine several types of equivalent circuits
and then provide an overall summary at the conclusion of this
section.

2-3.1 Resistors in Series

Consider the single-loop circuit of Fig. 2-18(a) in which a
voltage source υs is connected in series with five resistors. The
KVL equation is given by

−υs + R1is + R2is + R3is + R4is + R5is = 0, (2.17)

which can be rewritten as

υs = R1is + R2is + R3is + R4is + R5is

= (R1 + R2 + R3 + R4 + R5)is = Reqis, (2.18)

where Req is an equivalent resistor whose resistance is equal
to the sum of the five in-series resistances,

Req = R1 + R2 + R3 + R4 + R5. (2.19)

υs
υ1

R1

+_

R2

R5 R4

R3

1

2

υ2
υ3

υ5 υ4

υs

is

is

+_ Req

1

2

(a) Original circuit

Equivalent circuit
+
_

+
_

Combining In-Series Resistors

(b) Req = R1 + R2 + R3 + R4 + R5

Figure 2-18: In a single-loop circuit, Req is equal to the sum
of the resistors.

From the standpoint of the source voltage υs and the current is
it supplies, the circuit in Fig. 2-18(a) is equivalent to that in
Fig. 2-18(b). That is,

is = υs

Req
. (2.20)

� Multiple resistors connected in series (experiencing the
same current) can be combined into a single equivalent
resistor Req whose resistance is equal to the sum of all of
their individual resistances. �

Mathematically,

Req =
N∑

i=1

Ri (resistors in series), (2.21)

where N is the total number of resistors in the group.

Voltage division

For resistor R2 in Fig. 2-18(a), the voltage across it is given by

υ2 = R2is =
(

R2

Req

)
υs. (2.22a)
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Similar expressions apply to the other resistors, wherein the
voltage across a resistor is equal to υs multiplied by the ratio
of its own resistance to the sum total Req. Thus, the single-loop
circuit, in effect, divides the source voltage among the series
resistors.

� The voltage across any individual resistor Ri in a series
circuit is a proportionate fraction (Ri/Req) of the voltage
across the entire group

υi =
(

Ri

Req

)
υs (voltage division). (2.22b)

�

Example 2-9: The Voltage Divider

The term voltage divider is used commonly in reference to a
circuit of the type shown in Fig. 2-19, whose purpose is to

+

_
Load
circuit

υs

R1

R2 υ2

+
_

(a) υ2 =
(

R2

R1 + R2

)
υs

(b) Voltage divider is equivalent to subdividing
a battery into two separate batteries

+

_

+

_
3 Ω

2 Ω

10 V

6 V

4 V

+

_
6 V

+

_

+

_
4 V

+

_

Figure 2-19: Voltage dividers are important tools in circuit
analysis and design.

supply a secondary load circuit a specific voltage υ2 that is
smaller than the available source voltage υs. In other words, the
goal is to scale υs down to υ2. If υs = 100 V, choose appropriate
values for R1 and R2 so that υ2 = 60 V.

Solution: In view of Eq. (2.22a), application of the voltage-
division property gives

υ2 =
(

R2

R1 + R2

)
υs.

To obtain the desired division, we require

R2

R1 + R2
= υ2

υs
= 60

100
= 0.6,

which can be satisfied through an infinite combination of
choices of R1 and R2. Hence, we arbitrarily choose

R1 = 2 � and R2 = 3 �.

Note that the circuit in Fig. 2-19(b) will provide approximately
the indicated voltages to a load circuit, so long as the resistance
of the load circuit is very large compared with the resistance
of R2. Otherwise, the load circuit would draw current, thereby
“loading down” the source circuit and changing V2.

2-3.2 Sources in Series

Figure 2-20 contains a single-loop circuit composed of a
voltage source, a resistor, and two current sources, all connected
in series. One of the current sources indicates that the current
flowing through it is 4 A in magnitude and clockwise in
direction, while the other current source indicates that the

V0

R

4 A

6 A

+
_

Figure 2-20: Unrealizable circuit; two current sources with
different magnitudes or directions cannot be connected in series.
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Technology Brief 4
Resistive Sensors

Resistive sensors can convert many physical parameters
in our environment into a resistance that varies with
temperature, light, pressure, moisture, chemical compo-
sition, sound, or other inputs. This variable resistance will
then change the voltage or current in a circuit, which
can be further manipulated in an electrical system to
produce a desired output (turning on a warning light
or buzzer, adjusting a valve, or otherwise control the
pressure/light/heat/sound automatically). When a system
measures a parameter (e.g., temperature) in order to
control that parameter, the process is called a feedback
loop. Sensors are a very important part of a feedback
system.

So how do resistive sensors work? The resistance R

of a semiconductor accounts for the reduction in the
electrons’ velocities due to collisions with the much larger
atoms of the conducting material (seeTechnology Brief 3).
The question is:What happens to R if we disturb the atoms
of the conductor by applying an external, nonelectrical
stimulus, such as heating or cooling it, stretching or
compressing it, or shining light on it? Through proper
choice of materials, we can modulate (change) the
magnitude of R in response to such external stimuli.

Piezoresistive Sensors (Pressure, Bending,
Force, etc.)

In 1856, Lord Kelvin discovered that applying a me-
chanical load on a bar of metal changed its resistance.
Over the next 150 years, both theoretical and practical
advances made it possible to describe the physics behind
this effect in both conductors and semiconductors. The
phenomenon is referred to as the piezoresistive effect
(Fig. TF4-1) and is used in many practical devices
to convert a mechanical signal into an electrical one.
Such sensors (Fig. TF4-2) are called strain gauges.
Piezoresistive sensors are used in a wide variety
of consumer applications, including writing styluses
for tablets (some high-precision styluses are resistive
and others are capacitive—which we will learn about
in Chapter 5), robot toy “skins” that sense force,
microscale gas-pressure sensors, and micromachined
accelerometers that sense acceleration. They all use
piezoresistors in electrical circuits to generate a signal
from a mechanical stimulus.

COMPRESSION 

STRETCHING 

FORCE (N) 

F = 0 

FF FF

R (Ω)

R = ρ A
l

Figure TF4-1: Piezoresistance varies with applied force.
The word “piezein” means “to press” in Greek.

In its simplest form, a resistance change �R occurs
when a mechanical pressure P (N/m2) is applied along
the axis of the resistor (Fig. TF4-1)

�R = R0αP,

where R0 is the unstressed resistance and α is known as
the piezoresistive coefficient (m2/N).The piezoresistive
coefficient is a material property, and for crystalline
materials (such as silicon), the piezoresistive coefficient
also varies depending on the direction of the applied
pressure (relative to the crystal planes of the material).
When the horizontal and vertical components are different
the material is called anisotropic. The total resistance of
a piezoresistor under stress is therefore given by

R = R0 + �R = R0(1 + αP).

The pressure P, which usually is called the mechanical
stress or mechanical load, is equal to F/A, where F
is the force acting on the piezoresistor and A is the
cross-sectional area it is acting on. The sign of P is
defined as positive for a compressive force and negative
for a stretching force. The piezoresistive coefficient α

usually has a negative value, so the product αP leads
to a decrease in R for compression and an increase for
stretching.

Thermistor Sensors

Changes in temperature also can lead to changes in
the resistance of a piece of conductor or semiconductor;
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(a)

(b) (c)

FigureTF4-2: A microfabricated pressure sensor utilizing piezoresistors as sensors. (a) A thin diaphragm (blue) is suspended
over a depression etched into a glass substrate (grey). Serpentine piezoresistors (yellow) are patterned onto the membrane.
(b) Differences in pressure between between the ambient and the gas in the depression will move the membrane. When this
happens, the resistors stretch (or compress), changing their resistance as explained in the text. (c) A false color scanning
electron micrograph of an actual microfabricated pressure sensor. Note the piezoresistors (yellow) patterned along the four
sides of the diaphragm and the white, 100 μm scale bar. (Courtesy of Khalil Najafi, University of Michigan.)

when used as a sensor, such an element is called a
thermistor. As a simple approximation, the change in
resistance can be modeled as

�R = k �T,

where �T is the temperature change (in degrees C)
and k is the first-order temperature coefficient of
resistance (�/◦C). Thermistors are classified according
to whether k is negative or positive (i.e., if an increase in
temperature decreases or increases the resistance).This
approximation works only for small temperature changes;
for larger swings, higher-order terms must be included
in the equation. Resistors used in electrical circuits that
are not intended to be used as sensors are manufactured
from materials with the lowest k possible, since circuit
designers do not want their resistors changing during
operation. In contrast, materials with high values of k
are desirable for sensing temperature variations. Care
must be taken, however, to incorporate into the sensor
response the self-heating effect that occurs due to having
a current passing through the resistor itself (as in the flow
sensor shown in Fig. TF4-3).

Thermistors are used routinely in modern thermostats,
cell phones, automotive and industrial applications,
weather monitoring, and battery-pack chargers (to
prevent batteries from overheating). Thermistors also
have found niche applications (Fig. TF4-3) in low-
temperature sensing and as fuse replacements (for
thermistors with large, positive k values). In the case
of current-limiting fuse replacements, a large enough
current self-heats the thermistor, and the resistance
increases. There is a threshold current above which
the thermistor cannot be cooled off by its environment;
as it continues to get hotter, the resistance continues
to increase, which in turn, causes even more self-
heating. This “runaway” effect rapidly shuts current off
almost entirely. Thermistors are specified based on their
linear range where resistance varies linearly with the
temperature, and a wide variety of options are available.

Moisture and Chemical Sensors

Resistive sensors can also be built with two electrodes
measuring the material between them. A simple moisture
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Figure TF4-3: This micromachined anemometer (flow meter) is a thermistor that measures fluid velocity. The resistor (red)
serves as both a heater and a thermistor. During operation, a voltage across the resistor produces a current (I = V/R) which
heats the resistor (recall the heat power, P = V ∗ I ). As fluid flows by the resistor (blue), the flow draws away heat. Since
increasing the flow increases the cooling of the resistor and temperature changes the resistance, the flow can be inferred from
the thermistor. (Courtesy of Khalil Najafi, University of Michigan.)

sensor you can build yourself consists of two electrodes
with an absorbing material between them (Fig. TF4-4).
Just draw two thick pencil (graphite) lines on paper, clip
to them with alligator clips, and measure the resistance
with your myDAQ.Then drip water between the two lines,
so that it makes contact between them. The resistance
will immediately drop in magnitude.

In a similar approach, resistive sensors can sometimes
be used to determine chemical composition of a liquid

material. The resistivity of the material depends strongly
on the number of dissolved or loose ions in the material
(see Table 2-1). Deionized water has high resistivity,
drinking water has moderate resistivity, and sea water has
low resistivity. Placing two electrodes into a container of
fluid, or running fluid over two electrodes in a microfluidic
system can be used to measure the resistivity of the mate-
rial and hence its chemical composition.This is often used
as a simple way to monitor the purity of drinking water.

Alligator clips

Graphite Drip water

FigureTF4-4: Increased ions (from dissolved solids, for example) increase the conductivity (reduce resistivity), which can be
measured by an ohmmeter.
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current is 6 A in magnitude and counterclockwise in direction.
Continuity of current flow mandates that the current flowing
through the loop be exactly the same in both magnitude and
direction at every location over the full extent of the loop.
So our dilemma is: Is the current 4 A, 6 A, or the difference
between the two? It is none of those guesses. The true answer
is that the circuit is unrealizable, meaning that it is not possible
to construct a circuit with two current sources of different
magnitudes or different directions that are connected in series.
The problem with the circuit of Fig. 2-20 has to do with our
representation of ideal current sources. As was stated in Section
1-6.2 and described in Table 1-5, a real current source can be
modeled as the parallel combination of an ideal current source
and a shunt resistor Rs. Usually, Rs is very large, so very
little current flows through it in comparison with the current
flowing through the other part of the circuit, in which case it
can be deleted without much consequence. In the present case,
however, had such shunt resistors been included in the circuit
of Fig. 2-20, the dilemma would not have arisen. The lesson
we should learn from this discussion is that when we idealize
current sources by deleting their parallel resistors, we should
never connect them in series in circuit diagrams.

� Ideal current sources cannot be added in series. �

Whereas current sources cannot be connected in series, voltage
sources can. In fact, it follows from KVL that from the
standpoint of an external load resistor RL connected between
nodes 1 and 2, the circuit in Fig. 2-21(a) can be simplified into
the equivalent circuit of Fig. 2-21(b) with

υeq = υ1 − υ2 + υ3 (2.23)

and

Req = R1 + R2. (2.24)

Thus:

� Multiple voltage sources connected in series can be
combined into an equivalent voltage source whose voltage
is equal to the algebraic sum of the voltages of the
individual sources. �

RL

υ1

(a)

R1

RL

υ2 R2

υ3

-

υeq Req

Node 1 Node 2

+
_

+
_

+ _

+
_

Node 1 Node 2

(b) υeq = υ1 − υ2 + υ3 Req = R1 + R2

Figure 2-21: In-series voltage sources can be added together
algebraically.

2-3.3 Resistors and Sources in Parallel

When multiple resistors are connected in series, they all share
the same current, but each has its own individual voltage across
it. The converse is true for multiple resistors connected in
parallel: the three resistors in Fig. 2-22(a) experience the same
voltage across all of them, namely υs, but each carries its own
individual current. The current supplied by the source is divided
among the branches containing the three resistors. Thus,

is = i1 + i2 + i3. (2.25)

Application of Ohm’s law provides

i1 = υs

R1
, i2 = υs

R2
, and i3 = υs

R3
, (2.26)

which when used in Eq. (2.25) leads to

is = υs

R1
+ υs

R2
+ υs

R3
. (2.27)
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υs

is

i1

R1 R2 R3

1

2

i2 i3

(a) Original circuit

(b)

υs Req

is1

2

+
_

+
_

Req =
(

1

R1
+ 1

R2
+ 1

R3

)−1

i2 =
(

Req

R2

)
is

Figure 2-22: Voltage source connected to a parallel
combination of three resistors.

We wish to replace the parallel combination of the three resistors
with a single equivalent resistor Req, as depicted in Fig. 2-22(b),
such that the current is remains unchanged. For the equivalent
circuit,

is = υs

Req
. (2.28)

If the two circuits in Fig. 2-22 are to function the same, as
regards the source, then is as given by Eq. (2.27) for the
original circuit should be equal to the expression for is given
by Eq. (2.28) for the equivalent circuit. Thus,

υs

Req
= υs

R1
+ υs

R2
+ υs

R3
, (2.29)

from which we conclude that

1

Req
= 1

R1
+ 1

R2
+ 1

R3
. (2.30)

This result can be generalized to any N resistors connected in
parallel

1

Req
=

N∑
i=1

1

Ri
(resistors in parallel). (2.31)

Current division

� Multiple resistors connected in parallel divide the input
current among them. �

For R2 in Fig. 2-22(a),

i2 = υs

R2
=
(

Req

R2

)
is. (2.32)

By extension, for a current divider composed of N in-parallel
resistors, the current flowing through Ri is a proportionate
fraction (Req/Ri) of the input current.

It is useful to note that the equivalent resistance for a parallel
combination of two resistors R1 and R2 (Fig. 2-23) is given by

Req = R1R2

R1 + R2
. (2.33)

� As a short-hand notation, we will sometimes denote
such a parallel combination R1 ‖ R2. We also denote the
series combination of R1 and R2 as (R1 + R2). �

As was noted earlier in Section 2-1.5, the inverse of the resis-
tance R is the conductance G; G = 1/R. For N conductances

R1 R2

i1

is
i2

1

2

1

2
Req = 

R1R2
R1 + R2

Current Division

i1 =
(

R2

R1 + R2

)
is i2 =

(
R1

R1 + R2

)
is

Figure 2-23: Equivalent circuit for two resistors in parallel.
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V1

+

_
V3

+

_
V2

+

_

Figure 2-24: This is an unrealizable circuit unless all
voltage sources have identical voltages and polarities; that is,
V1 = V2 = V3.

connected in parallel, Eq. (2.31) assumes the form of a linear
sum

Geq =
N∑

i=1

Gi (conductances in parallel). (2.34)

Two resistors always can be combined together, whether
they are connected in series (sharing the same current) or
in parallel (sharing the same voltage). Two voltage sources

Ieq

R1

Req

1

2

I3I2I1

R1 3

R3R2

1

2

Node 3

Node 2

Req = R2 ‖ R3 = R2R3

R2 + R3
Ieq = I1 − I2 + I3

Figure 2-25: Adding current sources connected in parallel.

can be combined when connected in series, but they cannot
be connected in parallel, unless they have identical voltages
(Fig. 2-24). Two current sources can be combined when
connected in parallel (as illustrated by Fig. 2-25), but they
cannot be connected in series.

Example 2-10: Current Division Using Conductance

For the circuit in Fig. 2-26:

(a) Relate I3 to I0 and resistances R1 to R3.

(b) Relate I3 to I0 and conductances G1 to G3, where
Gi = 1/Ri .

Solution: (a) Application of the expressions given in
Fig. 2-22 leads to

I3 =
(

Req

R3

)
I0,

with

Req =
(

1

R1
+ 1

R2
+ 1

R3

)−1

=
(

R2R3 + R1R3 + R1R2

R1R2R3

)−1

=
(

R1R2R3

R2R3 + R1R3 + R1R2

)
.

Hence,

I3 =
(

Req

R3

)
I0 =

(
R1R2

R2R3 + R1R3 + R1R2

)
I0.

(b) Rewriting the expressions for I3 and Req in terms of
conductances gives

I3 =
(

G3

Geq

)
I0,

with

Geq = 1

Req
=
(

1

R1
+ 1

R2
+ 1

R3

)
= G1 + G2 + G3.

I0 R1 R2 R3

I3

Figure 2-26: Circuit of Example 2-10.
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Hence,

I3 =
(

G3

G1 + G2 + G3

)
I0.

Current division using conductances assumes the same func-
tional form as voltage division using resistances (Eq. (2.22b)).

Example 2-11: Realizable and Unrealizable Circuits

Given that the voltage difference between any two nodes
in a circuit has to be unique (cannot have multiple values
simultaneously), and that the current in any given branch also
is unique, determine which of the three circuits in Fig. 2-27 are
realizable and which are unrealizable.

Solution: (a) Circuit of Fig. 2-27(a): Circuit is not
realizable.

From the perspective of the ideal voltage source Vs, the
voltage difference between nodes A and B is Vs, but according
to the dependent source the voltage is 2Vs.

(b)

(a)

(c)

V2

V1

C

D

20 Ω5 V20 V
+
_ V3 15 V

+
_

+ _

Vs 2Vs

A

B

10 Ω
+
_ +_

2Ix

Ix

E

30 Ω
3 A

Figure 2-27: Circuits of Example 2-11.

(b) Circuit of Fig. 2-27(b): Circuit is realizable.
From the standpoint of the two voltage sources to the left of

nodes CD,

VCD = V1 + V2 = 20 − 5 = 15 V.

Also connected across nodes CD is voltage source V3, but its
voltage is exactly 15 V. Two voltage sources can be connected
in parallel if they have the same voltage.

(c) Circuit of Fig. 2-27(c): Circuit is realizable.
KCL at node E requires that the sum of the three currents

entering the node be zero. Hence,

3 + 2Ix − Ix = 0,

which leads to

Ix = −3 A.

This means that the direction of Ix is upwards and the dependent
current source has a downward-moving current of 6 A.

Example 2-12: Equivalent-Circuit Solution

Use the equivalent-resistance approach to determine V2, I1, I2,
and I3 in the circuit of Fig. 2-28(a).

Solution: In the circuit of Fig. 2-28(a), the part of the circuit
connected to the voltage source is equivalent to a resistor
Req = R1 + [(R3 + R4) ‖ (R2 + R5)]. Hence, our first step
is to combine the 2 � and 4 � in-series resistances into
a 6 � resistance and to combine the two 6 � in-parallel
resistances into a 3 � resistance (by applying Eq. (2.33)).
The simplifications lead to the circuit in Fig. 2-28(b).
Next, we calculate the parallel combination of the 3 �

and 6 � resistors, (3 ‖ 6), again using Eq. (2.33), to get
(3 × 6)/(3 + 6) = 18/9 = 2 �. The new equivalent circuit is
displayed in Fig. 2-28(c), from which we deduce that

I1 = 24

10 + 2
= 2 A

and

V2 = 2I1 = 2 × 2 = 4 V.

Returning to Fig. 2-28(b), we apply Ohm’s law to find I2 and I3.

I2 = V2

3
= 4

3
= 1.33 A,

and

I3 = V2

6
= 4

6
= 0.67 A.
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(a)
Combine R3 and
R4 in parallel

Combining 3 Ω and
6 Ω in parallel

V1 V2

V1 V2

V1 V2

I1

R1 R2

R3 R4
R5

I2

10 Ω 2 Ω

6 Ω 6 Ω 4 Ω+
-24 V

I31 2

I1

R1 I2

10 Ω

3 Ω 6 Ω+
-24 V

I31 2

(b)

(c)

I1

R1

10 Ω

2 Ω+
-24 V

1 2

+
_

+
_

+
_

Figure 2-28: Example 2-12. (a) Original circuit, (b) after
combining R3 and R4 in parallel and combining R2 and R5
in series, and (c) after combining the 3 � and 6 � resistances in
parallel.

Concept Question 2-7:What conditions must be satisfied
in order for two circuits to be considered equivalent?
(See         )

Concept Question 2-8: What is a voltage divider and
what is a current divider? (See         )

Concept Question 2-9: What is the i–υ relationship for
a conductance G? (See         )

Exercise 2-7:Apply resistance combining to simplify the
circuit of Fig. E2.7 in order to find I . All resistor values
are in ohms.

10 V
2

2 2

2 1

1 1

1

1
1

1 1

1I

+
_

Figure E2.7

Answer: I = 5 A. (See      )

2-3.4 Source Transformation

We now will demonstrate how a realistic voltage source
composed of an ideal voltage source in series with a resistor can
be exchanged for a realistic current source composed of an ideal
current source in parallel with a shunt resistor, or vice versa.
The two circuits are shown in parts (a) and (b) of Fig. 2-29.
Exchanging the one source for the other requires that they be
equivalent—from the vantage point of the external circuit.

�A voltage-source circuit and a current-source circuit are
considered equivalent and interchangeable if they deliver
the same input current i and voltage υ12 to the external
circuit. �

For the voltage-source circuit, application of KVL gives

−υs + iR1 + υ12 = 0, (2.35)

from which we obtain the following expression for i:

i = υs

R1
− υ12

R1
. (2.36)
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Voltage source
(a) 

(b)

Current source

υ12υs

R1 i

External
circuit

+
-

1

2

+
_

υ12is

is = υs /R1

iR2

is

R2

i
External
circuit

1

2

Source Transformation

R2 = R1

678

678

Figure 2-29: Realistic voltage and current sources connected
to an external circuit. Equivalence requires that is = υs/R1 and
R2 = R1.

Application of KCL to the current-source circuit gives

i = is − iR2 = is − υ12

R2
, (2.37)

where we used Ohm’s law to relate iR2 to υ12. Equivalence of
Eqs. (2.36) and (2.37) is satisfied for all values of i and υ12 if
and only if:

R1 = R2 (2.38a)

and

is = υs

R1
. (2.38b)

In summary:

�A voltage source υs in series with a source resistance Rs
is equivalent to the combination of a current source is =
υs/Rs, in parallel with a shunt resistance Rs. The direction
of the equivalent current source is the same as the direction
from (−) to (+) terminals of the voltage source. �

This equivalence is called source transformation because it
allows us to replace a realistic voltage source with a realistic
current source, or vice versa.

A summary of in-series and in-parallel equivalent circuits
involving sources and resistors is available in Table 2-5.

Example 2-13: Source Transformation

Determine the current I in the circuit of Fig. 2-30(a).

Solution: It is best to avoid transformations that would
involve the 3 � resistor with the unknown current I . Hence, we
will apply multiple source-transformation steps, moving from
the left end of the circuit towards the 3 � resistor.

Step 1: Current to voltage transformation allows us to convert
the combination (Is1 , Rs1) to a voltage source

Vs1 = Is1Rs1 = 16 × 2 = 32 V,

in series with Rs1 .

Step 2: Combining Rs1 in series with the 6 � resistor results in

Rs2 = 2 + 6 = 8 �.

Hence, the new input source becomes (Vs1 , Rs2).

Step 3: Convert (Vs1 , Rs2) back into a current source

Is2 = Vs1/Rs2 = 32/8 = 4 A,

in parallel with Rs2 .

Step 4: Combine Rs2 = 8 � in parallel with the other 8 �

resistor (8 ‖ 8) to obtain an equivalent resistance Rs3 = 4 �.
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Table 2-5: Equivalent circuits.

Circuit

Series Y

Parallel

Series

Parallel

Source
transformation

Equivalent

R1

R2

R2R1

υ2

υ1

i1 i2

Rs

υs

R1 + R2

R1 + R2

G1 + G2

R1R2

υ1 + υ2

i1 + i2

Rsis = Rs

υs

R1 R2

R3

1 2

c

3

Rc

Rb Ra

1 2

3

R1 =
RbRc

Ra + Rb + Rc

G1 = 1
R1

G2 = 1
R2

R2 =
RaRc

Ra + Rb + Rc

R3 =
RaRb

Ra + Rb + Rc

Ra =
R1R2 + R2R3 + R1R3

R1

Rb =
R1R2 + R2R3 + R1R3

R2

Rc =
R1R2 + R2R3 + R1R3

R3

(R1 || R2)

(G1 || G2)

+
_

+
_

+
_

+
_

For Ra = Rb = Rc    R1 = R2 = R3 = Ra / 3
For R1 = R2 = R3    Ra = Rb = Rc = 3R1

∆

Step 5: Convert again to a voltage source

Vs2 = Is2Rs3 = 4 × 4 = 16 V,

in series with Rs3 .

For the single loop realized in the final step,

I = Vs2

4 + 1 + 3
= 16

8
= 2 A.
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Is1
 = 16 A

I = ?
Rs1

 = 2 Ω

6 Ω 1 Ω

8 Ω 3 Ω

I

I

I

I

Step 1 (source
transformation)

Step 3 (source
transformation)

Step 4 (parallel R)

Rs2
 = 8 Ω

1 Ω

8 Ω 3 Ω

Step 2
(series R) 678

Rs1

Vs1
 = 32 V

6 Ω2 Ω

+
-

3 ΩVs2
 = 16 V

4 Ω 1 Ω

+
-

1 Ω

3 ΩIs2
 = 4 A Rs2

 = 8 Ω 8 Ω

Step 5 (source
transformation)

1 Ω

3 ΩIs2
 = 4 A Rs3

 = 4 Ω

+
_

+
_

Figure 2-30: Example 2-13 circuit evolution.

Example 2-14: Finding Vab

While keeping the load resistor RL in the top circuit of Fig. 2-31
intact, apply source transformations until the circuit simplifies
to a current divider, then determine Vab for RL = 10 �.

Solution:

Step 1: Convert the 2 A current source in parallel with the 20 �

resistor into a 40 V voltage source in series with a 20 � resistor.

Step 2: Combine the two in-series 20 � and 40 � resistances
into a 60 � resistance, and combine the 40 V and 16 V sources
into a single 24 V source.

Step 3: Convert each voltage source (together with its in-series
resistance) into a current source with a resistance in parallel.

Step 4: Combine the two in-parallel resistances and the two
in-parallel current sources.

Step 5: For RL = 10 �, current division yields

I = 20

10 + 20
× 3 = 2 A,

and the associated voltage across RL is

Vab = 10I = 20 V.

Exercise 2-8: Apply source transformation to the circuit 
in Fig. E2.8 to find I .

Answer: I = 4 A. (See )

3 Ω

6 Ω

4 Ω12 V

I

10 A
+
_

Figure E2.8

2-4 Wye–Delta (Y–�) Transformation

In principle, it always is possible to simplify the behavior of
a resistive circuit when measured across any two nodes—no
matter how complex its topology—down to a simple equivalent
circuit composed of an equivalent voltage source in series with
an equivalent resistor. The preceding sections offered us tools
for combining resistors together whenever they are connected in
series or in parallel, as well as for combining in-series voltage
sources and in-parallel current sources. Sometimes, however,
we may encounter circuit topologies that cannot be simplified
using those tools because their resistors are connected neither in
series nor in parallel. A case in point is the circuit in Fig. 2-32,
in which no two resistors share the same current or voltage. This
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Step 1 (source transformation)

+
_16 V 2 A

RL

30 Ω
102 V

20 Ω
40 Ω

+ _

a
b

Step 3
(2 source transformations)+

_
24 V

RL

30 Ω
102 V

60 Ω

+ _

a b

Step 4 (parallel I and R)

RL

3.4 A

30 Ω

60 Ω

0.4 A

a b

Step 2 (series V and R)

+
_16 V

40 V

RL

30 Ω
102 V

20 Ω

40 Ω

+ _

a b

+
_

RL

3 A

20 Ω

a b
I

+ _Vab

Figure 2-31: Circuit evolution for Example 2-14.

R0

R1

R4

R3

R2

R5

V0

1

43

2

+
_

Figure 2-32: No two resistors of this circuit share the same
current (connected in series) or voltage (connected in parallel).

section introduces a new circuit-simplification tool—known as
theWye–Delta (Y–�) transformation—for dealing specifically
with such a circuit arrangement.

To that end, let us start by considering the Y and � circuit
segments shown in Fig. 2-33(a) and (b), respectively. Let us
assume that the same external circuit is connected to the Y and
� circuits at nodes 1, 2, and 3. Our task is to develop a set of
transformation relations between the resistor set (R1, R2, R3)

of theY circuit and the resistor set (Ra, Rb, Rc) of the � circuit
that will allow us to replace the Y circuit with the � circuit
(or vice versa) without affecting the terminal characteristics
(currents and voltages) at nodes 1, 2, and 3. That is, from the
standpoint of the external circuit, the Y and � circuits should
behave equivalently.

The standard procedure employed in deriving the transfor-
mation relations is to (a) set one node as an open circuit (i.e.,
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R1 R2

R3

1 2

3

(a)

Rc1 2

3

Rb Ra

(b)
Y circuit Δ circuit

c

Figure 2-33: Y–� equivalent circuits.

not connected to an external circuit), (b) derive an expression
for the resistance between the other two nodes (as if a voltage
source were connected between them) of theY circuit, (c) follow
the same procedure for the � circuit, and then (d) equate the
expressions obtained in steps (b) and (c). For example, with
node 3 open-circuited, theY circuit reduces to just two in-series
resistors R1 and R2, in which case the resistance between nodes
1 and 2 is simply

R12 = R1 + R2 (Y-circuit). (2.39)

Repeating the procedure for the � circuit (again with node 3
not connected to the external circuit) leads to a configuration
between nodes 1 and 2 consisting of Rc in parallel with the
series combination of Ra and Rb. Hence,

R12 = Rc(Ra + Rb)

Ra + Rb + Rc

(�-circuit). (2.40)

Upon equating the expressions for R12 given by Eqs. (2.39) and
(2.40), we have

R1 + R2 = Rc(Ra + Rb)

Ra + Rb + Rc

. (2.41a)

When applied to the other two combinations of nodes, the
foregoing procedure leads to:

R2 + R3 = Ra(Rb + Rc)

Ra + Rb + Rc

(2.41b)

and

R1 + R3 = Rb(Ra + Rc)

Ra + Rb + Rc

. (2.41c)

2-4.1 � →Y Transformation

Solution of the preceding set of equations provides the
following expressions for R1, R2, and R3:

R1 = RbRc

Ra + Rb + Rc

(2.42a)

R2 = RaRc

Ra + Rb + Rc

(2.42b)

R3 = RaRb

Ra + Rb + Rc

(2.42c)

Note the symmetry associated with the form of these
expressions:

� R1 of the Y circuit, which is connected to node 1, is
given by an expression (Eq. (2.42a)) whose numerator is
the product of the two resistors connected to node 1 in the
� circuit, namely Rb and Rc. The same form of symmetry
applies to R2 and R3. �

The transformation represented by the three parts of
Eq. (2.42) enables us to replace the � circuit with a Y circuit
without having any impact on the external circuit.

2-4.2 Y→ � Transformation

When applied in the reverse direction, from Y to �, the
associated transformation relations are given by the following
expressions.

Ra = R1R2 + R2R3 + R1R3

R1
(2.43a)

Rb = R1R2 + R2R3 + R1R3

R2
(2.43b)

Rc = R1R2 + R2R3 + R1R3

R3
(2.43c)
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For this transformation, the symmetry is as follows:

� Ra of the � circuit, which is connected between nodes
2 and 3, is given by an expression (Eq. (2.43a)) whose
denominator is R1, the resistor connected to node 1 of
the Y circuit. This form of symmetry also applies to Rb

and Rc. �

When we started our examination of theY–� transformation,
we referred to Fig. 2-32. Returning to that figure, we note
that the circuit contains two obvious � circuits, namely
R1–R2–R3 and R3–R5–R4, as well as two not-so-obvious Y
circuits: R1–R3–R4 and R2–R3–R5. To demonstrate that those
two combinations are indeed Y circuits, we have redrawn
the circuit in the form shown in Fig. 2-34(a) where we
stretched nodes 1 and 2 from single points into two horizontal
lines. Electrically, we did not change the circuit whatsoever.

R0

R0

R1

R4

R3

R2

R5

V0 +
-

1

2

1

2

3 4

(a)

(b)

R1

R4

R3

R2

R5

V0 +
-

11

2

3 4

2

+
_

+
_

Figure 2-34: Redrawing the circuit of Fig. 2-32 to resemble
(a) Y and (b) T and 
 subcircuits.

Figure 2-34(b) depicts another rendition of the same circuit.
In this case, the Y circuit given by R1–R3–R4 resembles a
sideways T rather than aY, and the � circuit given by R1–R3–R2
resembles a 
. Hence, it is not surprising that the Y–�

transformation is oftentimes called the T–
 transformation. It
is instructive to note that the shape in which a circuit is drawn
is irrelevant electrically; what does matter is how the branches
are connected to the nodes.

2-4.3 Balanced Circuits

If the resistors of the � circuit are all equal, the circuit is said to
be balanced (because the three resistors will have equal voltages
across them and equal currents through them), as a result of
which the Y circuit will also be balanced and will have equal
resistors given by

R1 = R2 = R3 = Ra

3
(if Ra = Rb = Rc), (2.44a)

and conversely

Ra = Rb = Rc = 3R1 (if R1 = R2 = R3). (2.44b)

Example 2-15: Applying Y–� Transformation

Simplify the circuit in Fig. 2-35(a) by applying the Y–�

transformation so as to determine the current I .

Solution: Noting the symmetry rules associated with the
transformation, the � circuit connected to nodes 1, 3, and 4
can be replaced with a Y circuit, as shown in Fig. 2-35(b), with
resistances

R1 = 24 × 36

24 + 36 + 12
= 12 �,

R2 = 24 × 12

24 + 36 + 12
= 4 �,

and

R3 = 36 × 12

24 + 36 + 12
= 6 �.

Next, we add the 4 � and 20 � resistors in series, obtaining 24 �

for the right branch of the trapezoid. Similarly, the left branch
combines into 12 � and the two in-parallel branches reduce to
a resistance equal to (24 × 12)/(24 + 12) = 8 �. When added
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5 Ω

36 Ω 24 Ω

100 V

6 Ω 20 Ω

12 Ω
-

1

2

3 4

(a) Original circuit

(b)
After ∆      Y  transformation

5 Ω

6 Ω 20 Ω

R1 = 12 Ω

R3 = 6 Ω R2 = 4 Ω
100 V

1

2

3 4

I

I

c

25 Ω100 V

I

(c) Final circuit

++_

++_

++_

Figure 2-35: Example 2-15 circuit evolution.

to the 5 � and 12 � in-series resistances, this leads to the final
circuit in Fig. 2-35(c). Hence,

I = 100

25
= 4 A.

Concept Question 2-10:When is theY–� transformation
used? Describe the inherent symmetry between the 
resistance values of the Y circuit and those of the � 
circuit. (See         )

Concept Question 2-11: How are the elements of a
balanced Y circuit related to those of its equivalent � 
circuit?  (See         )

Exercise 2-9: For each of the circuits shown in Fig. E2.9,
determine the equivalent resistance between terminals
(a, b).

(a)

10 Ω 10 Ω

10 ΩReq

a

b

(b)

10 Ω 10 Ω

10 ΩReq

a

b

Figure E2.9

Answer: (a) Req = 15 �, (b) Req = 0.  (See           )

2-5 The Wheatstone Bridge

Developed initially by Samuel Christie (1784–1865) in
1833 as an accurate ohmmeter for measuring resistance,
the Wheatstone bridge subsequently was popularized by Sir
Charles Wheatstone (1802–1875), who used it in a variety of
practical applications. Today, the Wheatstone-bridge circuit is
integral to numerous sensing devices, including strain gauges,
force and torque sensors, and inertial gyros. The reader is
referred to Technology Brief 3 for an illustrative example.

The Wheatstone-bridge circuit shown in Fig. 2-36 consists of
four resistors: two fixed resistors (R1 and R2) of known values,
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R3

R1 R2

Rx

Ra Ia
V0 V1 V2

V0

+
−

Ammeter

Figure 2-36: Wheatstone-bridge circuit containing an
adjustable variable resistor R3 and an unknown resistor Rx .
When R3 is adjusted to make Ia = 0, Rx is determined from
Rx = (R2/R1)R3.

an adjustable resistor R3 whose value also is known, and a
resistor Rx of unknown resistance. A dc voltage source V0 is
connected between the top node and ground, and an ammeter is
connected between nodes 1 and 2. The standard procedure for
determining Rx starts by adjusting R3 so as to make Ia = 0.

� The absence of current flow between nodes 1 and 2,
called the balanced condition, implies that V1 = V2. �

From voltage division, V1 = R3V0/(R1 + R3), and
V2 = RxV0/(R2 + Rx). Hence,

R3V0

R1 + R3
= RxV0

R2 + Rx

. (2.45)

A balanced bridge also implies that the voltages across R1
and R2 are equal,

R1V0

R1 + R3
= R2V0

R2 + Rx

. (2.46)

Dividing Eq. (2.45) by Eq. (2.46) leads to

R3

R1
= Rx

R2
,

R

R

R

R + ΔR

V0 V1 Vout V2

V0

+
−

Flexible
resistor

Vout ≈ V0

4

(
�R

R

)

Figure 2-37: Circuit for Wheatstone-bridge sensor.

from which we have

Rx =
(

R2

R1

)
R3 (balanced condition). (2.47)

Example 2-16: Wheatstone-Bridge Sensor

A special version of the Wheatstone bridge (Fig. 2-37) is
configured specifically for measuring small deviations from
a reference condition. An example of a reference condition
might be a highway bridge with no load on it. A strain gauge
employing a high-sensitivity flexible resistor can measure the
small deflection in the bridge surface caused by the weight
(force) of a car or truck when present on it. As the force deflects
the surface of the bridge to which the resistor is attached, the
resistor stretches in length, causing its resistance to increase
from a nominal value R (under no stress) to R +�R. The other
three resistors in the Wheatstone-bridge circuit are all identical
and equal toR. Thus, when no vehicles are present on the bridge,
the circuit is in the balanced condition.

Develop an approximate expression for Vout (the output
voltage between nodes 1 and 2) for �R/R 
 1.

Solution: Voltage division gives

V1 = V0R

R + R
= V0

2
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and

V2 = V0(R + �R)

R + (R + �R)
= V0(R + �R)

2R + �R
.

Hence,

Vout = V2 − V1 = V0(R + �R)

2R + �R
− V0

2

= 2V0(R + �R) − V0(2R + �R)

2(2R + �R)

= V0 �R

4R + 2 �R
= V0 �R

4R(1 + �R/2R)
.

Since �R/R 
 1, ignoring the second term in the denominator
would incur negligible error. Such an approximation leads to

Vout ≈ V0

4

(
�R

R

)
, (2.48)

providing a simple linear relationship between the change in
resistance �R and the output voltage Vout.

Concept Question 2-12: What is a Wheatstone bridge
used for? (See         )

Concept Question 2-13: What is the balanced condition
in a Wheatstone bridge? (See         )

Exercise 2-10: If in the sensor circuit of Fig. 2-37,
V0 = 4 V and the smallest value of Vout that can be
measured reliably is 1 μV, what is the corresponding
accuracy with which (�R/R) can be measured?

Answer: 10−6 or 1 part in a million. (See            )

2-6 Application Note: Linear versus
Nonlinear i–υ Relationships

Ideal resistors and voltage and current sources are all considered
linear elements; the relationship between the current and the
voltage across any one of them is described by a straight line.
The i–υ relationships plotted in Fig. 2-38 for the current source,
the voltage source, and the resistor have slopes of 0, ∞, and
1/R, respectively.

V0

I0

I

V

Resistor R

Current source I0

Voltage source V0

slope = 1
R

Figure 2-38: I–V relationships for a resistor R, an ideal voltage
source V0, and an ideal current source I0.

2-6.1 The Fuse: A Simple Nonlinear Element

Many very useful circuit elements do not have linear i–υ

relationships. Consider Fig. 2-39(a). A realistic voltage source
is connected to a load RL at terminals (a, b). Note that the
resistance value of the source resistor Rs is much smaller than
that of the load (1 � versus 1 k�). It is typical of a well-designed
voltage source to have a small source resistor so as to minimize
the voltage drop across it. The switch simulates an accidental
short circuit. Application of KVL to the loop in Fig. 2-39(a)
(with the switch in the open position) leads to

Is = Vs

Rs + RL
= 100

1 + 1000
≈ 0.1 A (switch open).

If, accidentally, a short circuit were to be introduced across
terminal (a, b), which is represented schematically by the
closing of the SPST switch, the current Is will flow entirely
through the short circuit, resulting in

Is = Vs

Rs
= 100 A! (switch closed).

This is a very large current. Many household wires would begin
to overheat and melt off their insulation at such high currents.

It is precisely for this reason that the fuse (and later, the
breaker) came into heavy use in power-distribution circuits
[Fig. 2-39(b)]. The i–υ curve for a fuse, shown in [Fig. 2-39(c)],
is decidedly nonlinear: Above a certain current level, the fuse
will cease to allow more current to pass through it, acting like
a current limiter. The physical device contains a small metal
wire that is designed to melt away at a specific current level
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(b) Fuse to protect voltage source

(c) i−υ characteristic for a fuse prior to opening

(a) Accidental short circuit represented by a switch

a

Vs = 100 V

Source Load

Rs = 1 Ω

RL = 1 kΩ

Accidental
short circuit

b

+
_

Is

Accidental
short circuit

Fuse

RL

a

Vs = 100 V

Source with fuse Load

Rs

b

+
_

Is If

Vf

Overcurrent limit

If

Vf

Figure 2-39: Use of a fuse to protect a voltage source.

(called its overcurrent), thereby becoming an open circuit and
preventing large currents from flowing through the circuit. Note
that Fig. 2-39(b) does not explain the fuse’s time-dependent
behavior; it describes the fuse’s behavior only until the moment
at which the current exceeds the overcurrent.After that, the fuse
just looks like an open circuit.

Fuses also are rated for several other important characteristics
such as how fast they can respond. Ultra-fast fuses can trip
in milli- to micro-seconds. Another important attribute is the
maximum voltage it can sustain across its terminals. Note that in
Fig. 2-39(b), once the fuse assumes the role of an open circuit,
the voltage across it becomes Vs. If this voltage is too high,
arcing and sparks might develop between the terminals (we
know from physics that a large-enough voltage in air will break
down the air molecules, causing them to conduct and generate a
bright spark). Clearly, that is an important rating factor to keep
in mind when selecting a fuse.

(c) i−υ of an ideal diode

ID

VD

Knee voltage = 0

(e) Approximate diode response

ID

VD

Forward voltage VF

Approximate
practical 
diode response

(d) i−υ of a real diode

(a) Diode symbol (b) Realistic diode model

ID

VD

Anode (p-type)

Cathode (n-type)
RD

VF

slope = RD
ID

VD
VF

Real diode response

Figure 2-40: pn-junction diode schematic symbol and i–υ

characteristics.

2-6.2 The Diode: A Solid-State Nonlinear
Element

The diode is a mainstay of solid-state circuits. Its circuit
schematic symbol is shown in Fig. 2-40(a) with VD as the
voltage across the diode, defined such that the (+) side is
at the anode terminal of the diode and the (−) side at its
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cathode terminal. There are many types of diodes, including the
basic pn-junction diode, the Zener and Schottky diodes, and
the ubiquitous light-emitting diode (LED) used in consumer
electronics. A brief introduction of the LED was made earlier
in Section 2-1.4, and a more detailed overview of its operation
is provided in Technology Brief 5. For the present, we will limit
our discussion to the pn-junction diode, commonly referred
to simply as the diode. The pn diode consists of a p-type
semiconductor placed in contact with an n-type semiconductor,
thereby forming a junction. The p-type material is so named
because the impurities that have been added to its bulk material
result in a crystalline structure in which the available charged
carriers are predominantly positive charges. The opposite is true
for the n-type material; different types of impurities are added to
the bulk material, as a result of which the predominant carriers
are negative charges (electrons). In the absence of a voltage
across the diode, the two sets of carriers diffuse away from each
other at the edge of the junction, generating an associated built-
in potential barrier (voltage), called the forward-bias voltage
or offset voltage VF.

The main use of the diode is as a one-way valve for current.
Figure 2-40(c) displays the i–υ relationship for an ideal diode,
which conveys the following behavior:

� Current can flow through the diode from the (+)

terminal to the (−) terminal unimpeded, regardless of its
magnitude, but it cannot flow in the opposite direction. �

In other words, an ideal diode looks like a short circuit for
positive values of VD and like an open circuit for negative values
of VD. These two states are called forward bias and reverse
bias, respectively. When a positive-bias voltage exceeding VF
is applied to the diode, the potential barrier is counteracted,
allowing the flow of current from p to n (which includes positive
charges flowing in that direction as well as negative charges
flowing in the opposite direction). On the other hand, if a
negative-bias voltage is applied to the diode, it adds to the
potential barrier, further restricting the flow of charges across
the barrier and resulting in no current flow from n to p.

The voltage level at which the diode switches from reverse
bias to forward bias is called the knee voltage or forward-bias
voltage. For the ideal diode, VF = 0 and the knee is at
VD = 0, which means that the forward-bias segment of its i–υ

characteristic is aligned perfectly along the ID axis, as shown
in Fig. 2-40(c).

Real diodes differ from the ideal diode model in two
important respects: (1) the knee in the curve is not at VD = 0,
and (2) the diode does not behave exactly like a perfect short
circuit when in forward bias nor like a perfect open circuit

when in reverse bias. Figure 2-40(d) shows a realistic diode
i–υ curve. Note how nonlinear a real diode really is! For many
electrical engineering applications, however, the nonlinearities
are not so important, and the approximate ideal-like diode
model shown in Fig. 2-40(e) is quite sufficient. The only
difference between the ideal diode model of Fig. 2-40(c) and
the approximate diode model of Fig. 2-40(e) is that in the latter
the transition from reverse to forward bias occurs at a non-zero,
positive value of VD, namely the forward-bias voltage VF. For
a silicon pn-junction diode, a typical value of VF is 0.7 V and a
realistic model is shown in Fig. 2-40(b). A typical value of RD
is 10–20 �. We always should remember that VF is a property
of the diode itself, not of the circuit it is a part of.

Example 2-17: Diode Circuit

The circuit in Fig. 2-41 contains a diode with VF = 0.7 V.
Determine ID, assuming RD to be negligibly small.

Solution: Initially, we do not know whether the diode is
forward biased or reverse biased. We will first assume it is
forward biased in order to compute ID. Then, if it turns out
that ID is positive, our assumption will have been validated,
but if ID is negative, we will conclude that the diode is reverse
biased and no current flows through the circuit.

Application of KVL around the loop gives

−Vs + IDR + VD = 0.

If the diode is forward biased, VD = 0.7 V, which leads to

ID = Vs − VD

R
= 5 − 0.7

100
= 43 mA.

The positive sign of ID confirms our assumption that the diode
is indeed forward biased.

As an interesting aside, one could use this circuit to control the
current through a light-emitting diode (LED). As explained in
Technology Brief 5, the amount of light emitted by an LED (i.e.,
how bright it appears) is proportional directly to the current ID
passing through it when it is forward biased. By using the circuit

IDVR

VDVs = 5 V
R = 100 Ω+

_

Figure 2-41: Diode circuit of Example 2-17.
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in Fig. 2-41 and choosing an appropriate value for R, we can
build a circuit that forward biases an LED and controls its
brightness.

Example 2-18: Square-Wave Waveform

The circuit in Fig. 2-42 contains two diodes, both with
VF = 0.7 V. The waveform of the voltage source consists of
a single cycle of a square wave. Generate plots for i1(t) and
i2(t). Ignore RD for both diodes.

Solution: Again, we will use the diode model of
Fig. 2-40(b). From the analysis of Example 2-17, we

υs (t)

t (s)
1

6 V

−6 V

2

t (s)

0.1 A
0.05 A

i1(t)
i2(t)

1 2

(b) Source voltage waveform

(a) Diode circuit

(c) Current waveforms

+
_ +

_
+
_υs(t)

υa

i1 i2

R1 53 Ω R2 106 Ω

D1 D2

Figure 2-42: Diode circuit and waveforms of Example 2-18.

concluded that if the voltage across a series combination of
a diode and a resistor exceeds VF of the diode (with the +
polarity of the voltage coinciding with the + side of the diode),
current will flow through the series combination, but if the
voltage is negative, no current will flow through the diode.

For the first half of the source voltage cycle, υa , the voltage
across the series combination (D1, R1) is positive at 6V. Hence,

i1(t) = υa − 0.7

R1
= 6 − 0.7

53
= 0.1 A for 0 ≤ t ≤ 1 s.

But for series combination (D2, R2), no current will flow
through diode D2 because the polarity of υa is opposite of that
of the diode. Hence,

i2(t) = 0 for 0 ≤ t ≤ 1 s.

The opposite behavior occurs during the second half of the cycle
of υs(t), diode D2 will conduct current through it, but diode D1
will not. Hence,

i1(t) = 0 for 1 ≤ t ≤ 2 s,

i2(t) = 6 − 0.7

R2
= 6 − 0.7

106
= 0.05A for 1 ≤ t ≤ 2 s.

The combined results are displayed in Fig. 2-42(c).

Concept Question 2-14: What is the overcurrent of a
fuse? (See         )

Concept Question 2-15: Why does a pn-junction diode
have a non-zero forward-bias voltage VF? (See         )

Exercise 2-11: Determine I in the two circuits of
Fig. E2.11. Assume VF = 0.7 V for all diodes.

(a) (b)

I

3 kΩ

2 kΩ

12 V

I

3 kΩ

2 kΩ

12 V

Figure E2.11

Answer: (a) I = 2.12 mA, (b) I = 0. (See      )
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Technology Brief 5
Light-Emitting Diodes (LEDs)

How LEDs Are Made

LEDs are a specific type of the much larger family
of semiconductor diodes, whose basic behavior we
discussed earlier in Section 2-6. When a voltage is
applied in the forward-biased direction across an LED,
current flows and photons are emitted (Fig. TF5-1). This
occurs because as electrons surge through the diode
material, they recombine with charge carriers in the
material and release energy in the form of photons
(quanta of light). The energy of the emitted photon (and
hence the wavelength/color) depends on the type of
material used to make the diode. For example, a diode
made of indium gallium aluminum phosphide (InGaAlP)
emits red light, while a diode made from gallium nitride
(GaN) emits bluish light. Extensive research over many
decades has yielded materials that can emit photons
at practically any wavelength from the infrared through
ultraviolet (Fig. TF5-2). Various “tricks” have also been
employed to modify the emitted light after emission. To
make white light diodes, for example, certain blue light
diodes can be coated with crystal powders which convert
the blue light into a broad-spectrum “white” light. Other
coatings such as quantum dots are still the subject
of today’s research. In a traditional package, the LED
transmits light in a hemispherical pattern, but numerous
other light-focused packaging methods are available that
can focus the light in virtually any way imaginable. LEDs
can be focused using highly reflective coatings to intensify
their light for higher power applications.

Material
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Figure TF5-2: Emission spectra of LEDs made of different material composites.

Epoxy
case
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leads

Cathode

Anode

Lens
Light

Light-emitting
semiconductor
diode

Figure TF5-1: Basic configuration of an LED.

In addition to semiconductor LEDs, a newer class of
devices called organic light emitting diodes (OLEDs)
are the subject of intense research efforts.OLEDs operate
in a manner that is analogous to conventional LEDs,
but are made from organic molecules (often polymers).
Because OLEDs are lighter weight than conventional
LEDs and can be made to be flexible, they have
the potential to revolutionize handheld and lightweight
displays, such as those used in phones, PDAs and flexible
screens. Imagine a flexible contact lens that could allow
you to see a heads-up display or augmented reality!

LED Advantages

LEDs have several major attributes that have made them
a key element of many applications. First, they can be
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Figure TF5-3: LED-lit building.

produced in a wide variety of wavelengths from infrared
through ultraviolet. Targeted or broad spectra can also
be produced, making them applicable to virtually any
optical application. Second, they are energy efficient.
An incandescent lightbulb uses 80% of its energy
for heat and 20% to produce light. LEDs use only
about 20% of their energy for heat and 80% for light.
This also makes them cool, requiring less energy to
remove the excess heat. Third, they are manufactured
in a huge array of colors, sizes, shapes, designs,
and more. They are affordable (not yet less expensive
than incandescent bulbs in the initial purchase price,
but definitely less expensive over the lifetime of the
bulb). Fourth, they last longer (often > 100k hours) than
incandescent bulbs, which is particularly important in
hard-to-reach applications. Fifth, they can be integrated
directly into semiconductor circuits, printed circuit boards,
and light-focusing packages. Various combinations of
these advantages are key to the following broad range
of applications of LEDs.

LEDs for Lighting

In an era where energy efficiency matters financially,
environmentally, and practically, LEDs have become a
popular mainstay in home and office lighting, street
lighting and consumer products from home appliances
and toys to high-efficiency tail lights for cars and
flashlights. Of growing importance is the replacement of
traditional incandescent bulbs with LEDs in homes and
buildings (Fig. TF5-3), because of their energy efficiency.

FigureTF5-4: LED eyelashes can be worn in many colors,
and can be made to turn on or off with a tip of the head.
(Credit: Soomi Park.)

But lighting is more than just enabling us to see at night.
LEDs can be used in horticulture to efficiently target ideal
wavelengths for plant growth, and exposing produce to
certain wavelengths of light can help it ripen on demand,
or can extend its ripened shelf life. UV LEDS are being
explored to enhance development of polyphenol, which
are believed to have antioxidant qualities, in growth of
green, leafy vegetables. LEDs provide high visibility bike
lights, safety vests, tennis shoes, and more. They are
also used artistically for decoration and advertising on
buildings and signs, woven into clothes often augmented
by plastic fiber optic threads (e.g., Philips Research
Lumalive textiles), or even worn with LED eyelashes (see
Fig. TF5-4)!

LEDs for Medical Applications

LEDs are used for a variety of medical applications. One
particularly important application is the pulse oximeter
(Fig. TF5-5), which measures blood oxygen level and
pulse rate. Oxygenated blood absorbs light at 660 nm
(red light), whereas deoxygenated blood absorbs light at
940 nm (infrared). Pulse oximeters use two LEDs, one at
600 nm and another at 940 nm, which are arranged to
transmit through a translucent section of the body such
as the finger or ear lobe. Two associated light collecting
sensors are placed on the opposite side to measure the
amount of each wavelength that is transmitted through the
body. The ratio of the red and infrared light indicates how
much oxygen is in the blood. To insure that the received
light signals are actually from the blood, the measurement
is made over several seconds (several pulses), focusing
in on the pulsing blood rather than the static surrounding
tissues.



“book” — 2015/5/4 — 6:57 — page 92 — #43

92 TECHNOLOGY BRIEF 5: LIGHT-EMITTING DIODES (LEDS)

Figure TF5-5: Pulse oximeter used to measure blood
oxygen content.

LEDs are also used to treat many superficial (skin)
conditions. Red light in the range of 600–950 nm can be
used to treat acne, rosacea, and wrinkles. The red light
works by stimulating the mitochondria in the skin to make
older cells behave like younger cells. Blue-light therapy
in the 405–420 nm range is used for acne treatments
and “anti-aging” skin therapies because of its ability to
stimulate collagen in the skin. Green to yellow light (532–
595 nm) can reduce skin redness (rosacea). Combining
LED light sources with topical drug treatments that are
photoactivated may be used to treat a variety of skin
conditions including skin cancer and pre-cancer.

LEDs are also used extensively in dentistry. Blue
LEDs can be used to cure (harden) polymer composite
materials used for fillings. The rate at which the filling
material cures is proportional to the power carried by the
LED light, so high power LEDs are used to speed up the
curing process.

Ultraviolet (UV) LEDs

The UV range provides a wealth of applications, and
low-cost high-power UV LEDs are enabling many of
these applications. Inks (printing), adhesives and coatings
are often cured with LEDs in the UV range (primarily
395 nm, 385 nm or 365 nm). UV LED flashlights are
used to detect fraudulent identification (at the airport, for
example) and currency. UV-LEDs are used extensively
in forensic analysis and drug discovery. In the lower
UV spectral range (100–280 nm) LEDs sterilize air
and water by breaking up the DNA and RNA of

Figure TF5-6: Large LED display.

microorganisms and preventing their reproduction. For
example, 275 nm is believed to be the most effective
wavelength for eradicating pathogens such as E-coli in
water. LEDs in this range are also used for spectroscopic
and fluorescence measurements and for chemical and
biological detectors.

LED Displays

LEDs, with their wide range of colors, efficiency, low cost,
flexibility, low profile and light weight, are ideal for both
handheld displays and much larger displays (such as
billboards and signage, as shown in Fig. TF5-6). Some
LED displays use edge lighting where LEDs shine light
across the screen (allowing the display to be thinner
than traditional screens but not improving picture quality).
Others use RGB LEDs.These LEDs use a common anode
but have separate cathodes for red, green and blue LEDs
(making the composite a 4-pin LED). They can be made
to generate light with almost any color, depending on the
voltages applied across the combination of RGB pins.
This greatly enhances picture color. RGB LEDs can also
be dimmed independently and instantly (giving a more
dynamic picture, especially great “black” levels for dark
scenes).The flexibility and bendability of OLEDs promise
new, creative options for the next generation of TVs and
smart phones—can you imagine rolling your TV up like a
poster and carrying it with you anywhere? Or wearing it?
Or . . .?
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Mechanical load
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Δ x

Figure 2-43: The resistance of a piezoresistor changes when
mechanical stress is applied.

2-6.3 Piezoresistor Circuit

According to Technology Brief 4, if we apply a force on
a resistor along its axis (Fig. 2-43), the resistance changes
from R0, which is the resistance with no stress (pressure)
applied, to R as

R = R0 + �R, (2.49)

and the deviation �R is given by

�R = R0αP, (2.50)

where α is a property of the material that the resistor is made
of and is called its piezoresistive coefficient, and P is the
mechanical stress applied to the resistor. The unit for P is
newtons/m2 (N/m2) and the unit for α is the inverse of that.
Compression decreases the length of the resistor and increases
its cross section, so in view of Eq. (2.2), which states that the
resistance of a longitudinal resistor is given by R = ρ�/A, the
consequence of a compressive force—namely reduction in �

and increase in A—leads to a reduction in the magnitude of R.

� Hence, for compression, �R is negative, requiring that
α in Eq. (2.50) be defined as a negative quantity. �

If a piezoresistor is integrated into a Wheatstone-bridge
circuit (as in Fig. 2-37), such that all three other resistors are
given by R0, the expression for the voltage output given by
Eq. (2.48) becomes

Vout = V0

4

(
�R

R0

)
= V0

4
αP. (2.51)

Since V0 and α are both constants, the linear relationship
between the applied stress P and the output voltage Vout makes
the piezoresistor a natural sensor for detecting or measuring
mechanical stress. However, we should examine the sensitivity

of such a sensor. As a reference, a finger can apply about 50 N
of force across an area of 1 cm2 (10−4 m2), which is equivalent
to a pressure P = 5 × 105 N/m2. If the piezoresistor is made of
silicon with α = −1 × 10−9 m2/N and if the dc source in the
Wheatstone bridge is V0 = 1 V, Eq. (2.51) yields the result that
Vout = −125 μV, which is not impossible to measure but quite
small nevertheless. How then are such pressure sensors used?

The answer is simple: We need a mechanism to amplify the
signal. We can do so electronically by feeding Vout into a high-
gain amplifier, or we can amplify the mechanical pressure itself
before applying it to the piezoresistor. The latter approach can
be realized by constructing the piezoresistor into a cantilever
structure, as shown in Fig. 2-44 (a cantilever is a fancy name
for a “diving board” with one end fixed and the other free).
Deflection of the cantilever tip induces stress at the base of
the cantilever near the attachment point. If properly designed,
the cantilever—which usually is made of silicon or metal—can
amplify the applied stress by several orders of magnitude, as
we see in the following example.

Example 2-19: A Realistic Piezoresistor Sensor

When a force F is applied on the tip of a cantilever of
width W , thickness H , and length L (as shown in Fig. 2-44)
the corresponding stress exerted on the piezoresistor attached
to the cantilever base is given by

P = FL

WH 2 . (2.52)

Determine the output voltage of a Wheatstone-bridge circuit if
F = 50 N, V0 = 1 V, the piezoresistor is made of silicon, and
the cantilever dimensions are W = 0.5 cm, H = 0.5 mm, and
L = 1 cm.

Solution: Combining Eqs. (2.51) and (2.52) gives

Vout = V0

4
α · FL

WH 2

= 1

4
× (−1 × 10−9) × 50 × 10−2

(5 × 10−3) × (5 × 10−4)2

= −0.1 V.

The integrated piezoresistor–cantilever arrangement gener-
ates an output voltage whose magnitude is on the order of 800
times greater than that generated by pressing on the resistor
directly!

Concept Question 2-16: Does compression along the 
current direction increase or decrease the resistance?
Why?  (See         )
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Figure 2-44: A cantilever structure with integrated piezoresistor at the base.

Concept Question 2-17: Why are piezoresistors placed
at the base of cantilevers and other deflecting structures? 
(See         )

Exercise 2-12: What would the output voltage associated
with the circuit of Example 2-18 change to, if the
cantilever thickness is reduced by a factor of 2?

Answer: Vout = −0.4 V. (See         )

2-7 Introducing Multisim

Multisim 13 is the latest edition of National Instrument’s SPICE
simulator software. SPICE, originally short for Simulation
Program with Integrated Circuit Emphasis, was developed
by Larry Nagel at the University of California, Berkeley,
in the early 1970s. It since has inspired and been used in
many academic and commercial software packages to simulate
analog, digital, and mixed-signal circuits. Modern SPICE
simulators like Multisim are indispensable in integrated circuit
design; ICs are so complex that they cannot be built and
tested on a breadboard ahead of production (see Technology
Brief 7). With SPICE, you can draw a circuit from a library of
components, specify how the components are connected, and
ask the program to solve for all voltages and currents at any
point in time. Modern SPICE packages like Multisim include
very intuitive graphic user interface (GUI) tools that make both
circuit design and analysis very easy. Multisim allows the user
to simulate a laboratory experience on his/her computer ahead
of actually working with real components.

In this section, you will learn how to:

• Set up and analyze a simple dc circuit in Multisim.

• Use the Measurement Probe tool to quickly solve for
voltages and currents.

• Use the Analysis tools for more comprehensive solutions.

We will return to these concepts and learn to apply many
other analysis tools throughout the book. Appendix C provides
an introduction to the Multisim Tutorial available on the book
website http://c3.eecs.umich.edu/. The Tutorial is a useful
reference if you have never used Multisim before. When
defining menu selections starting from the main window, the
format Menu → Sub-Menu1 → Sub-Menu2 will be used.

2-7.1 Drawing the Circuit

After installing and running Multisim, you will be presented
with the basic user interface window, also referred to as the
circuit window or the schematic capture window (see Multisim
Tutorial on the book website). Here, we will draw our circuits
much as if we were drawing them on paper.

Placing resistors in the circuit

Components in Multisim are organized into a hierarchy
going in a descending general order from Database →
Group → Family → Component. Every component that
you use in Multisim will fit into this hierarchy somewhere.

Place → Component opens the Select a Component
window. (Ctrl-W is the shortcut key for the place-
component command. Multisim has many shortcut keys,
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Figure 2-45: Multisim screen for selecting and placing a resistor.

and it will be worthwhile for you to learn some of the basic
ones to improve your efficiency in creating and testing
circuits.)

Choose Database: Master Database and Group: Basic
in the pulldown menus.

Now select Family: RESISTOR.

You should see a long list of resistor values under
Component and the schematic symbol for a resistor
(Fig. 2-45). Note that the Family menu contains other
components like inductors, capacitors, potentiometers,
and many more. We will use these in later chapters.

Scroll down and select a 1k value (the units are in ohms)
and then click OK.You should see a resistor in the capture
window. Before clicking in the window, Ctrl-R allows you
to rotate the resistor in the window. Rotate the resistor
such that it is vertical and then click anywhere on the
window to place it. Repeat this operation; this time place a
vertical 100-ohm resistor directly below the first one (as in
Fig. 2-46). How to connect them together will be described
shortly. Once you are finished placing components, click
Close to return to the schematic capture window.

Note that the components have symbolic names (R1 and
R2) and values displayed next to them (1k and 100).

Also, by double-clicking on a specific component, you can
access many details of the component model and its values.
For now, it is sufficient to know that the Resistance value
can be altered at any time through the Value menu.

Placing an independent voltage source

Just as you did with the resistors, open up the Select a
Component window.

Choose Database: Master Database and Group:
Sources in the pulldown menus.

Select Family: POWER SOURCES.

Under Component select DC POWER and click OK.

Place the part somewhere to the left of the two resistors
(Fig. 2-46).

Once placed, close the component window, then double-
click on component V1. Under the Value tab, change the
Voltage to 10 V. Click OK.

Wiring components together

Place → Wire allows you to use your mouse to
wire components together with click-and-drag motions
(Ctrl-Q is the shortcut key for the wire command). You



“book” — 2015/5/4 — 6:57 — page 96 — #47

96 CHAPTER 2 RESISTIVE CIRCUITS
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Finish dragging wire
to R2 to complete circuit
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as you drag wire

Figure 2-46: Adding a voltage source and completing the
circuit.

can also enable the wire tool automatically by moving the
cursor very close to a component node; you should see the
mouse pointer change into a black circle with a cross-hair.

Click on one of the nodes of the dc source with the wire tool
activated (you should see the mouse pointer change from
a black cross to a black circle with a cross hair when you
hover it over a node). Additional clicks anywhere in the
schematic window will make corners in the wire. Double-
clicking will terminate the wire. Additionally, when not
already dragging a wire, double-clicking on any blank spot
of the schematic will generate a wire based at the origin
of clicking.

Wire the components as shown in Fig. 2-46. Add
a GROUND reference point as shown in Fig. 2-47.
The Ground can be found in the Component list of
POWER SOURCES. We now have a resistive divider.

0
Ground

Probe 1 display

Probe 1 display

Node 2 2

Node 1

1

Simulation toolbar

Figure 2-47: Executing a simulation.

2-7.2 Solving the Circuit

In Multisim, there are two broad ways in which to solve a
circuit. The first, called Interactive Simulation, allows you to
utilize virtual instruments (such as ohmmeters, oscilloscopes,
and function generators) to measure aspects of a circuit in a
time-based environment. It is best to think of the Interactive
Simulation as a simulated “in-lab” experience. Just as in
real life, time proceeds in the Interactive Simulation as you
analyze the circuit (although the rate at which time proceeds
is heavily dependent on your computer’s processor speed and
the resolution of the simulation). The Interactive Simulation is

started using the F5 key, the button, or the toggle

switch. The simulation is paused using the F6 key, the

button, or the button. The simulation is terminated using

either the button or the toggle switch.
The other main way in which to solve a circuit in Multisim

is through Analyses. These simulations display their outputs
not in instruments, but rather in the Grapher window (which
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may produce tables in some instances). These simulations are
run for controlled amounts of time or over controlled sweeps of
specific variables or other aspects of the circuit. For example, a
dc sweep simulates the values of a specified voltage or current
in the circuit over a defined range of dc input values.

Each of the methods described has its own advantages and
disadvantages, and in fact, both varieties can perform many
of the same simulations, albeit with different advantages. The
choice of method to be used for a given circuit really comes
down to your preferences, which will be formed as you gain
more experience with Multisim.

For the circuit in Fig. 2-47, we wish to solve for the voltages
at every node and the currents running through every branch.
As you will often see in Multisim, the solution can be obtained
using either the Interactive Simulation or through one of the
Analyses. We will demonstrate both approaches.

Interactive simulation

Selecting Simulate → Instruments → Measurement Probe
allows you to drag and place a measurement probe onto any
node in the circuit. (Note that the Instruments menu contains
many common types of equipment used in an electronics
laboratory.) The Measurement Probe constantly reports both
the current running through the branch to which it is assigned
and the voltage at that node. Place two probes into the circuit
as shown in Fig. 2-47. When placed, by default, the probes
should be pointing in the direction shown in Fig. 2-47. If they
are not, you can reverse a probe’s direction by right-clicking on
it and pressing Reverse Probe Direction. Once the probes are
in place, you must run the simulation using the commands for
Interactive Simulations.

As expected, the current running through both wires is the
same since the circuit has only one loop.

I = V1

R1 + R2
= 10

1000 + 100
= 9.09 mA.

The voltage at node 1 is 10 V, as defined by the source.
Application of voltage division (Fig. 2-19) gives

V2 =
(

R2

R1 + R2

)
V1 =

(
100

1100

)
10 = 0.909 V.

DC operating point analysis

The circuit also can be solved using Simulate → Analyses →
DC Operating Point. This method is more convenient than the
Interactive Simulation when solving circuits with many nodes.
After opening this window, you can specify which voltages and
currents you want solved. [The Interactive Simulation mode

must be stopped, not just paused, in order for the DC Operating
Point Analysis mode to work.] Under the Output tab, select
the two node voltages and the branch current in theVariables in
Circuit window. Make sure the Variables in Circuit pull-down
menu is set to All Variables. Once selected, click Add and they
will appear in the Selected variables for analysis window.
Once you have selected all of the variables for which you
want solutions, simply click Simulate. Multisim then solves
the entire circuit and opens a window showing the values of the
selected voltages and currents (Fig. 2-48).

2-7.3 Dependent Sources

Multisim provides both defined dependent sources (voltage-
controlled current, current-controlled current, etc.) and a
generic dependent source whose definition can be entered as
a mathematical equation. We will use this second type in the
following example.

Step 1: The dependent sources are established as follows:
Place → Component opens the Select a Component
window.

Choose Database:Master Database and Group:Sources
in the pulldown menus.

Select Family: CONTROLLED VOLTAGE or
CONTROLLED CURRENT.

Under Component, select ABM VOLTAGE or
ABM CURRENT and click OK.

The value of ABM sources (which stands for Analog
Behavioral Modeling) can be set directly with mathematical
expressions using any variables in the circuit. For information
on the variable nomenclature, which may be somewhat
confusing, see the Multisim Tutorial on the book website.

Step 2: Using what you learned in Section 2-7.1, draw the
circuit shown in Fig. 2-49 (including the probe at node 2).

Step 3: Double-click the ABM CURRENT source. Under
the value tab, enter: 3*V(2). The expression V(2) refers to
the voltage at node 2. This effectively defines this source as
a voltage-controlled current source. Note that when making the
circuit, if the node numbering in your circuit differs from that in
the example (e.g., if nodes 1 and 2 are switched), then take care
to keep track of the differences so that you will use the proper
node voltage when writing the equation. To edit or change node
labels, double-click any wire to open the Net Window. Under
Net name enter the label you like for that node.

To write the expression for I1 next to the current source, go to
Place →Text, and then type in the expression at a location near
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1

Node V1

Node V2
2

Voltage @ node V1

0

V(1)

Voltage @ node V2
Current through node V1I(v1)

V(2)

Figure 2-48: Solution window.

Figure 2-49: Creating a dependent source.

the current source. [Ctrl-T is the shortcut key for the place-text
command.]

Referencing currents in arbitrary branches

Now let us analyze the circuit using the DC Operating Point
Analysis. Our goal is to solve for the voltages at every node
and the current running through each branch. Remove the probe
from the circuit if you still have it in there by clicking on it so
it is highlighted and pressing the Delete key.

To perform a DC operating point analysis, just as we did
earlier in Section 2-7.2, go to Simulate → Analyses → DC
Operating Point and transfer all available variables into the
Selected variables for analysis window. You should notice
that the only variables available are V(1), V(2), and I(v1); if
Probe 1 is still connected to your circuit, you should also see
I(Probe 1) and V(Probe 1). Where are the other currents, such
as the current flowing through R1, the current through R2,
or even the current coming out of the dependent source? In
Multisim and most SPICE software in general, you can only
measure/manipulate currents through a Voltage Source (there
are some exceptions, but we will ignore them for now). This
is why the current through V1, denoted I(v1), is available but
the currents through the other components are not. A simple
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trick, however, to obtain these currents is to add a 0 V dc source
into the branches where you want to measure current. Do this
to your circuit, so that it ends up looking like that shown in
Fig. 2-50.

Figure 2-50: Circuit from Fig. 2-49 adapted to read out the
currents through R1, R2, and the dependent source.

You will notice that there are new nodes in the circuit now,
but since V2, V3, and V4 are 0 V sources, V(3) = V(4) = V(1)
and V(5) = V(2).

Go back to the DC Operating Point Analysis window and
under theVariables in Circuit window there should now be four
currents [I(v1), I(v2), I(v3), and I(v4)] and the five voltages.
Highlight all four currents as well as V(1) and V(2) and click
Add and then click OK. This will bring up the Grapher window
with the results of the analysis.

Note that when we analyze the currents through the branches,
the current through a voltage source is defined as going into the
positive terminal. For example, in source V1, this corresponds
to the current flowing from Node 1 into V1 and then out of V1
to Node 0.

Concept Question 2-18: In Multisim, how are
components placed and wired into circuits? (See         )

Concept Question 2-19: How do you obtain and
visualize the circuit solution?  (See         )

Exercise 2-13: The circuit in Fig. E2.13 is called a
resistive bridge. How does Vx = (V3 − V2) vary with the
value of potentiometer R1?

Figure E2.13

1

32

0

Answer: (See )

Exercise 2-14: Simulate the circuit shown in Fig. E2.14
and solve it for the voltage across R3. The magnitude of
the dependent current source is V1/100.

Figure E2.14

1 Ω
10 Ω

12 V
ABM_CURRENT100 Ω

0

1 2 3

4

R3

R1

V1 R2 ABM

Answer: (See )
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Summary

Concepts

• As described by Ohm’s law, the i–υ relationship of a
resistor is linear over a specific range (−imax to +imax);
however, R may vary with temperature (thermistors),
pressure (piezoresistors), and light intensity (LDR).

• Kirchhoff’s current and voltage laws form the
foundation of circuit analysis and synthesis.

• Two circuits are considered equivalent if they exhibit
identical i–υ characteristics relative to an external
circuit.

• Source transformation allows us to represent a real
voltage source by an equivalent real current source, and
vice versa.

• A Y circuit configuration can be transformed into a �

configuration, and vice versa.

• The Wheatstone bridge is a circuit used to measure
resistance, as well as to detect small deviations (from a
reference condition), as in strain gauges and other types
of sensors.

• Nonlinear resistive elements include the light bulb, the
fuse, the diode, and the light-emitting diode (LED).

• Multisim is a software simulation program capable of
simulating electric circuits and analyzing their behavior.

• A diode is a one-way valve for current. An LED is a
diode that also emits light.

Mathematical and Physical Models
Linear resistor R = ρ�/A

p = i2R

Kirchhoff current law (KCL)
N∑

n=1

in = 0

in = current entering node n

Kirchhoff voltage law (KVL)
N∑

n=1

vn = 0

υn = voltage across branch n

Resistor combinations

In series Req =
N∑

i=1

Ri

In parallel
1

Req
=

N∑
i=1

1

Ri

or Geq =
N∑

i=1

Gi

Voltage division

R2

R1
υs

+
_

+
_

+
_

υ1 =
R1

R1 + R2
υs

υ2 =
R2

R1 + R2
υs

Current division

R2R1
is

i1 = =
R2

R1 + R2

G1
Geq

is is

=
G2
Geq

isi2 =
R1

R1 + R2
is

Source transformation

+
_

Rs

υs is = υs

Rs
Rs

Y–� transformation Table 2-5

Wheatstone bridge (Fig. 2-37) υout ≈ V0

4

(
�R

R

)
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Important Terms Provide definitions or explain the meaning of the following terms:

American Wire Gauge
ammeter
Analyses
balanced
balanced condition
basic user interface
breaker
circuit equivalence
circuit window
conductance
conductivity
conductor
current divider
dielectric
diode
equivalent resistor
forward bias

forward-bias voltage
forward voltage
fuse
Grapher
i–υ response
ideal diode
impede
in series
Interactive Simulation
Kirchhoff’s current law (KCL)
Kirchhoff’s voltage law (KVL)
knee voltage
law of conservation of charge
law of conservation of energy
light-emitting diode
linear region
linear resistor

mechanical stress
Multisim
n-type
negative
NI myDAQ
offset voltage
Ohm’s law
one-way valve
overcurrent
p-type
piezoresistive coefficient
piezoresistor
pn-junction diode
positive
potentiometer
power rating
resistance

resistive circuit
resistivity
reverse bias
rheostat
schematic capture window
semiconductor
siemen
source transformation
superconductor
SPICE
thermistor
variable resistance
voltage divider
Wye–Delta (Y–�)

transformation

PROBLEMS

Section 2-1: Ohm’s Law

*2.1 An AWG-14 copper wire has a resistance of 17.1 � at
20 ◦C. How long is it?

2.2 A 3 km long AWG-6 metallic wire has a resistance of
approximately 6 � at 20 ◦C. What material is it made of?

2.3 A thin-film resistor made of germanium is 2 mm in length
and its rectangular cross section is 0.2 mm × 1 mm, as shown
in Fig. P2.3. Determine the resistance that an ohmmeter would
measure if connected across its:

(a) Top and bottom surfaces

*(b) Front and back surfaces

(c) Right and left surfaces

2.4 A resistor of length � consists of a hollow cylinder of
radius a surrounded by a layer of carbon that extends from
r = a to r = b, as shown in Fig. P2.4.

(a) Develop an expression for the resistance R.

(b) Calculate R at 20 ◦C for a = 2 cm, b = 3 cm and
� = 10 cm.

∗
Answer(s) available in Appendix G.

0.2 mm 1 mm

2 mm

y

z

x

Figure P2.3: Film resistor of Problem 2.3.

Carbon

Hollow 2b2a

l

Figure P2.4: Carbon resistor for Problem 2.4.

2.5 A standard model used to describe the variation of
resistance with temperature T is given by

R = R0(1 + αT ),

where R is the resistance at temperature T (measured
in ◦C), R0 is the resistance at T = 0 ◦C, and α is a
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temperature coefficient. For copper, α = 4 × 10−3 ◦C−1. At
what temperature is the resistance greater than R0 by 1 percent?

2.6 A light bulb has a filament whose resistance is
characterized by a temperature coefficient α = 6 × 10−3 ◦C−1

(see resistance model given in Problem 2.5). The bulb is
connected to a 100 V household voltage source via a switch.
After turning on the switch, the temperature of the filament
increases rapidly from the initial room temperature of 20 ◦C
to an operating temperature of 1800 ◦C. When it reaches its
operating temperature, it consumes 80 W of power.

(a) Determine the filament resistance at 1800 ◦C.

(b) Determine the filament resistance at room temperature.

(c) Determine the current that the filament draws at room
temperature and also at 1800 ◦C.

(d) If the filament deteriorates when the current through it
approaches 10A, is the damage done to the filament greater
when it is first turned on or later when it arrives at its
operating temperature?

*2.7 A 110 V heating element in a stove can boil a standard-
size pot of water in 1.2 minutes, consuming a total of 136 kJ
of energy. Determine the resistance of the heating element and
the current flowing through it.

2.8 A certain copper wire has a resistance R characterized by
the model given in Problem 2.5 with α = 4 × 10−3 ◦C−1. If
R = 60 � at 20 ◦C and the wire is used in a circuit that cannot
tolerate an increase in the magnitude of R by more than 10
percent over its value at 20 ◦C, what would be the highest
temperature at which the circuit can be operated within its
tolerance limits?

Section 2-2: Kirchhoff’s Laws

2.9 The circuit shown in Fig. P2.9 includes two identical
potentiometers with per-length resistance of 20 �/cm.
Determine Ia and Ib.

2.10 Determine VL in the circuit of Fig. P2.10.

*2.11 Select the value of R in the circuit of Fig. P2.11 so that
VL = 9 V.

2.12 A high-voltage direct-current generating station delivers
10 MW of power at 250 kV to a city, as depicted in Fig. P2.12.
The city is represented by resistance RL and each of the two
wires of the transmission line between the generating station
and the city is represented by resistance RTL. The distance
between the two locations is 2000 km and the transmission
lines are made of 10 cm diameter copper wire. Determine (a)
how much power is consumed by the transmission line and (b)

Ia

80 mA4 cm

6 cm
10 cm 2.5 cm

7.5 cm
10 cm

Ib

Figure P2.9: Circuit for Problem 2.9.

+

_
+
_12 V VL4 Ω 6 Ω6 Ω 10 Ω

5 Ω 5 Ω

5 Ω 5 Ω

Figure P2.10: Circuit for Problem 2.10.

500 Ω

I0

+_

500 Ω

12 V

6 mA

+_

VL

R

3I0

Figure P2.11: Circuit for Problem 2.11.
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what fraction of the power generated by the generating station
is used by the city.

+
_ RLV0

RTL

RTL

2000 km
Station

(city)

Figure P2.12: Diagram for Problem 2.12.

2.13 Determine the current I in the circuit of Fig. P2.13 given
that I0 = 0.

3 Ω
1 Ω

2 Ω

1 Ω

1 Ω

1 Ω

24 V
I0 = 0

I

+_
+
_

Figure P2.13: Circuit for Problem 2.13.

2.14 Determine currents I1 to I3 in the circuit of Fig. P2.14.

7 Ω12 Ω

4 Ω

2 Ω

8 Ω18 V

1 A

3 A
I2

I3

I1

+_
+
_

Figure P2.14: Circuit for Problem 2.14.

*2.15 Determine Ix in the circuit of Fig. P2.15.

Ix

2 Ω
5 Ω

12 V 1 A+_
+
_

Figure P2.15: Circuit for Problem 2.15.

2.16 Determine currents I1 to I4 in the circuit of Fig. P2.16.

I2I1

I4

I3

6 Ω4 Ω

1 Ω 8 Ω

12 V

4 A

5 V
1 V

+_+_

+ _

+
_

+
_

+ _

Figure P2.16: Circuit for Problem 2.16.

*2.17 Determine currents I1 to I4 in the circuit of Fig. P2.17.

I1 I2 I3 I4

2 Ω
6 A

4 Ω 2 Ω 4 Ω

Figure P2.17: Circuit for Problem 2.17.

2.18 Determine the amount of power dissipated in the 3 k�

resistor in the circuit of Fig. P2.18.

10−3V02 kΩ 3 kΩ10 mA V0
+
_

Figure P2.18: Circuit for Problem 2.18.
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*2.19 Determine Ix and Iy in the circuit of Fig. P2.19.

4Ix

2 Ω 6 Ω

4 Ω10 V
+
_ +_

Ix Iy

+
_

Figure P2.19: Circuit for Problem 2.19.

2.20 Find Vab in the circuit of Fig. P2.20.

a

b

2 Ω 2 Ω

2 Ω

6 V 12 VVab
+

_

+
_

+
_

Figure P2.20: Circuit for Problem 2.20.

2.21 Find I1 to I3 in the circuit of Fig. P2.21.

3 kΩ

4 kΩ
2 kΩ16 V

+
_ 12 V

8 V

+
_

+_
I1 I3

I2 +
_

+
_

+_

Figure P2.21: Circuit for Problem 2.21.

2.22 Find I in the circuit of Fig. P2.22.

2I

3 Ω10 V
+
_

I

+
_

+ _

Figure P2.22: Circuit for Problem 2.22.

*2.23 Determine the amount of power supplied by the
independent current source in the circuit of Fig. P2.23.

V1
2 Ω

2 Ω
0.2 A

4

V1
+
_

Figure P2.23: Circuit for Problem 2.23.

2.24 Given that in the circuit of Fig. P2.24, I1 = 4 A,
I2 = 1A, and I3 = 1A, determine node voltages V1, V2, and V3.

R1 = 18 Ω

1 Ω 6 Ω 6 Ω

6 Ω 18 Ω40 V
+
_

V1I1 V2 V3

I2

I3

Figure P2.24: Circuit for Problem 2.24.

*2.25 After assigning node V4 in the circuit of Fig. P2.25 as
the ground node, determine node voltages V1, V2, and V3.

6 Ω 6 Ω

3 Ω 3 Ω

12 V3 A +_

1 A

6 Ω

1 A

V1 V3
V2

V4

Figure P2.25: Circuit for Problems 2.25 and 2.26.

2.26 After assigning node V1 in the circuit of Fig. P2.25 as
the ground node, determine node voltages V2, V3, and V4.

2.27 In the circuit of Fig. P2.27, I1 = 42/81 A,
I2 = 42/81 A, and I3 = 24/81 A. Determine node voltages
V2, V3, and V4 after assigning node V1 as the ground node.



“book” — 2015/5/4 — 6:57 — page 105 — #56

PROBLEMS 105

9 Ω

V3 V4
V2

V1

6 Ω 9 Ω

6 Ω
9 Ω

6 Ω

6 V

+_
6 V

+_ +_+_

I3

I1I2

Figure P2.27: Circuit for Problem 2.27.

2.28 The independent source in Fig. P2.28 supplies 48 W of
power. Determine I2.

I2 0.25I112 V

I3I1 R

R

RR

+
_

Figure P2.28: Circuit for Problem 2.28.

Section 2-3: Equivalent Circuits

*2.29 Given that I1 = 1 A in the circuit of Fig. P2.29,
determine I0.

I0

I1 = 1 A

1 Ω 2 Ω 4 Ω 8 Ω 16 Ω

Figure P2.29: Circuit for Problem 2.29.

2.30 What should R be in the circuit of Fig. P2.30 so that
Req = 4 �?

Req

a

b

R
2 Ω

5 Ω

1 Ω

6 Ω

Figure P2.30: Circuit for Problem 2.30.

2.31 Find I0 in the circuit of Fig. P2.31.

3 Ω6 Ω
4 Ω

12 Ω
18 A

I0

Figure P2.31: Circuit for Problem 2.31.

2.32 For the circuit in Fig. P2.32, find Ix for t < 0 and t > 0.

t = 0

2 Ω 3 Ω2

1

4 Ω

2 Ω 4 Ω

4 Ω15 V
+
_

Ix

+
_

Figure P2.32: Circuit with SPDT switch for Problem 2.32.

2.33 Determine Req at terminals (a, b) in the circuit of
Fig. P2.33.

8 Ω16 Ω
32 Ω 8 Ω

4 ΩReq

a

b

Figure P2.33: Circuit for Problem 2.33.

*2.34 Select R in the circuit of Fig. P2.34 so that VL = 5 V.

R 1 kΩ
2 kΩ5 kΩ5 mA VL

+

_

Figure P2.34: Circuit for Problem 2.34.
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2.35 If R = 12 � in the circuit of Fig. P2.35, find I .

RR

RR

RR

RR

4 Ω
20 V

+_
I+_

Figure P2.35: Circuit for Problem 2.35.

*2.36 Use resistance reduction and source transformation to
find Vx in the circuit of Fig. P2.36. All resistance values are in
ohms.

16 16

4

12 16 166 410 A

Vx+ _

Figure P2.36: Circuit for Problem 2.36.

2.37 Determine A if Vout/Vs = 9 in the circuit of Fig. P2.37.

AI1

I1
Vs

+
_ 12 Ω 12 Ω 3 Ω

3 Ω

6 Ω Vout
+

_

+
_

Figure P2.37: Circuit for Problem 2.37.

*2.38 For the circuit in Fig. P2.38, find Req at terminals (a, b).

a

b

c

d

5 Ω 3 Ω 5 Ω

5 Ω3 Ω
6 Ω 6 Ω

Figure P2.38: Circuit for Problems 2.38 and 2.39.

2.39 Find Req at terminals (c, d) in the circuit of Fig. P2.38.

2.40 Simplify the circuit to the right of terminals (a, b) in
Fig. P2.40 to find Req, and then determine the amount of power
supplied by the voltage source. All resistances are in ohms.

25 V
3 5 8

66
8

4
12 12

+
_

Req

b

a

+
_

Figure P2.40: Circuit for Problem 2.40.

2.41 For the circuit in Fig. P2.41, determine Req at

*(a) Terminals (a, b)

(b) Terminals (a, c)

(c) Terminals (a, d)

(d) Terminals (a, f )

e f

ba

c

d
2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

2 Ω

Figure P2.41: Circuit for Problem 2.41.

2.42 Find Req for the circuit in Fig. P2.42. All resistances are
in ohms.

1010

5

5

10

10

10

Req

Figure P2.42: Circuit for Problem 2.42.
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2.43 Apply voltage and current division to determine V0 in
the circuit of Fig. P2.43 given that Vout = 0.2 V.

Vout = 0.2 V

2 Ω

1 Ω

4 Ω

2 Ω
4 Ω

8 Ω

V0
+

_

+
_

Figure P2.43: Circuit for Problem 2.43.

*2.44 Apply source transformations and resistance reductions
to simplify the circuit to the left of nodes (a, b) in Fig. P2.44
into a single voltage source and a resistor. Then, determine I .

5 A
4 Ω

3 A

12 Ω2 Ω

10 Ω a

b

I

Figure P2.44: Circuit for Problem 2.44.

2.45 Determine the open-circuit voltage Voc across terminals
(a, b) in Fig. P2.45.

Voc
6 Ω

2 A
+

_
3 Ω30 V

5 Ω
a

b

+
_

Figure P2.45: Circuit for Problem 2.45.

2.46 Use circuit transformations to determine I in the circuit
of Fig. P2.46.

4 Ω

4 Ω2 A

3 Ω

6 Ω
3 A

30 V
2 Ω

+ _
I

Figure P2.46: Circuit for Problem 2.46.

2.47 Determine currents I1 to I4 in the circuit of Fig. P2.47.

+
_ 12 V

I1

I26 Ω

12 Ω I3

I4 6 Ω

3 Ω

Figure P2.47: Circuit for Problems 2.47 and 2.48.

2.48 Replace the 12V source in the circuit of Fig. P2.47 with a
4 A current source pointing upwards. Then, determine currents
I1 to I4.

*2.49 Determine current I in the circuit of Fig. P2.49.

30 Ω 60 Ω

5 Ω

50 V

10 Ω 25 Ω40 Ω

+
_

10 Ω 10 Ω

I

Figure P2.49: Circuit for Problem 2.49.
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2.50 Determine the equivalent resistance Req at terminals
(a, b) in the circuit of Fig. P2.50.

5 Ω

4 Ω

6 Ω

4 Ω

4 Ω

5 Ω

Req

a

b

Figure P2.50: Circuit for Problem 2.50.

*2.51 Determine current I in the circuit of Fig. P2.51.

1 kΩ

6 mA

2 mA

2 kΩ

2 kΩ

16 V

8 V

2 kΩ 5 mA

+
_

+
_

I

Figure P2.51: Circuit for Problem 2.51.

2.52 Determine voltage Va in the circuit of Fig. P2.52.

4 Ω

V a

4 Ω
2.5 A

2 Ω

2 A
2 Ω+

_
2 A

5 A

Figure P2.52: Circuit for Problem 2.52.

Sections 2-4 and 2-5: Y–� and Wheatstone Bridge

2.53 Convert the circuit in Fig. P2.53(a) from a � to a Y
configuration.

a

b

c

d

8 Ω2 Ω

4 Ω

a

b

c

d

3 Ω 1 Ω

6 Ω

(a) (b)

Figure P2.53: Circuit for Problems 2.53 and 2.54.

2.54 Convert the circuit in Fig. P2.53(b) from a T to a 


configuration.

*2.55 Find the power supplied by the generator in Fig. P2.55.

R1 = 18 Ω

1 Ω 6 Ω 6 Ω

6 Ω 18 Ω20 V
+
_

Figure P2.55: Circuit for Problems 2.55 and 2.56.

2.56 Repeat Problem 2.55 after replacing R1 with a short
circuit.
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2.57 Find I in the circuit of Fig. P2.57.

9 Ω 6 Ω 9 Ω

6 Ω
9 Ω

6 Ω

3 V

+_
3 V

+_
I+_+_

Figure P2.57: Circuit for Problem 2.57.

2.58 Find the power supplied by the voltage source in
Fig. P2.58.

6 Ω R = 6 Ω 6 Ω

3 Ω 3 Ω

4 V

+_

Figure P2.58: Circuit for Problems 2.58 and 2.59.

*2.59 Repeat Problem 2.58 after replacing R with a short
circuit.

2.60 Find I in the circuit of Fig. P2.60. All resistances are in
ohms.

1

4

2 2

2 2
12 V

I

+_
+
_

Figure P2.60: Circuit for Problem 2.60.

*2.61 Find Req for the circuit in Fig. P2.61.

Req

18 Ω
6 Ω

6 Ω 18 Ω

1 Ω6 Ω

18 Ω

9 Ω

Figure P2.61: Circuit for Problem 2.61.

2.62 Find Req at terminals (a, b) in Fig. P2.62 if

(a) Terminal c is connected to terminal d by a short circuit

(b) Terminal e is connected to terminal f by a short circuit

(c) Terminal c is connected to terminal e by a short circuit
All resistance values are in ohms.

e

d

a b
f

c

3

3 3

3 3

3Req

Figure P2.62: Circuit for Problem 2.62.

2.63 For the Wheatstone-bridge circuit of Fig. 2-36, solve the
following problems.

*(a) If R1 = 1 �, R2 = 2 �, and Rx = 3 �, to what value
should R3 be adjusted so as to achieve a balanced
condition?

(b) If V0 = 6 V, Ra = 0.1 �, and Rx were then to deviate by a
small amount to Rx = 3.01 �, what would be the reading
on the ammeter?

2.64 If V0 = 10 V in the Wheatstone-bridge circuit of
Fig. 2-37 and the minimum voltage Vout that a voltmeter can
read is 1 mV, what is the smallest resistance fraction (�R/R)

that can be measured by the circuit?

2.65 Suppose the cantilever system shown in Fig. 2-44 is used
in the Wheatstone-bridge sensor of Fig. 2-37 with V0 = 2 V,
α = −1 × 10−9 m2/N, L = 0.5 cm, W = 0.2 cm, and
H = 0.2 mm. If the measured voltage is Vout = −2 V, what
is the force applied to the cantilever?

*2.66 A touch sensor based on a piezoresistor built into
a micromechanical cantilever made of silicon is connected
in a Wheatstone-bridge configuration with a V0 = 1 V. If
L = 1.44 cm and W = 1 cm, what should the thickness H be
so that the touch sensor registers a voltage magnitude of 10 mV
when the touch pressure is 10 N?

Section 2-6: i–υ Relationships

*2.67 Determine I1 and I2 in the circuit of Fig. P2.67. Assume
VF = 0.7 V for both diodes.
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I2I153 Ω 53 Ω

6 V
+
_

Figure P2.67: Circuit for Problem 2.67.

2.68 Determine V1 in the circuit of Fig. P2.68. Assume
VF = 0.7 V for all diodes.

50 Ω

25 Ω

100 Ω
9 V

+
_

+
_V1

Figure P2.68: Circuit for Problem 2.68.

2.69 If the voltage source in the circuit of Fig. P2.69 generates
a single square wave with an amplitude of 2 V, generate a plot
for vout for the same time period.

100 Ω
+
_υout

+
_υs(t)

2 V

−2 V

tT

υs(t)

Figure P2.69: Circuit and voltage waveform for Problem 2.69.

2.70 If the voltage source in the circuit of Fig. P2.70(a)
generates the single square waveform shown in Fig. P2.70(b),
generate plots for i1(t) and i2(t).

+
_

i1

υs(t)

i273 Ω 146 Ω

υs(t)

t (s)
4

−8 V

8 V

2

υs(t)

t (s)
4

−8 V

8 V

2

(c) Triangular wave

(b) Square wave

(a)

Figure P2.70: Circuit and waveforms for Problems 2.70 and
2.71.

2.71 If the voltage source in the circuit of Fig. P2.70(a) gen-
erates the single triangular waveform shown in Fig. P2.70(c),
generate plots for i1(t) and i2(t).
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2.72 The circuit shown in Fig. P2.72 is used to control a red
LED. The LED is designed to turn on when the resistance R of
the rheostat is 50 � or lower. Use the information contained in
Fig. 2-8(d) to determine the value of the constant resistor R0.

I

R0

RD

R
VF

5 V Red LED
+
_

+
_

Figure P2.72: Circuit for Problem 2.72.

Section 2-7: Multisim

2.73 Use the DC Operating Point Analysis in Multisim to 
solve for voltage Vout in the circuit of Fig. P2.73. Solve for 
Vout by hand and compare with the value generated by 
Multisim. See the solution for Exercise 2.14 (on         ) 
for how to incorporate circuit variables into algebraic 
expressions.

Vout10 Ω 10 Ω

25 Ω15 Ω

2.5 V

+

_+
_

Figure P2.73: Circuit for Problem 2.73.

2.74 Find the ratio Vout/Vin for the circuit in Fig. P2.74 using
DC Operating Point Analysis in Multisim. See the Multisim
Tutorial included on the book website on how to reference
currents in ABM sources [you should not just type in I(V1)].

Vin

Iin

Vout100Iin10 kΩ

1 kΩ

1 kΩ
+

_

+
_

Figure P2.74: Circuit for Problem 2.74.

2.75 Use DC Operating Point Analysis in Multisim to solve
for all six labeled resistor currents in the circuit of Fig. P2.75.

I1

I3

I5

1 Ω

1 Ω

1 Ω

I2

I4

I6

1 Ω

1 Ω

1 Ω

1 A
2 V

3 V

+ _

+ _

Figure P2.75: Circuit for Problem 2.75.

2.76 Find the voltages across R1, R2, and R3 in the circuit
of Fig. P2.76 using the DC Operating Point Analysis tool in
Multisim.

R1

R2
V1

10 Ω

R3

15 Ω

30 Ω15 V 1.5I
I

+
_

Figure P2.76: Circuit for Problem 2.76.

2.77 Find the equivalent resistance looking into the terminals
of the circuit in Fig. P2.77 using a test voltage source and current
probes in the Interactive Simulation in Multisim. Compare the
answer you get to what you obtain from series and parallel
combining of resistors carried out by hand.

Potpourri Questions

2.78 What is a superconducting material and what happens
when its physical temperature is below or above its critical
temperature? How is superconductivity used in practice?

2.79 What is a piezoresistor? How is it used? Resistors are
also used as chemical sensors. Explain how.

2.80 What determines the color of the light emitted by an
LED? Why are LEDs economical to use?
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Figure P2.77: Circuit for Problem 2.77.

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest via
your computer. [myDAQ tutorials and videos are available in
Appendix F and on       .]
m2.1 Kirchhoff’s Laws: Determine currents I1 to I3 and the 
voltage V1 in the circuit of Fig. m2.1 with component values 
Isrc = 1.8 mA, Vsrc = 9.0 V,  R1 = 2.2 k�, R2 = 3.3 k�, and 
R3 = 1.0 k�.

+

_

+
_Vsrc

Isrc

R2

R1

I2

R3

V1

I1

I3

Figure m2.1 Circuit for Problem m2.1.

m2.2 Equivalent Resistance: Find the equivalent resistance
between the following terminal pairs in the circuit of Fig. m2.2
under the stated conditions:

(a) a-b with the other terminals unconnected,

(b) a-d with the other terminals unconnected,

(c) b-c with a wire connecting terminals a and d, and

(d) a-d with a wire connecting terminals b and c.

Use these component values: R1 = 10 k�, R2 = 33 k�,
R3 = 15 k�, R4 = 47 k�, and R5 = 22 k�.

R2

R4 d

R1 R5
R3

c

ba

Figure m2.2 Circuit for Problem m2.2.

m2.3 Current and Voltage Dividers: Apply the concepts
of voltage dividers, current dividers, and equivalent resistance
to find the currents I1 to I3 and the voltages V1 to V3 in the
circuit of Fig. m2.3. Use these component values: Vsrc = 12 V,
R1 = 1.0 k�, R2 = 10 k�, R3 = 1.5 k�, R4 = 2.2 k�,
R5 = 4.7 k�, and R6 = 3.3 k�.
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+

_V2 R4

+

_V1Vsrc
R5

R3

R2

R1

R6

I1

I2

I3

+ _
V3

+
_

Figure m2.3 Circuit for Problem m2.3.

m2.4 Wye-Delta Transformation: Find (a) the currents I1
and I2 in the circuit of Fig. m2.4 and (b) the power delivered
by each of the two voltage sources. Use these component
values: V1 = 15 V, V2 = 15 V, R1 = 3.3 k�, R2 = 1.5 k�,
R3 = 4.7 k�, R4 = 5.6 k�, R5 = 1.0 k�, and R6 = 2.2 k�.

R4

R3

R1

I1

V1 V2

R2 R5

R6

+_ +_

I2

Figure m2.4 Circuit for Problem m2.4.

m2.5 Kirchoff’s Laws and Equivalent Resistance: In the
circuit of Fig. m2.5:

(a) Find the voltage drop across the 46 k� resistor.

(b) What is the equivalent resistance seen by the 15 V source?

R6
R1V1 100 kΩ1 kΩ15 V

R2

R3

2.2 kΩ

46 kΩ

R5

3.3 kΩ

R4

33 kΩ

+
_

Figure m2.5 Circuit for Problem m2.5.

m2.6 Multiple Sources: To create multiple sources,use the
AO 0 and AO 1 ports simultaneously for the myDAQ portion of
this problem. Use the Arbitrary waveform generator to create
the 3 V and 5 V sources.

(a) Find currents I1 and I2 in the circuit of Fig. m2.6.
For the myDAQ portion, make sure to measure current
correctly or you could blow the myDAQ’s fuse.

(b) Find the voltage drop across the 47 k� resistor.

R3

I1

V1

10 kΩ

3 V
V2
5 V

R2

47 kΩ

R1

22 kΩ I2

R5

R4

1 kΩ

10 kΩ+
_

+
_

Figure m2.6 Circuit for Problem m2.6.

m2.7 Current Source: This problem is relatively straightfor-
ward to solve by hand and with Multisim. However, to create
the myDAQ version of the circuit in Fig. m2.7, you will need to
use an LM371 Regulator with a 100 � connected between Vout
and Vadj. For more information, consult Appendix F or look up
the specification of the LM371-LZ regulator.

(a) Determine the voltage drop across each 1 k� resistor.

(b) Determine the current through the 3.3 k� resistor.
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R3R1I1 1 kΩ1 kΩ12.5 mA

R2

3.3 kΩ

Figure m2.7 Circuit for Problem m2.7.

m2.8 Equivalent Resistance: Determine the equivalent
resistance of the circuit in Fig. m2.8 as seen at terminals (1, 2).

R6R3 10 kΩ46 kΩ R5

R1

1 kΩ

1

2

33 kΩ

R2

1 kΩ

R4

2.2 kΩ

Figure m2.8 Circuit for Problem m2.8.
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Objectives

Learn to:

� Apply the node-voltage and mesh-current meth-
ods to analyze an electric circuit of any
configuration, so long as it is linear and planar.

� Apply the by-inspection methods to circuits that
satisfy certain conditions.

� Use the source-superposition method to evaluate
the sensitivity of a circuit to the various sources
in the circuit.

Transistor equivalent circuit

+

_

IC

C

E

B IBRB

RC
VBB

VCC

VCEVBE βIB

The basic laws of Chapter 2 are used in the present chapter
to develop standard solution methods that can be applied to
analyze any linear circuit, no matter how complex.

� Determine the Thévenin and Norton equivalent
circuits of any input circuit and use them to
evaluate the response of an external load (or an
output circuit) to the input circuit.

� Establish the conditions for maximum transfer of
current, voltage, and power from an input circuit
to an external load.

� Learn the basic properties of the bipolar junction
transistor.

CHAPTER 3
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Overview

By applying the circuit-analysis skills we developed in the
preceding chapter, we now extend our capability further so we
may tackle any linear, planar circuit—no matter how complex.
Node-voltage and mesh-current equations will be cast into a
systematic structure in Sections 3-2 through 3-4, so we may take
advantage of standard methods for solving linear, simultaneous
equations, either by the use of determinants and matrices
(Appendix B) or the execution of computer simulation packages
such as MATLAB or MathScript (Appendix E). The nodal
and mesh analysis techniques are followed with treatments
of two special tools: the source superposition method and
the Thévenin/Norton equivalent-circuit method. These methods
allow us to break any complex electrical system into smaller,
manageable subcircuits for analysis. With these tools, you are
ready to analyze pretty much any circuit you may encounter
for the rest of your career. We will also introduce you to
semiconductor manufacturing and the relationships between
analog and digital signals.

3-1 Linear Circuits

A circuit is a system with inputs and outputs; its inputs are
the independent voltage and current sources that energize the
circuit, and its outputs are all of the currents flowing through
and voltages across all of the passive elements of the circuit.
By passive element, we mean that it does not generate energy
of its own. A resistor is a perfect example of a passive element.
By comparison, an active element requires an external power
supply in order to function. Examples of active elements include
transistors (such as the BJT described in Section 3-9) and
operational amplifiers (Chapter 4).

A linear circuit is a circuit composed entirely of independent
sources and linear elements. An element is linear if it is passive
and exhibits a linear i–υ relationship. For a resistor R, for
example,

υ = Ri. (3.1)

A circuit element, or an entire circuit, is nonlinear if its i–υ

relationship is not linear. The LED (Section 2-1.4) is an example
of a nonlinear device.

3-1.1 Homogeneity Property

If i through resistor R is increased by a factor K , so will υ. This
proportional increase of i and υ by the same factor is called the
homogeneity (or scaling) property of a linear element.

3-1.2 Superposition Principle

If current i1 can give rise to voltage υ1 = Ri1, and another
current i2 can give rise to voltage υ2 = Ri2, then the
simultaneous presence of both currents gives rise to

υ = R(i1 + i2) = Ri1 + Ri2 = υ1 + υ2. (3.2)

Thus, the output (υ) due to the two inputs (i1 and i2) is equal
to the sum of the two outputs (υ1 and υ2) had each input been
introduced separately. This is a statement of the superposition
principle (also known as the additivity property). We will use
this principle in Section 3-5 to simplify our analysis for circuits
containing multiple sources.

3-1.3 Linear and Nonlinear Elements

Linear elements

By virtue of its linear i–υ relationship, the resistor is an obvious
candidate for the list of linear circuit elements, which includes:

• Resistors

• Capacitors

• Inductors

• Linear dependent sources

The i–υ relationship for a capacitor, which we will learn more
about in Chapter 5, is given by

i = C
dυ

dt
. (3.3a)

If we multiply both sides by a factor K , we get

Ki = KC
dυ

dt
= C

d

dt
(Kυ). (3.3b)

Hence, increasing υ by a factor K leads to an increase in i

by the same factor, which implies that the d/dt differentiation
operator has no bearing on the homogeneity property linking i

to υ. The time derivative does not impact the additivity property
either.
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Vs Va = 5I1

I1R1 R3

R2

+
_ +_

Figure 3-1: Circuit with dependent source Va = 5I1.

� Since the capacitor is a passive element and obeys
both the homogeneity and additivity (superposition)
properties, it is classified as a linear circuit element.
A similar argument applies to the inductor, for which
υ = L di/dt . �

Next we consider dependent sources, which were first
introduced in Section 1-6.4. Dependent sources are artificial
sources (because they do not generate energy of their own) used
in equivalent linear circuits intended to model the approximate
behavior of nonlinear circuits and elements like transistors and
operational amplifiers. Let us consider the simple circuit shown
in Fig. 3-1, which includes an independent voltage source
Vs and a dependent voltage source Va . The magnitude of Va

depends on I1, which, in turn, depends on the real source Vs. If
Vs = 0, no currents would flow in the circuit, so I1 would be
zero, and so would Va .

� Hence, dependent source Va is a passive element, and
since it is also directly proportional to I1 (raised to first
order), Va is classified as a linear element. The same is
true for a dependent voltage source whose magnitude
is linearly related to a voltage elsewhere in the circuit
(instead of to a current), as well as for dependent current
sources that depend linearly on a voltage or current
elsewhere in the circuit. �

Nonlinear elements

The circuit analysis techniques developed in this book apply
primarily to linear circuits, and yet many devices—such as
diodes, transistors, and integrated circuits—exhibit nonlinear
i–υ relationships. Consequently:

(1) The analysis techniques do not directly apply to circuits
containing such nonlinear elements.

(2) However, it is often possible to replace nonlinear elements
with equivalent circuits containing linear elements, including
dependent sources, and then use them to obtain approximate,
but fairly accurate results, provided certain conditions are
satisfied. Examples of equivalent circuits will be presented in
Section 3-8 for the bipolar junction transistor (BJT) and in
Chapter 4 for the operational amplifier and the CMOS transistor.

3-1.4 Advantages of Linear Circuits

The linearity properties of a linear circuit allow us to use certain
analysis techniques that would be otherwise not applicable
had the circuit contained one or more nonlinear elements
(unless they can be adequately represented by equivalent
linear circuits). Through the application of such analysis
techniques, which include the Thévenin and superposition
methods presented later in Sections 3-5 and 3-6, we can simplify
the analysis (and design) of a complex circuit considerably.

3-2 Node-Voltage Method

3-2.1 General Procedure

According to Kirchhoff’s current law (KCL), the algebraic sum
of all currents entering any node in an electric circuit is equal to
zero. Built on that principle, the node-voltage analysis method
provides a systematic and efficient procedure for determining
all of the currents and voltages in a circuit. This determination is
realized through the solution of a system of linear, simultaneous
equations in which the unknown variables are the voltages at the
extraordinary nodes in the circuit. As a reminder, in Section 1-3
we defined an extraordinary node as a node connected to three
or more elements. For a circuit containing nex extraordinary
nodes, implementation of the node-voltage method consists of
three basic steps:

Solution Procedure: Node Voltage

Step 1: Identify all extraordinary nodes, select one of
them as a reference node (ground), and then assign node
voltages to the remaining (nex − 1) extraordinary nodes.

Step 2: At each of the (nex − 1) extraordinary nodes,
apply the form of KCL requiring the sum of all currents
leaving a node to be zero (see KCL template).

Step 3: Solve the (nex − 1) independent simultaneous
equations to determine the unknown node voltages (see
Appendix B).
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KCL Template

R1 I1 I3

I2

R3

R2

V1 V0

I0

V3

V2

V0 − V1

R1
+ V0 − V2

R2
+ V0 − V3

R3
− I0 = 0

Once the node voltages have been determined, all currents
through branches and voltages across elements can be
calculated readily.

Example 3-1: Circuit with Two Sources

For the circuit in Fig. 3-2, (a) identify all extraordinary nodes
and select one of them as the ground node, (b) develop
node-voltage equations at the remaining extraordinary nodes,
(c) solve for the node voltages, and then (d) calculate the
power consumed by R5. The element values are V0 = 10 V,
I0 = 0.8 A, R1 = 5 �, R2 = 2 �, R3 = 3 �, R4 = 10 �,
and R5 = 2.5 �.

Solution:

(a) Identify extraordinary nodes and assign node voltages

The circuit has three extraordinary nodes, labeled as shown in
Fig. 3-2(b). Node 3 is selected as the ground node and its voltage
is labeled V3 = 0. Nodes 1 and 2 are assigned (unknown)
voltages V1 and V2, with both defined relative to V3 = 0.

(b) Apply KCL at nodes 1 and 2

At each non-ground extraordinary node, we designate currents
and we choose their directions as leaving the node. We realize
that I3 = −I4, for example, but for the sake of consistency we
treat each node the same by designating a current leaving it
through every branch connected to it.

I0V0

R2 R3 R4

R1
+
_ R5

I0V0

R2 + R3 R4

R1
+
_ R5

υ = 0

υ = V0

υ = 0
V3 = 0

V1 V2
I2 I3

I1 I5

I6I4

(a) Original circuit

(b) Circuit with designated node voltages

Figure 3-2: Circuit for Example 3-1.

Node 1:

I1 + I2 + I3 = 0. (3.4)

Unless we already know the value of a current (such as I0
entering node V2), we should express it in terms of the node
voltages connected to the branch through which it is flowing.
We do so by applying Ohm’s law, while reminding ourselves
that the convention we adopted for the current direction is that
it flows through a resistor from the (+) voltage terminal to the
(−) terminal. Hence:

� The current leaving a node is equal to the voltage at that
node, minus the voltage at the node to which the current
is going, and divided by the resistance.

+ _R
υbυa

i = υa − υb

R �
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Consequently, I1 flowing through R1 is given by

I1 = V1 − 0

R1
= V1

R1
. (3.5a)

Similarly,

I3 = V1 − V2

R4
. (3.5b)

The voltage across the in-series resistances (R2 + R3) is
(V1 −V0), where V0 is the node voltage at the positive terminal
of the voltage source. Hence, I2 is given by

I2 = V1 − V0

R2 + R3
. (3.5c)

Inserting Eqs. (3.5a) through (3.5c) into Eq. (3.4) gives

V1

R1
+ V1 − V0

R2 + R3
+ V1 − V2

R4
= 0 (node 1 Voltage Eq.).

(3.6)

Node 2:

I4 + I5 + I6 = 0,

or equivalently,

V2 − V1

R4
+ V2

R5
− I0 = 0 (node 2 Voltage Eq.), (3.7)

where we incorporated the fact that I6 = −I0, as required by
the current source.

We note that by designating all current directions at a node
as leaving that node:

�The node-voltage expression for any node (such as node
1 or node 2) always has V of that node preceded with a
plus (+) sign. Also, the node voltages of the other nodes
are preceded with negative (−) signs. �

Thus, V1 in Eq. (3.6)—which is specific to node 1—has a
positive sign wherever it appears in that equation, whereas
V2 and V3 always have negative signs if they appear in that
equation. Conversely, in the node-2 equation given by Eq. (3.7),
V2 is always preceded by a (+) sign and V1 is preceded by a
(−) sign.

(c) Solve simultaneous equations

As a prelude to solving Eqs. (3.6) and (3.7) to determine the
unknown voltages V1 to V3, we need to reorganize them into a
standard system of equations as

(
1

R1
+ 1

R2 + R3
+ 1

R4

)
V1 −

(
1

R4

)
V2 = V0

R2 + R3
,

(3.8a)

and

−
(

1

R4

)
V1 +

(
1

R4
+ 1

R5

)
V2 = I0. (3.8b)

These are equivalent to

a11V1 + a12V2 = b1, (3.9a)

and

a21V1 + a22V2 = b2, (3.9b)

with

a11 =
(

1

R1
+ 1

R2 + R3
+ 1

R4

)
= 1

5
+ 1

2 + 3
+ 1

10
= 0.5,

a12 = − 1

R4
= − 1

10
= −0.1,

a21 = − 1

R4
= −0.1,

a22 =
(

1

R4
+ 1

R5

)
= 1

10
+ 1

2.5
= 0.5,

b1 = V0

R2 + R3
= 10

2 + 3
= 2,

and

b2 = I0 = 0.8.

Inserting these values in Eq. (3.9) gives

0.5V1 − 0.1V2 = 2,

−0.1V1 + 0.5V2 = 0.8.

The system of two equations is now amenable for solution by
Cramer’s rule or matrix inversion (as illustrated in Appendix B)
either manually or by using MATLAB or MathScript software
(Appendix E). The solution leads to

V1 = 4.5 V, V2 = 2.5 V.
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(d) Determine power in R5

The current flowing through R5 in Fig. 3-2(b) is

I5 = V2

R5
= 2.5

2.5
= 1 A,

and the power dissipated in R5 is

P = I 2
5 R5 = (1)2 × 2.5 = 2.5 W.

Concept Question 3-1: The node-voltage method relies
on the application of Kirchhoff’s current law. Explain. 
(See         )

Concept Question 3-2: Why does a circuit with nex 
extraordinary nodes require only (nex − 1) node-voltage 
equations to analyze it? (See         )

Exercise 3-1: Apply nodal analysis to determine the
current I in the circuit of Fig. E3.1.

4 Ω

10 Ω

1 Ω

6 Ω

24 V

I

+
_

Figure E3.1

Answer: I = 2 A. (See     )

3-2.2 Circuits Containing Dependent Sources

When a circuit contains dependent sources, the node-voltage
analysis method remains applicable, as does the solution
procedure outlined in the preceding subsection. However,
each dependent source defines a relationship between its own
magnitude and some current or voltage elsewhere in the circuit,
and that relationship needs to be incorporated into the solution.

Example 3-2: Dependent Current Source

The circuit of Fig. 3-3 contains a current-controlled current
source (CCCS) whose magnitude Ix is governed by the current

(a) Original circuit

3 Ω 12 Ω

6 Ω4 Ω

Ix = 2I

Ix = 2I

5.3 V

I

(b) Circuit with designated node voltages

V15.3 V I1 I3 I4 I6

I2 I5

V2

I

3 Ω 12 Ω

6 Ω4 Ω

5.3 V

+
_

+
_

Figure 3-3: Example 3-2.

flowing through the 6 � resistor in the direction shown.
Determine Ix .

Solution: Following the standard procedure outlined earlier,
we start by selecting a ground node and assigning node voltages
to the other extraordinary nodes in the circuit, as shown in
Fig. 3-3(b). We also designate currents with their directions
out of the nodes for all branches connected to nodes 1 and 2.

Next, we write down the node-voltage equations for nodes 1
and 2 as

V1 − 5.3

4
+ V1

3
+ V1 − V2

6
= 0 (node 1),

and
V2 − V1

6
+ V2

12
− Ix = 0 (node 2).

In the equation for node 1, the three terms represent I1 to I3,
each expressed as a voltage difference divided by a resistance.
The same is true for node 2 except that I6 is replaced with (−Ix).

We have three unknowns (V1, V2, and Ix), but only two
equations, so we need to express Ix in terms of the unknown
variables, V1 and V2. The dependent source Ix is given in terms
of I , which in turn is dependent on the voltage difference
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R6R5R3

R1

R7

R2 R4V2V1
V3 V4

V5

16 V20 V

10 V
Supernode AQuasi-

supernode Supernode B

+
_

+
_

+_

Figure 3-4: Circuit containing two supernodes and one quasi-supernode.

between V1 and V2. That is,

Ix = 2I = 2
(V1 − V2)

6
= V1 − V2

3
.

This is effectively Ohm’s law for Ix . Upon substituting this
expression for Ix into the second of the node-voltage equations
and rearranging its terms, we end up with

9V1 − 2V2 = 15.9 (node 1)

and

−6V1 + 7V2 = 0 (node 2).

Simultaneous solution of the two equations gives V1 = 2.18 V
and V2 = 1.87 V. Hence,

Ix = V1 − V2

3
= 2.18 − 1.87

3
= 0.1 A.

Exercise 3-2:Apply nodal analysis to find Va in the circuit
of Fig. E3.2.

9 V

10 Ω
40 Ω

20 Ω

Va

Va

+ _

2
+_

+
_
+
_

+_

Figure E3.2

Answer: Va = 5 V. (See  )

3-2.3 Supernodes

Occasionally, a circuit may contain a solitary voltage source
nestled between two extraordinary nodes, with no other
elements in series with it between those nodes. Such an
arrangement is called a supernode. Examples of supernodes
are shown in Fig. 3-4. Formally:

� A supernode is the combination of two extraordinary
nodes (excluding the reference node) between which 
a voltage source exists. The voltage source may be of 
the independent or dependent type, and the voltage 
source may include elements in parallel with it (such 
as R6 in parallel with the 16-V source of supernode B 
in Fig. 3-4) but not in series with it. If one of the 
two nodes of a supernode is a reference (ground) 
node, it is called a  quasi-supernode. �

For a quasi-supernode, the only relevant information we need is
that the voltage of the non-reference node is equal to the voltage
magnitude of the voltage source. Thus, V1 = 20 V in Fig. 3-4.

The complication caused by a supernode is that we can
no longer apply Ohm’s law to define the current through a
resistor between two extraordinary nodes, because we now have
a voltage source between the two nodes instead of a resistor.
Hence, we need to treat the supernode in a special way.

To explain the properties of a supernode and how we use
it, let us analyze supernode A, all on its own. In Fig. 3-5(a),
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+−

R5R3

V2I1 I3 I4 I6

I2 I5

V3
10 V

(a)
Supernode A

(b)

R5R3

V2I1 I6

I2 I5

V3

I1 + I2 + I5 + I6 = 0   (KCL)

+_

V2 V3+_

V3 − V2 = 10 V  (KVL)

Figure 3-5: A supernode composed of nodes V2 and V3 can
be represented as a single node, in terms of summing currents
flowing out of them, plus an auxiliary equation that defines the
voltage difference between V3 and V2.

we show currents I1 to I3 leaving node 2 and currents I4 to I6
leaving node 3. KCL requires that

I1 + I2 + I3 = 0 (node V2), (3.10a)

and

I4 + I5 + I6 = 0 (node V3). (3.10b)

Adding the two equations together and recognizing that
I3 = −I4 leads to

I1 + I2 + I5 + I6 = 0 (supernode A), (3.11)

which constitutes the four currents leaving supernode A. The
implication of Eq. (3.11) is that we can treat nodes 2 and 3 as a
combined single node, connected by a dashed line (Fig. 3-5(b)),
but we also should acknowledge the fact that

V3 − V2 = 10 V (supernode A auxiliary equation),

V2V1I1

I2 I3

I4

2 A4 V

18 V

+−

8 Ω4 Ω

2 Ω

Supernode

+
_

+_

4 V

Figure 3-6: Circuit for Example 3-3.

which is a much simpler equation than the typical node-voltage
equation.

Supernode Attributes

(1) At a supernode, Kirchhoff’s current law (KCL) can
be applied to the combination of the two nodes as if
they are a single node, but the two nodes retain their
own identities.

(2) Kirchhoff’s voltage law (KVL) is used to express the
voltage difference between the two nodes in terms
of the voltage of the source between them. This
provides the supernode auxiliary equation.

(3) If a supernode contains a resistor in parallel with the
voltage source, the resistor exercises no influence
on the currents and voltages in the other parts of the
circuit, and therefore, it may be ignored altogether.

(4) For a quasi-supernode, the node-voltage of the non-
reference node is equal to the voltage magnitude of
the source.

In the circuit of Fig. 3-4, the voltage difference between nodes
4 and 5 is specified by the 16 V source, regardless of the value
of R6 (so long as R6 is not a short circuit).

Example 3-3: Circuit with a Supernode

Use the supernode concept to solve for the node voltages in
Fig. 3-6.

Solution: The combination of nodes 1 and 2 constitutes a
supernode, with an associated node-voltage equation given by

I1 + I2 + I3 + I4 = 0
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or, equivalently,

V1 − 4

2
+ V1

4
+ V2

8
− 2 = 0,

which may be simplified to

6V1 + V2 = 32.

Additionally, the supernode KVL equation is

V2 − V1 = 18.

Simultaneous solution of the two equations yields

V1 = 2 V, V2 = 20 V.

Concept Question 3-3: What impact does the presence 
of a dependent source have on the implementation of the 
node-voltage method? (See         )

Concept Question 3-4: What is a supernode? How is it
treated in nodal analysis? (See         )

Exercise 3-3: Apply the supernode concept to determine
I in the circuit of Fig. E3.3.

Figure E3.3

I

2 Ω

10 Ω
4 Ω

4 Ω

2 A 20 V

12 V

+
_

+_

Answer: I = 0.5 A. (See      )

3-3 Mesh-Current Method

3-3.1 General Procedure

A mesh was defined in Section 1-3 as a loop that encloses no
other loop. The current associated with a mesh is called its
mesh current. The circuit in Fig. 3-7 contains two meshes with

R2

R3

R1

V0 I1 I2

Ib

IcIa

+
_

Figure 3-7: Circuit containing two meshes with mesh currents
I1 and I2.

mesh currents I1 and I2. A mesh current may be thought of
as the current flowing through the branches of that mesh, with
no regard for the currents in neighboring meshes. That does
not mean, however, that the mesh current is the same as the
actual currents flowing through the elements of that mesh. For
an element that belongs to only one mesh, such as R1 in Fig. 3-7,
the current through it is indeed identical to the current in mesh 1.
That is,

Ia = I1.

On the other hand, if an element is shared by two meshes, as
is the case for R3, the true branch current through it is the
combination of the two branch currents:

Ib = I1 − I2.

Current I1 is assigned a positive sign because its direction
through R3 is the same as that of Ib, but I2 is assigned a
negative sign because it flows “upward” through R3. The mesh-
current analysis method is based on the application of KVL to
all of the meshes in the circuit. The solution procedure, which
is analogous with that discussed earlier in Section 3-2 for the
node-voltage method, consists of the following steps:

Solution Procedure: Mesh Current

Step 1: Identify all meshes and assign each of them an
unknown mesh current. For convenience, define all mesh
currents to be clockwise in direction.

Step 2: Apply Kirchhoff’s voltage law (KVL) to each
mesh.

Step 3: Solve the resultant simultaneous equations to
determine the mesh currents (see Appendix B).
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For the circuit in Fig. 3-7, application of KVL to mesh 1, starting
at the bottom left-hand corner and moving clockwise around the
loop, gives

−V0 + I1R1 + (I1 − I2)R3 = 0 (mesh 1), (3.12)

where for each term we assigned a (+) or (−) sign to it
depending on which of its voltage terminals is encountered first.
Also, for a resistor, current flows into the (+) terminal of the
voltage across it. For mesh 2,

(I2 − I1)R3 + I2R2 = 0 (mesh 2). (3.13)

The two simultaneous equations can be rearranged by collecting
coefficients of I1 and I2 as

(R1 + R3) I1  −        I2 R3     =    V0      (mesh 1),
Sum of resistances

in mesh 1
Voltage source

in mesh 1
+ sign − sign

Resistance shared
by meshes 1 and 2

(3.14a)
and

−           R3 I1       +      (R2 + R3) I2 = 0       (mesh 2).
Sum of resistances

in mesh 2
+ sign− sign

Resistance shared
by meshes 1 and 2

(3.14b)
Note the built-in symmetry reflected by the structure of
Eqs. (3.14a and b). For mesh 1, the coefficient of I1 in
Eq. (3.14a) is the sum of all of the resistors contained in
mesh 1, and the coefficient of I2 contains the resistor that mesh 1
shares with mesh 2. Furthermore, the coefficients of I1 and I2
have opposite signs. The same pattern applies for mesh 2 in
Eq. (3.14b); the coefficient of I2 contains all of the resistors of
mesh 2, and the coefficient of I1 contains the resistor shared by
the two meshes. The magnitude of the voltage source in mesh 1
(namely, V0) appears on the right-hand side of Eq. (3.14a), with
its polarity defined as positive if I1 flows through it from its
negative to positive terminals. This structural pattern allows us
to write the mesh-current equations directly, as discussed in
more detail later in Section 3-4.

Example 3-4: Circuit with Three Meshes

Use mesh analysis to (a) obtain mesh-current equations for
the circuit in Fig. 3-8 and then (b) determine the current
in R4, given that V0 = 18 V, R1 = 6 �, R2 = R3 = 2 �, and
R4 = R5 = R6 = 4 �.

R2

R5

R1

V0 I1

I4 R4

I2

I3

R3

R6

+
_

Figure 3-8: Circuit for Example 3-4.

Solution: (a) Applying the symmetry pattern inherent in the
structure of the mesh-current equations, we have

(R1 + R2 + R5)I1 − R2I2 − R5I3 = V0 (mesh 1),
(3.15a)

−R2I1 + (R2 + R3 + R4)I2 − R4I3 = 0 (mesh 2),
(3.15b)

and

−R5I1 − R4I2 + (R4 + R5 + R6)I3 = 0 (mesh 3).
(3.15c)

We note that in Eq. (3.15a) the coefficient of I1 is positive
and is composed of the sum of all resistors in mesh 1 and
the coefficients of I2 and I3 are negative and include the
resistors that meshes 2 and 3 share with mesh 1, respectively.
An equivalent pattern pertains to Eqs. (3.15b and c).

If the mesh contains a voltage source, its magnitude appears
on the right-hand side of the mesh equation and it is assigned
a positive sign if it is a voltage rise when moving clockwise
around the mesh. It is assigned a negative sign if it is a voltage
drop. In the case of mesh 1 in the circuit of Fig. 3-8, V0 is a
voltage rise, so it appears on the right-hand side of Eq. (3.15a)
with a positive sign.

(b) For the specified values of V0 and the six resistors, the
three parts of Eq. (3.15) become

12I1 − 2I2 − 4I3 = 18,

−2I1 + 8I2 − 4I3 = 0,

−4I1 − 4I2 + 12I3 = 0,

and solution of the simultaneous equations leads to

I1 = 2 A, I2 = 1 A, I3 = 1 A.
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The current through R4 is

I4 = I3 − I2 = 1 − 1 = 0.

Given that the circuit is a Wheatstone bridge (Section 2-5)
operated under the balanced condition (R2R6 = R3R5), the
result I4 = 0 is exactly what we should have expected.

Exercise 3-4: Apply mesh analysis to determine I in the
circuit of Fig. E3.4.

12 V 3 A4 Ω

4 Ω

I = ?
+
_

Figure E3.4

Answer: I = 0. (See      )

3-3.2 Circuit with Dependent Sources

The presence of a dependent source in a circuit does not alter the
basic procedure of the mesh-current method, but it requires the
addition of a supplemental equation expressing the relationship
between the dependent source and the other parts of the circuit.

Example 3-5: Dependent Current Source

Use mesh-current analysis to determine the magnitude of the
dependent source Ix in Fig. 3-9.

Solution: For the meshes with mesh currents I1 and I2,

(1 + 2)I1 − 2I2 − I3 = 10 (mesh 1), (3.16a)

and

−2I1 + (2 + 1 + 3)I2 − I3 = 0 (mesh 2). (3.16b)

For mesh 3, we do not need to write a mesh-current equation,
because I3 is specified by the current source as

I3 = Ix = 4V1.

The voltage V1 across the 2 � resistor is given by

V1 = 2(I1 − I2).

V1

I3

Ix = 4V1

I1 I2 3 Ω2 Ω

1 Ω

10 V

1 Ω

+
_

+
_

Figure 3-9: Mesh-current solution for a circuit containing a
dependent source (Example 3-5).

Hence,

I3 = 4V1 = 8(I1 − I2). (3.17)

After inserting Eq. (3.17) into Eqs. (3.16a and b) and collecting
terms in I1 and I2, we end up with

−5I1 + 6I2 = 10,

−10I1 + 14I2 = 0.

Solution of this pair of simultaneous equations gives

I1 = −14 A, I2 = −10 A.

Hence,

Ix = 8(I1 − I2) = 8(−14 + 10) = −32 A.

Exercise 3-5: Determine the current I in the circuit of
Fig. E3.5.

60 V 20 Ω

4 Ω 6 Ω

I1

I

2

I1
+
_
+
_

Figure E3.5

Answer: I = 1.5 A. (See      )
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Technology Brief 6
Measurement of Electrical
Properties of Sea Ice

Climate change is often first measured by the decrease
of our polar ice caps. This sea ice is a unique and vibrant
type of ice; the fresh water freezes first, leaving pockets of
more and more briny (salty) water, that eventually freezes
only when the temperature gets below its eutectic point
around −21 ◦C. A combination of gravity and freeze-thaw
cycles elongates these tiny brine pockets (initially sub-mm
in size), and many of them start linking together to form
fluidic channels (which eventually expand to become a
full centimeter or more in diameter), from the top of the
ice all the way through one or two meters of ice to the
sea below the ice pack (Fig. TF6-1). In this columnar
type of sea ice, which is prevalent in the Arctic, there
is a critical brine volume fraction of about 5%, called
the percolation threshold, above which there are large-
scale connected channels or pathways through which
fluid can flow, and below which the sea ice is effectively
impermeable. For a typical bulk sea-ice salinity of 5 parts
per thousand, this brine volume fraction corresponds to a
critical temperature of about −5 ◦C. This on-off switch for
fluid flow is known as the rule of fives.The brine channels
can moderate the formation of melt ponds (Fig.TF6-2) by

Figure TF6-1: X-ray CT images (approximately 1 cm across) of the brine microstructure of sea ice. The brine volume fraction is 5.7%,
and the temperature is −8 ◦C. Channels are beginning to form but are not fully connected yet. (From Golden et al., Geophys. Res. Letters,
2007.)

quickly draining them and returning the ice to its more
reflective white coloring.

This brine percolation threshold has been quantified
through measurements of the electrical resistivity of
the ice, as well as X-ray computed tomography and
measurements of the fluid permeability. Salty brine
pockets are very conductive, and the surrounding ice is a
near insulator. As the brine pockets join into channels, the
overall conductivity of the ice increases substantially by
providing a conducting path for current in pretty much the
same way it provides a path for the water to percolate
(drain) through. Conductivity, then, is highly correlated
with the percolation threshold and can be used to help
us study melt-pond formation.

The electrical properties of the ice are measured by
drilling out a 9 cm cylindrical core of ice, measuring
its resistance using a model very similar to that seen
in Fig. 2-1. Stainless steel nails are driven into the ice
core (drilling holes for them first, to avoid cracking the
core) to make the electrical connection to the ice. But
this method has a problem. It is very hard to get a
consistent electrical connection between the nail and
the ice. This contact resistance is very much a part of
the circuit, and it varies with each connection. A circuit
model of this resistance measurement is shown below.
The total resistance is the series combination of the two
(variable) contact resistances and the resistance of the
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Figure TF6-2: As ice melts, the liquid water collects in
depressions on the surface and deepens them, forming these
melt ponds in the Arctic. These fresh water ponds are separated
from the salty sea below and around it, until breaks in the ice
merge the two.

ice. Without being able to better control the contact
resistance, Rsea ice cannot be accurately measured.

To solve this problem, rather than doing a simple
2-wire resistance measurement as shown in Fig. TF6-3,
a 4-wire measurement system can be used as shown
in Fig. TF6-4. This system employs both an ammeter
and a voltmeter (which are combined into the single
yellow AEMC resistance meter shown in Fig.TF6-5).Two
wires are used to connect the ammeter in series with the
resistances, and two are used to connect the voltmeter
in parallel with Rsea ice (hence, 4 wires). We do not need
to know the driving voltage or the contact resistances in
order to accurately measure Rsea ice with this method.

Rsea ice

Rcontact

Rcontact

Ohmmeter

Ohmmeter indicates Rcontact + Rsea ice + Rcontact

FigureTF6-3: Simple 2-wire resistance measurement circuit.

Rsea ice

Rcontact

Rcontact

Ammeter

Voltmeter

Rsubject =
Voltmeter indication
Ammeter indication

Figure TF6-4: 4-wire measurement circuit.

FigureTF6-5: University of Utah mathematics Ph.D. student
Christian Sampson measures the electrical conductivity of a sea-
ice core during the Sea Ice Physics and Ecosystem eXperiment
in 2012. Electrical clamps are attached to nails inserted along
the length of the ice core. ( c© Wendy Pyper/Australian Antarctic
Division.)
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3-3.3 Supermeshes

� Two adjoining meshes that share a current source
constitute a supermesh. The current source may be of
the independent or dependent type, and it may include a
resistor in series with it, but not in parallel. �

The presence of a supermesh in a circuit, such as the one shown
in Fig. 3-10(a), simplifies the solution by (a) combining the
two mesh-current equations into one and (b) adding a simpler,
auxiliary equation that relates the current of the source to the
mesh currents of the two meshes.

In Fig. 3-10(b), the current source of the supermesh has been
removed (as has the series resistor R4) and replaced with a
dashed line. The dashed line is a reminder to relate I0 to the

R2

R5

R1

V0 I1

I2

I3

R3

R6

Supermesh

R2

R5

R1

V0 I1
R4

I2

I3

R3

R6

I0

Supermesh

(a) Two adjoining meshes sharing a current source
constitute a supermesh.

(b) Meshes 2 and 3 can be combined into a
single supermesh equation, plus an auxiliary
equation I0 = I2 − I3.

+
_

+
_

Figure 3-10: Concept of a supermesh.

mesh currents, namely

I0 = I2 − I3 (auxiliary eq.). (3.18)

The mesh-current equations for mesh 1 and the joint
combination of meshes 2 and 3 are

(R1 + R2 + R5)I1 − R2I2 − R5I3 = V0

(mesh 1), (3.19)

and

−(R2 + R5)I1 + (R2 + R3)I2 + (R5 + R6)I3 = 0

(supermesh). (3.20)

The two mesh-current equations, together with the auxiliary
equation given by Eq. (3.18), are sufficient to solve for the
three mesh currents.

It is instructive to note that the series resistor R4 played no
role in the solution. This is because the current through it is
specified by I0, regardless of the magnitude of R4 (so long as it
is not an open circuit).

Example 3-6: Circuit with a Supermesh

For the circuit in Fig. 3-11(a), determine (a) the mesh currents
and (b) the power supplied by each of the two sources.

Solution: (a) Meshes 3 and 4 share a current source, thereby
forming a supermesh. Figure 3-11(b) shows the circuit redrawn
such that meshes 3 and 4 can be combined into a single
supermesh equation. Consequently, the mesh-current equations
for mesh 1, mesh 2, and supermesh 3 and 4 respectively, are

(10 + 2 + 4)I1 − 2I2 − 4I3 = 6 (mesh 1), (3.21a)

−2I1 + (2 + 2 + 2)I2 − 2I4 = 0 (mesh 2), (3.21b)

and

−4I1 − 2I2 + 4I3 + (2 + 4)I4 = 0 (supermesh).
(3.21c)

The auxiliary equation associated with the current source is
given by

I4 − I3 = 3 (auxiliary equation). (3.22)

Inserting Eq. (3.22) to eliminate I4 in Eqs. (3.21b and c) leads
to

16I1 − 2I2 − 4I3 = 6,

−2I1 + 6I2 − 2I3 = 6,

−4I1 − 2I2 + 10I3 = −18.
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6 V

3 A 4 Ω

2 Ω

2 Ω 2 Ω

4 Ω

I4I3

Supermesh

10 Ω

(b) Meshes 3 and 4 constitute a supermesh

6 V

3 A 4 Ω

2 Ω

2 Ω 2 Ω

4 Ω

I4

I1

I3

V1

V1

I2

I1

I2

10 Ω

(a) Original circuit

+

_

+

_

+
_

+
_

Figure 3-11: Using the supermesh concept to simplify solution
of the circuit in Example 3-6.

Solution of the three simultaneous equations gives

I1 = 0, I2 = 3

7
A,

I3 = −12

7
A, I4 = 9

7
A.

(b) Since I1 = 0, the power supplied by the 6 V source is

P1 = 6I1 = 0.

To calculate the power supplied by the 3 A current source, we
need to know the voltage V1 across it, which is also the voltage
across the 4 � resistor given as

V1 = 4(I1 − I3) = 4

(
0 −

(
−12

7

))
= 48

7
V.

Hence,

P2 = 3V1 = 3 × 48

7
= 20.6 W.

Thus, all of the power is supplied by the 3 A source alone
and is dissipated in the circuit resistances, except for the 10 �

resistance (because the current through it is I1 = 0).

Concept Question 3-5: How does the presence of 
a dependent source in the circuit influence the 
implementation procedure of the mesh-current method?
(See         )

Concept Question 3-6: What is a supermesh, and how is
it used in mesh analysis? (See         )

Exercise 3-6: Apply mesh analysis to determine I in the
circuit of Fig. E3.6.

I

2 Ω 5 Ω

3 Ω

4 A 3 A

Figure E3.6

Answer: I = −0.7 A. (See          )

3-4 By-Inspection Methods

The node-voltage and mesh-current methods can be used
to analyze any planar circuit, including those containing
dependent sources. The solution process relies on the
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application of KCL and KVL to generate the requisite number
of equations necessary to solve for the unknown currents and
voltages.

� For circuits that contain only independent sources,
their KCL and KVL equations exhibit standard patterns,
allowing us to write them down by direct inspection of
the circuit. The method of nodal analysis by inspection
is easy to implement, but it requires that all sources
in the circuit be independent current sources. Similarly,
mesh analysis by inspection requires that all sources be
independent voltage sources. �

If a circuit contains a mixture of independent current and
voltage sources, implementation of the by-inspection methods
will require a prerequisite step in which current sources are
converted to voltage sources, or vice versa, so as to secure the
requirement that all sources exclusively are current sources or
voltage sources. The conversion process can be realized with the
help of the source-transformation technique of Section 2-3.4.

3-4.1 Nodal Analysis by Inspection

Even though it is common practice to characterize the i–υ

relationship of a resistor in terms of its resistance R, it is more
convenient in some cases to work in terms of its conductance
G = 1/R and to apply the form of Ohm’s law given by

I = V

R
= GV.

The node-voltage by-inspection method is one such case.
We shortly will demonstrate the method for the general case

of a circuit composed of n (nonreference) extraordinary nodes.
As noted earlier, applicability of the method is limited to circuits
with independent current sources. By way of introducing the
method, let us consider the simple circuit of Fig. 3-12(a), whose
resistances have been relabeled in terms of conductances in
Fig. 3-12(b). In a circuit diagram, the value next to the symbol
of a resistor may be designated in ohms (�) or siemens (S), with
the former referring to the value of its resistance R and the latter
referring to the value of its conductance G. Both designations
convey the same information about the resistor.

The circuit has two extraordinary nodes. According to the
node-voltage by-inspection method, the circuit is characterized
by two node-voltage equations given by

G11V1 + G12V2 = It1 , (3.23a)

Ia

Ib

V1

G1 G3

G2

V2

Ia

Ib

V1
V2

R2

R1 R3

(a) Original circuit

(b) Circuit in terms of conductances

Figure 3-12: Application of the nodal-analysis by-inspection
method is facilitated by replacing resistors with conductances.

and

G21V1 + G22V2 = It2 , (3.23b)

where

G11 and G22 = sum of all conductances connected to nodes
1 and 2, respectively

G12 = G21 = negative of the sum of all conductances
connected between nodes 1 and 2

It1 and It2 = total of all independent current sources entering
nodes 1 and 2, respectively (a negative sign applies to a
current source leaving a node).
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Application of these definitions to Fig. 3-12(b) gives

G11 = G1 + G2,

G22 = G2 + G3,

G12 = G21 = −G2,

It1 = −Ia,

and

It2 = Ia + Ib.

Hence,

(G1 + G2)V1 − G2V2 = −Ia (3.24a)

and

−G2V1 + (G2 + G3)V2 = Ia + Ib. (3.24b)

It is a straightforward task to ascertain that Eqs. (3.24a and b)
are indeed the correct node-voltage equations for the circuit in
Fig. 3-12(b).

Generalizing to the n-node case, the node-voltage
equations can be cast in matrix form as

⎡
⎢⎢⎢⎣

G11 G12 · · · G1n

G21 G22 · · · G2n

...

Gn1 Gn2 · · · Gnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

V1
V2
...

Vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

It1
It2
...

Itn

⎤
⎥⎥⎥⎦ , (3.25)

and abbreviated as

GV = It, (3.26)

where G is the conductance matrix of the circuit, V is an
unknown voltage vector representing the node voltages,
and It is the source vector. The elements of these matrices
are defined as

Gkk = sum of all conductances connected to node k

Gk� = G�k = negative of conductance(s) connecting
nodes k and �, with k �= � (Gk� = 0 if no
conductance connects nodes k and � directly)

Vk = voltage at node k

Itk = total of current sources entering node k (a negative
sign applies to a current source leaving the node).

Solution of Eq. (3.26) for the elements of vector V can
be obtained through matrix inversion (Appendix B) or the
application of MATLAB or MathScript (Appendix E).

V3 V4

V2V1

20 Ω
10 Ω 10 Ω

5 Ω

1 Ω 2 Ω 3 A2 A

4 A

(0.1 S)

(0.5 S)

(0.2 S)

(0.05 S)
(0.1 S)

(1 S)

Figure 3-13: Circuit for Example 3-7.

Example 3-7: Four-Node Circuit

Obtain the node-voltage matrix equation for the circuit in
Fig. 3-13 by inspection.

Solution: At node 1,

G11 = 1

1
+ 1

5
+ 1

10
= 1.3 S.

Similarly, at nodes 2, 3, and 4,

G22 = 1

5
+ 1

2
+ 1

10
= 0.8 S,

G33 = 1

10
+ 1

20
= 0.15 S,

and

G44 = 1

10
+ 1

20
= 0.15 S.
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The off-diagonal elements of the matrix are

G12 = G21 = −1

5
= −0.2 S,

G13 = G31 = − 1

10
= −0.1 S,

G14 = G41 = 0,

G23 = G32 = 0,

G24 = G42 = − 1

10
= −0.1 S,

and

G34 = G43 = − 1

20
= −0.05 S.

The total currents entering nodes 1 to 4 are

It1 = 2 A,

It2 = 3 A,

It3 = 4 A,

and

It4 = −4 A.

Hence, the node-voltage matrix equation is given by

⎡
⎢⎢⎣

1.3 −0.2 −0.1 0
−0.2 0.8 0 −0.1
−0.1 0 0.15 −0.05

0 −0.1 −0.05 0.15

⎤
⎥⎥⎦
⎡
⎢⎢⎣

V1
V2
V3
V4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
3
4

−4

⎤
⎥⎥⎦ ,

Solution by matrix inversion or MATLAB or MathScript
software gives

V1 = 3.73 V,

V2 = 2.54 V,

V3 = 23.43 V,

V4 = −17.16 V.

Exercise 3-7: Apply the node-analysis by-inspection
method to generate the node-voltage matrix for the circuit
in Fig. E3.7.

2 Ω 5 Ω

3 Ω

4 A 3 A

V1 V2

Figure E3.7

Answer: [
5
6 − 1

3

− 1
3

8
15

][
V1
V2

]
=
[

4
−3

]
.

(See )

3-4.2 Mesh Analysis by Inspection

By analogy with the node-voltage by-inspection method,
for a circuit containing only independent voltage sources,
its n mesh-current equations can be cast in matrix form
as

RI = Vt, (3.27)

where R is the resistance matrix of the circuit, I is a
vector representing the unknown mesh currents, and V is
the source vector. Equation (3.27) is an abbreviation for

⎡
⎢⎢⎢⎣

R11 R12 · · · R1n

R21 R22 · · · R2n

...

Rn1 Rn2 · · · Rnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

I1
I2
...

In

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Vt1
Vt2
...

Vtn

⎤
⎥⎥⎥⎦ , (3.28)

where

Rkk = sum of all resistances in mesh k,
Rk� = R�k = negative of the sum of all resistances shared

between meshes k and � (with k �= �) (Rk� = 0 if
meshes k and � do not share a resistor).

Ik = current of mesh k

Vtk = total of all independent voltage sources in mesh k,
with positive assigned to a voltage rise when
moving around the mesh in a clockwise direction.
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6 V

7 Ω

5 Ω

3 Ω 4 Ω

6 Ω

I3

I1

I2

2 Ω

4 V

+
_

+
_

Figure 3-14: Three-mesh circuit of Example 3-8.

Example 3-8: Three-Mesh Circuit

Obtain the mesh-current matrix equation for the circuit in
Fig. 3-14, by inspection.

Solution: Application of the definitions for the elements of
the matrix R and vector Vt leads to⎡

⎣ (2 + 3 + 6) −3 −6
−3 (3 + 4 + 5) −5
−6 −5 (5 + 6 + 7)

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦

=
⎡
⎣6 − 4

0
4

⎤
⎦ ,

which simplifies to⎡
⎣ 11 −3 −6

−3 12 −5
−6 −5 18

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣2

0
4

⎤
⎦ .

Solution of the matrix equation gives I1 = 0.55A, I2 = 0.35 A,
and I3 = 0.50 A.

Concept Question 3-7: Are the by-inspection methods 
applicable to (a) circuits containing a mixture of 
independent voltage and current sources or (b) circuits 
containing a mixture of independent and dependent 
voltage sources? (See         )

Concept Question 3-8: If the circuit contains a mixture
of real voltage and current sources, what step should be
taken to prepare the circuit for application of one of the 
two by-inspection methods? (See         )

Exercise 3-8: Use the by-inspection method to generate
the mesh-current matrix for the circuit in Fig. E3.8.

6 Ω

5 Ω

12 Ω

20 Ω
10 Ω

I1 I2

I3

4 V
8 V

2 V

+
_

+ _

+
_

+
_

+ _

Figure E3.8

Answer:⎡
⎣ 15 −10 0

−10 36 −20
0 −20 32

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣ 12

−8
−2

⎤
⎦

(See  )

3-5 Linear Circuits and Source
Superposition

� A system is said to be linear if its output response is
directly proportional to the excitation at its input. �

In the case of a resistive circuit, the input excitation consists of
the combination of all independent voltage and current sources
in the circuit, and the output response consists of the set of
all voltages across all passive elements in the circuit (namely,
the resistors), or all currents through them. As noted in Section
3-1, circuits with ideal elements (including those containing
capacitors and inductors) satisfy the linearity property, and
therefore qualify as linear systems. A linear system obeys
the superposition principle (Section 3-1.2), which for a linear
circuit translates into:
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� If a circuit contains more than one independent source,
the voltage (or current) response of any element in the
circuit is equal to the algebraic sum (superposition) of
the individual responses associated with the individual
independent sources, as if each had been acting alone. �

Thus, for a circuit with n independent voltage or current sources
labeled as sources 1 to n, the voltage υ across a given passive
circuit element is given by

υ = υ1 + υ2 + · · · + υn, (3.29)

where υk is the response when all sources have been set to zero,
except for source k. A similar expression applies to the current i
through the circuit,

i = i1 + i2 + · · · + in. (3.30)

The superposition principle can be used to find υ (or i) by
executing the following steps:

Solution Procedure: Source Superposition

Step 1: Set all independent sources equal to zero (by
replacing voltage sources with short circuits and current
sources with open circuits), except for source 1.

Step 2: Apply node-voltage, mesh-current, or any other
convenient analysis technique to solve for the response υ1
due to source 1 acting alone.

Step 3: Repeat the process for sources 2 through n,
calculating in each case the response due to that one
source acting alone.

Step 4: Use Eq. (3.29) to determine the total response υ.

Alternatively, the procedure can be used to find currents
i1 to in and then to add them up algebraically to find the
total current i using Eq. (3.30).

Because it entails solving a circuit multiple times, the source-
superposition method may not seem attractive, particularly for
analyzing circuits with many sources. However, it is a useful
tool in both analysis and design for evaluating the sensitivity
of a response (such as the current in a load resistor) to specific
sources in the circuit.

�Whereas the source-superposition method is applicable
for calculating voltage and current, it is not applicable for
power (see Example 3-9). �

Example 3-9: Circuit Analysis by Source Superposition

(a) Use source superposition to determine the current I in
the circuit of Fig. 3-15. (b) Determine the amount of power
dissipated in the 10 � resistor due to each source acting alone
and due to both sources acting simultaneously.

Solution: (a) The circuit contains two sources, I0 and V0. We
start by transforming the circuit into the sum of two new circuits
(one with I0 alone and another with V0 alone), as shown in parts
(b) and (c) of Fig. 3-15, respectively. The current throughR2 due
to I0 alone is labeled I1, and that due to V0 alone is labeled I2.

(a) Original circuit

[Eliminating a current source = replacing it
with open circuit]

(c) Source V0 alone generates I2

[Eliminating a voltage source = replacing it
with short circuit]

Source I0 alone generates I1(b)

V0 = 45 VI0 = 6 A R1 = 5 Ω

R2 = 10 Ω

+
-

I

+
_

V0 = 45 VR1 = 5 Ω

R2 = 10 Ω

+
-

I2

+
_

I0 = 6 A R1 = 5 Ω

R2 = 10 ΩI1

Figure 3-15: Application of the source-superposition method
to the circuit of Example 3-9.



“book” — 2015/5/4 — 7:08 — page 135 — #21

3-5 LINEAR CIRCUITS AND SOURCE SUPERPOSITION 135

Circuit with current source alone

Setting V0 = 0 means replacing the voltage source with a short
circuit, as shown in Fig. 3-15(b). By current division,

I1 =
(

R1

R1 + R2

)
I0 =

(
5

5 + 10

)
6 = 2 A.

Circuit with current source alone

Setting I0 = 0 means replacing the current source with an open
circuit, as shown in Fig. 3-15(c). Application of KVL leads to

I2 = −
(

V0

R1 + R2

)
= −45

5 + 10
= −3 A.

Hence,

I = I1 + I2 = 2 − 3 = −1 A.

(b) The amounts of power dissipated in the 10 � resistor due
to I1 alone, I2 alone, and the total current I are, respectively;

P1 = I 2
1 R = 22 × 10 = 40 W,

P2 = I 2
2 R = (−3)2 × 10 = 90 W,

and

P = I 2R = 12 × 10 = 10 W.

Note that P �= P1 +P2, because the linearity property does not
apply to power.

Example 3-10: Superposition for Dependent-Source

Circuit

Apply the superposition principle to the circuit shown in
Fig. 3-16(a) to determine Vx .

Solution: The circuit in Fig. 3-16(a) contains two indepen-
dent voltage sources. Our task is to determine voltage Vx across
the 6� resistor.The superposition method allows us to represent
the original circuit by two new circuits, one containing the 6 V
source while excluding the 2 V source, and another with the
opposite arrangement. The first circuit generates Vx1 across the
6 � resistor and the second circuit generates Vx2 . The unknown
voltage Vx is the sum of the two.

Circuit with 6 V source alone

At node Vx1 in the circuit of Fig. 3-16(b), KCL gives

Vx1 − 6

2
+ Vx1

9
− 2Vx1 + Vx1

6
= 0,

which leads to

Vx1 = −2.45 V.

(a) Original circuit

Vx2Vx

9 Ω

2 Ω

2 Ω

6 Ω6 V
+

−

+
_ +

_

(b) The 6 V source acting alone generates voltage Vx1

Vx1

Vx1
2Vx1

9 Ω

2 Ω

6 Ω6 V
+

−

+
_

(c) The 2 V source acting alone generates voltage Vx2

Vx2

Vx2
2Vx2

9 Ω

2 Ω

2 V

+

−
+
_

Figure 3-16: Application of superposition to the circuit of
Example 3-10.

Circuit with 2 V source alone

At node Vx2 in the circuit of Fig. 3-16(c), KCL gives

Vx2

2
+ Vx2 − 2

9
− 2Vx2 + Vx2

6
= 0,

which leads to

Vx2 = −0.18 V.

Hence,

Vx = Vx1 + Vx2 = −2.45 − 0.18 = −2.63 V.
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Technology Brief 7
Integrated Circuit Fabrication
Process

Do you ever wonder how the processor in your computer
was actually fabricated? How is it that engineers can put
hundreds of millions of transistors into one device that
measures only a few centimeters on a side (and with so
few errors) so the devices actually function as expected?

Devices such as modern computer processors and
semiconductor memories fall into a class known as
integrated circuits (IC). They are so named because
all of the components in the circuit (and their “wires”)
are fabricated simultaneously (integrated) onto a circuit
during the manufacturing process. This is in contrast to
circuits where each component is fabricated separately
and then soldered or wired together onto a common board
(such as those you probably build in your lab classes).
Integrated circuits were first demonstrated independently
by Jack Kilby at Texas Instruments and Robert Noyce
at Fairchild Semiconductor in the late 1950s. Once
developed, the ability to easily manufacture components
and their connections with good quality control meant
that circuits with thousands (then millions, then billions)
of components could be designed and built reliably.

Semiconductor Processing Basics

All mainstream semiconductor integrated-circuit pro-
cesses start with a thin slice of silicon, known as a
substrate or wafer.This wafer is circular and ranges from
4 to 18 inches in diameter and is approximately 1 mm thick
(hence its name). Each wafer is cut from a single crystal
of the element silicon and polished to its final thickness
with atomic smoothness (Fig.TF7-1).Most circuit designs
(like your processor) fit into a few square centimeters of
silicon area; each self-contained area is known as a die.
After fabrication, the wafer is cut to produce independent,
rectangular dies often known as chips, which are then
packaged with plastic covers and metal pins or other
external connections to produce the final component you
buy at the store.

A specific sequence or process of chemical and
mechanical modifications is performed on certain areas of
the wafer. Although complex processes employ a variety
of techniques, a basic IC process will employ one of the
following three modifications to the wafer:

FigureTF7-1: A single 4-inch silicon wafer. Note the wafer’s
mirror-like surface. (Courtesy of Veljko Milanovic.)

• Implantation: Atoms or molecules are driven into
(implanted in) the silicon wafer, changing its elec-
tronic properties (Fig. TF7-2(a)).

• Deposition: Materials such as metals, insulators,
or semiconductors are deposited in thin layers (like
spray painting) onto the wafer (Fig. TF7-2(b)).

• Etching: Material is removed from the wafer
through chemical reactions or mechanical motion
(Fig. TF7-2(c)).

Lithography

When building an IC, we need to perform different
modifications to different areas of the wafer. We may
want to etch some areas and add metal to others, for
example. The method by which we define which areas
will be modified is known as lithography.
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(a) Implantation:  High-energy ions are
driven into the silicon.  Most become
lodged in the first few nanometers,
with decreasing concentration away
from the surface.  In this example,
boron (an electron donor) is implanted
into a silicon substrate to make a p-type
material.

(b) Deposition:  Atoms (or molecules)
impact the surface but do not have the
energy required to penetrate the
surface.  They accumulate on the
surface in thin films.  In this  example,
aluminum is deposited in a conductive
film onto the silicon.

(a) Etching:  Chemical, mechanical,
or high-energy plasma methods are
used to remove silicon (or other
material) from the surface.  In this
example, silicon is etched away from
the substrate.

FigureTF7-2: Cross-section of basic fabrication processes. The dashed line in each drawing indicates the original surface of
the wafer.

Lithography has evolved much over the last 40 years
and will continue to do so. Modern lithography employs all
of the basic principles described below, but uses complex
computation, specialized materials, and optical devices
to achieve the very high resolutions required to reach
modern feature sizes.

At its heart, lithography is simply a stencil process. In
an old-fashioned stencil process, when a plastic sheet
with cut-out letters or numbers is laid on a flat surface
and painted, the cutout areas will be painted and the rest
will be masked. Once the stencil is removed, the design
left behind consists of only the painted areas with clean
edges and a uniform surface. The total surface area of
the IC depends on the number and complexity of the
circuit elements on the IC, and on the minimum feature
size, which is 10 nm (10−8 m) today. With that in mind,
consider Fig. TF7-3. Given a flat wafer, we first apply
a thin coating of liquid polymer known as photoresist
(PR). This layer usually is several hundred nanometers
thick and is applied by placing a drop in the center of
the wafer and then spinning the wafer very fast (1000 to

5000 rpm) so that the drop spreads out evenly over the
surface. Once coated, the PR is heated (usually between
60 to 100 ◦C) in a process known as baking; this allows
the PR to solidify slightly to a plastic-like consistency.This
layer is then exposed to ultraviolet (UV) light, the bonds
that hold the PR molecules together are “chopped” up; this
makes it easy to wash away the UV-exposed areas (some
varieties of PR behave in exactly the opposite manner:
UV light makes the PR very strong or cross-linked, but
we will ignore that technique here). In lithography, UV
light is focused through a glass plate with patterns on it;
this is known as exposure. These patterns act as a “light
stencil” for the PR.Wherever UV light hits the PR, that area
subsequently can be washed away in a process called
development. After development, the PR film remains
behind with holes in the exposed and washed areas.

How is this helpful? Let’s look at how the modifications
presented earlier can be masked with PR to produce
patterned effects (Fig. TF7-4). In each case, we
first use lithography to pattern areas onto the wafer
(Fig. TF7-4(a)) then we perform one of our three
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Dispense Spin and Bake Expose Develop

Figure TF7-3: Basic lithography steps.

processes (Fig. TF7-4(b)), and finally, we use a strong
solvent such as acetone (nail polish remover) to
completely wash away the PR (Fig. TF7-4(c)). The PR
allows us to implant, deposit, or etch only in defined areas.

Fabricating a Diode

In Section 2-6, we discussed the functional performance
of the diode as a circuit component. Here, we will
examine briefly how a diode is fabricated. Similar but

more complex multi-step processes are used to make
transistors and integrated circuits. Conceptually, the
simplest diode is made from two slabs of silicon—
each implanted with different atoms—pressed together
such that they share a boundary (Fig. TF7-5). The
n and p areas are pieces of silicon that have been
implanted with atoms (known as impurities) that change
the number of electrons capable of flowing freely through
the silicon. This changes the semiconducting properties
of the silicon and creates an electrically active boundary

silicon substrate

p or n type
silicon area Metal film

Implantation
Deposition

Lithography

Etch

Etched recess

Figure TF7-4: Lithography used to pattern implantation areas, deposit metal features, and etch areas.



“book” — 2015/5/4 — 7:08 — page 139 — #25

TECHNOLOGY BRIEF 7: INTEGRATED CIRCUIT FABRICATION PROCESS 139

p-type
silicon

n-type
silicon

metalmetal

Figure TF7-5: The basic diode (top) circuit symbol and
(bottom) conceptual depiction of the physical structure.

a

b

c

d

e

f

g

h

i

j

Lithography + etch oxide

Remove PR

p-type implant

Grow oxide

n-type implant Lithography + etch oxide

Remove PR

Metal deposition

Lithography + etch metal

Complete diode

Metal Metal

Figure TF7-6: A simple pn-junction diode fabrication
process.

Figure TF7-7: Colorized scanning electron-microscope
cross section of a 64-bit high-performance microprocessor
chip built in IBM’s 90 nm Server-Class CMOS technology.
Note that several metal interconnect levels are used
(metal lines are orange, insulator is green); the transistors
lie below this metal on the silicon wafer itself (dark
blue). (Courtesy of International Business Machines
Corporation.)

(called a junction) between the n and the p areas of
silicon. If a forward-biased voltage is applied, it is as if
the p charges move towards the n side, allowing current to
flow, even though no actual p or n atoms move in the diode.
When both the n and p pieces of silicon are connected to
metal wires, this two-terminal device exhibits the diode
i–υ curve shown in Fig. 2-40(c).

Figure TF7-6 shows the process for making a single
diode. Only one step needs further definition: oxidation.
During oxidation, the silicon wafer is heated to > 1000 ◦C
in an oxygen atmosphere. At this temperature, the oxygen
atoms and the silicon react and form a layer of SiO2 on
the surface (this layer is often called an oxide layer). SiO2
is a type of glass and is used as an insulator.

Wires are made by depositing metal layers on top of
the device; these are called interconnects. Modern ICs
have 6 to 7 such interconnect layers (Fig. TF7-7). These
layers are used to make electrical connections between
all of the various components in the IC in the same way
that macroscopic wires are used to link components on a
breadboard.
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Concept Question 3-9: Explain why the linearity 
property of electric circuits is an underlying requirement 
for the application of the source-superposition method.
(See         )

Concept Question 3-10: How is the superposition 
method used as a sensitivity tool in circuit analysis and 
design? (See         )

Concept Question 3-11: Is the source-superposition
method applicable to power? In other words, if source 1
alone supplies power P1 to a certain device and source 2
alone supplies power P2 to the same device, will the two 
sources acting simultaneously supply power P1 + P2 to 
the device? (See         )

Exercise 3-9: Apply the source-superposition method to
determine the current I in the circuit of Fig. E3.9.

I

2 Ω 5 Ω

3 Ω

4 A 3 A

Figure E3.9

Answer: I = 2.3 A. (See )

Exercise 3-10: Apply source superposition to deter-
mine Vout in the circuit of Fig. E3.10.

Vout2 Ω 1 Ω

3 Ω

3 A 4 A
+

−

Figure E3.10   

Answer: Vout = −1 V. (See         )

3-6 Thévenin and Norton Equivalent
Circuits

As depicted by the block diagram shown in Fig. 3-17,
a generic cell-phone circuit consists of several individual

circuits, including amplifiers, oscillators, analog-to-digital
(A/D) and digital-to-analog (D/A) converters, an antenna,
a diplexer that allows the antenna to be used for both
transmission and reception, a microprocessor, and other
auxiliary circuits. Many of these circuits are quite complex
and may contain a large number of active and passive
elements, in both discrete and integrated form. So the
question one might ask is: How does an engineer approach
an analysis or design task involving such a complex
architecture?

Dealing with the entire circuit all at once would be next to
impossible, not only because of its daunting complexity, but also
because the individual circuits call for engineers with different
specializations.

Fortunately, we have a straightforward answer to the
question, namely that each circuit gets modeled as a “black
box,” or block, with specified input and output (I/O)
terminal characteristics allowing the engineer working with
a particular circuit to treat the other circuits connected
to it in terms of only those (I/O) characteristics without
much regard to the details of their internal architectures.
For an amplifier, for example, its overall specifications
might include voltage gain and frequency bandwidth, among
other attributes, but its terminal characteristics refer to
how it would “appear” from the perspective of other
circuits.

Conversely, from the amplifier’s perspective, other circuits
are specified in terms of how they appear to the amplifier.
Figure 3-18 illustrates the concept from the perspective of
the radio-frequency (RF) low-noise amplifier in the receive
channel of the cell-phone circuit. The combination of the
antenna and diplexer (including the input signal picked up
by the antenna) is represented at the input side of the
amplifier by an equivalent circuit composed of a voltage
source υs in series with an impedance Zs. Impedance (which
we shall introduce in a later chapter) is the ac-equivalent of
resistance in dc circuits. At the output side of the amplifier,
the mixer (whose function is to shift the center frequency
of the input signal from 834 MHz down to 70 MHz) is
represented by a load impedance ZL. Thus, the output terminal
characteristics of the antenna/diplexer combination become
the input source to the amplifier, and the input impedance
of the mixer becomes the load to which the amplifier is
connected.

� Isolating the amplifier, while keeping it in the context of
its input and output neighbors, facilitates both the analysis
and design processes. �
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Received Signal

Transmitted Signal
D/A and A/D
Converters

and
Filters

Antenna and
Propagation

RF Front-End IF Block Back-End Baseband

~ ~

Demodulator

Modulator

Microprocessor
Control

LO
LO

Human Interface,
Dialing, Memory

Battery Power Control

Antenna

Transmit Path

Receive Path

Diplexer/Filter

RF Filter

RF Power 
Amp

Mixer

RF Low
Noise Amp

Mixer

IF Amp

IF Amp

IF Filter

(Speech, 
video, data)

In Out

RF = Radio Frequency
IF = Intermediate Frequency
LO = Local Oscillator
Mixer = Frequency Up- or
              Down-Converter

Figure 3-17: Cell-phone block diagram.

3-6.1 Input and Output Resistances

Example 1: Household wiring

Our homes are powered by some kind of electrical generation
plant (coal-powered, hydroelectric, etc.) that produces high
voltage, which is run to our city on high-voltage transmission
lines, split into smaller voltages at various substations, and
eventually delivered to the breakers or fuse boxes of our homes

(Chapter 10). This is a rather complex system with many parts,
so we prefer not to analyze the entire system every time we
consider a change in a household electrical circuit. We can
represent the entire power distribution system as a voltage
source (in this case, 110 V) in series with a small source
resistance Rs that represents the losses in the transmission lines
and connections, as shown in the simplified block diagram in
Fig. 3-19. Even though the source is ac, we will treat it as if it
were a dc source with Vs = 110 V.

υs υin

Source impedance

Load equivalent
circuitInput equivalent circuit Amplifier circuit

Mixer
input
impedance

ZLZout

Zs RF
low-noise
amplifier+

_

Zin
+

_

υout

+

_

Figure 3-18: Input and output circuits as seen from the perspective of a radio-frequency amplifier circuit.
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(a) Electrical system

(b) Equivalent circuit

Power plant

Lamp

Breaker
box Fan

Rfan

I

Rlamp

DVM
Vs

Rs

110 V

+
_

Figure 3-19: (a) Power distribution system driving a fan and a lamp in a house, and (b) block diagram of the source (power distribution
system), fan, lamp, and a voltmeter measuring the voltage in the outlet.

Every device we plug in (such as the fan and lamp) is in
parallel with the power source block. The lamp is just a switch
and a light bulb, which we might even simplify further by
ignoring the switch and assuming it is always on, thus giving us
very simply a resistorRlamp in the block diagram in Fig. 3-19(b).
The fan, on the other hand, is a little more complicated because
it includes a motor and a switch that controls various speeds, but
we can still represent it by a parallel resistor Rfan. If Vs = 110V,
Rs = 10 �, and Rfan = Rlamp = 100 �, what is the current
drawn from the source?

The parallel combination of Rfan and Rlamp is

R‖ = Rfan ‖ Rlamp = 100 ‖ 100 = 50 �.

The total resistance connected to Vs is the series sum of R‖
and Rs:

Rtotal = R‖ + Rs = 50 + 10 = 60 �.

Hence, by Ohm’s law,

I = Vs

Rtotal
= 110

60
= 1.83 A.

What is the voltage across the fan and lamp?
Application of voltage division gives

Vfan = Vlamp = Vs
R‖

Rtotal
= 110 × 50

60
= 91.67 V.

This is measurably less than the 110 V of Vs. The voltage
reduction is called loading the circuit, and it occurs when
the series source input resistance and the load resistance
(Rfan ‖ Rlamp) are on the same order of magnitude, or if the
source resistance is larger than the load resistance. If too many
appliances are plugged into the outlet, all of their resistances
combine in parallel, thereby reducing the total load resistance,
drawing more current, and loading down the circuit (reducing
the voltage across the devices). Eventually, the devices will no
longer function properly (if the voltage gets too low) or the
circuit breaker creates an open circuit if the current gets too
high.

This example illustrates the concept of input and output
resistances and why they matter. The input resistance is what
is seen looking into a block “from the left,” and the output
resistance is what is seen looking in “from the right.” For the
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voltage source, we do not really have an input resistance, and
its output resistance is Rs. For the fan and lamp, the input and
output resistances are both Rfan and Rlamp, respectively. If we
have a small output resistance looking into (connected to) a
large input resistance of a load (such as the fan/lamp circuit),
the load will not draw down the voltage (load the circuit) very
much. In fact, if the input resistance of the load is high enough,
we can even ignore it in the analysis of the circuit because the
voltage across it is essentially the same as the source voltage.
On the other hand, if the output and input resistances are similar
in magnitude, the load will indeed draw down the voltage (and
load the circuit). The load clearly has an impact on the circuit,
and we cannot ignore it in the analysis of how the circuit works.
And if the output resistance of the source is larger than the input
resistance of the load, the voltage of the load will be significantly
reduced (loaded).

Example 2: Voltmeter

Voltmeters are deliberately designed with high input resistance
(≥ 2 M�) so that they do not affect the circuit being measured.
Consider, for example, measuring the voltage (or resistance)
across the fan/lamp circuit in Fig. 3-19(b). The resistance of
the fan and lamp in parallel is 50 �. If the voltmeter (DVM)
has an input resistance of 2 M�, the fan/lamp/DVM circuit has
a total resistance of 49.999 �, a change of less than 0.01%.
Another way to think of this is that the DVM will draw very
little current through it, because of its high input resistance. If
the DVM is used to measure resistance instead of voltage, its
input resistance also is high, and would have minimal effect on
the circuit being measured. In contrast, the input resistance of
an ammeter is very small (about 1 μ�), much smaller than the
fan/lamp combination.

Summary: What have we learned from these examples?

• Input resistance (looking toward the load) and output
resistance (looking toward the source) are important
parameters of the circuit.

• If the input resistance of the load is very high compared
with the output resistance of the rest of the circuit (such
as the case with the voltmeter), that part of the circuit
(the load) can basically be ignored when we analyze the
other parts of the circuit. In fact, this means that these
blocks can be designed and analyzed individually. We call
them independent, uncoupled, or decoupled. Being able

to design and analyze blocks of a circuit individually is
such a powerful concept that we often deliberately build
circuits to have high input resistance. Circuits with high
input resistance draw minimal current.

• If the input resistance of the load is low (or similar)
compared with the output resistance of the input circuit,
significant current is drawn into the load circuit. This may
load the source circuit and reduce the voltage at the load.
Also, the circuits can no longer be analyzed individually;
they are coupled and must be analyzed together.

3-6.2 Thévenin’s Theorem

� Our ability to develop equivalent-circuit representa-
tions is made possible (in part) by a pair of theorems
of fundamental significance known as Thévenin’s and
Norton’s theorems. �

Most electrical systems are quite complex, so that each
subsystem (such as the filter, demodulator, amplifier, etc., in
Fig. 3-17) is designed independently, and often by different
engineers and even by different companies. We established in
the preceding subsection that in order to design subsystems
independently, it is necessary that each has a high input
resistance. This is often not feasible, however, so we need
another approach to designing cascaded circuits and then
combining them together into a larger system. The Thévenin
and Norton concepts described in this section help us do that.
They are very powerful techniques used extensively in electrical
engineering design. In practice, the system engineering team
determines what blocks are needed for the system, lays out the
block diagram, and specifies the input voltages and currents,
and input and output resistances for each block of the circuit.
Design teams then create circuits for each block, and test
them independently using the input and output resistances/
voltages/currents for their neighboring subsystems in the test
protocol. The integration team puts the subsystems together,
often with the mechanical parts of the system as well, and then
tests the overall system as an integrated unit to insure that its
performance meets the design specifications.

In the 1880s, a French engineer named Léon Thévenin
introduced the concept known today as Thévenin’s theorem,
which asserts:
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�A linear circuit can be represented at its output terminals
by an equivalent circuit consisting of a series combination
of a voltage source υTh and a resistor RTh, where υTh is the
open-circuit voltage at those terminals (no load) and RTh
is the equivalent resistance between the same terminals
when all independent sources in the circuit have been
deactivated. RTh is the output resistance of the Thévenin
circuit. �

A pictorial representation of Thévenin’s theorem is shown in
Fig. 3-20, where the actual circuit in part (a) has been replaced
with the Thévenin equivalent circuit in part (b). The implication
of this model is that when the circuit is connected to a load
resistor RL, the current iL running through it will be identical
for both the actual circuit and the equivalent circuit. This
equivalence holds true for any value of RL, from zero (short
circuit) to ∞ (open circuit). Thus, from the standpoint of the
load, the two circuits are indistinguishable.

Even though the present discussion pertains to dc currents,
the Thévenin concept extends to ac circuits as well. We will
revisit the concept in a future chapter for circuits containing
capacitors and inductors.

3-6.3 Finding υTh

Thévenin equivalency means that from the standpoint of the
load RL, the two circuits in Fig. 3-20 are indistinguishable. For

(a) Original circuit

RL

Load

Actual
circuit

RL

RTh

υTh

iL

iL

(b) Thevenin equivalent'

+
_

a

b

a

b

Figure 3-20:A circuit can be represented in terms of a Thévenin
equivalent comprising a voltage source υTh in series with a
resistance RTh.

(a) Measuring υoc on actual circuit

Actual
circuit

υoc

a

b

+

−

(b) Measuring υTh of equivalent circuit

RTh

υTh υTh

a

b

+

−

+
_

+
_

+
_

Figure 3-21: Equivalency means that υTh of the Thévenin
equivalent circuit is equal to the open-circuit voltage for the
actual circuit.

any value we assign to RL, both circuits generate the same iL.
Hence, if we disconnect RL altogether from both circuits and
then measure the voltage across terminals (a, b), we should
measure the same voltage. The scenario is depicted in Fig. 3-21.
In part (a), a voltmeter would measure the open-circuit voltage
υoc of the actual circuit, and in part (b) the voltmeter would
measure υTh (since there is no voltage drop across RTh). We
are effectively measuring the output voltage of our blackbox.
Equivalency requires that

υTh (of Thévenin equivalent) = υoc (of actual circuit).
(3.31)

The procedure is equally valid for circuits with or without
dependent sources. For a circuit with no independent sources,
υTh = 0.

3-6.4 Finding RTh—Short-Circuit Method

Multiple methods are available for finding the Thévenin
resistance RTh. We start with the short-circuit method. From
Fig. 3-20(b),

iL = υTh

RTh + RL
. (3.32)

If RL = 0 (short-circuit load), we call iL the short-circuit
current isc, which would be given by

isc = υTh

RTh
. (3.33)
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(a) υTh = υoc

(b) RTh = υoc /isc

Open-Circuit / Short-Circuit Method

Actual
circuit

+

−
υoc

a

b

Volts+
_

isc

Amps
Actual
circuit

Figure 3-22: Thévenin voltage is equal to the open-circuit
voltage and Thévenin resistance is equal to the ratio of υoc
to isc, where isc is the short-circuit current between the output
terminals.

By analyzing the circuit configuration in Fig. 3-22(b) to find isc
or, measuring isc with an ammeter, we can apply Eq. (3.33) to
find RTh,

RTh = υTh

isc
. (3.34)

The only potential problem with this type of measurement is that
when short-circuiting the source circuit, the current threshold
of the ammeter may be exceeded (if the output resistance of the
source circuit is very small).

This method is applicable to any circuit with at least one
independent source, regardless of whether or not it contains
dependent sources.

Example 3-11: Open Circuit / Short Circuit Method

The input circuit to the left of terminals (a, b) in Fig. 3-23(a)
is connected to a variable load resistor RL. Determine (a)
the Thévenin equivalent of the circuit to the left of terminals
(a, b) and (b) use it to find the value of RL that will cause the
magnitude of the current through it to be 0.5 A.

(a) Original circuit

(b) Replacing RL with open circuit

(c) Replacing RL with short circuit

IL

RLVTh = 12 V

RTh = 6 Ω a

b
+
_

(d) Thevenin equivalent circuit'

RL12 Ω

6 Ω 2 Ω

24 V 7 A

a

b

IL
+
_

Isc

12 Ω

6 Ω 2 Ω

24 V 7 A

a

b

Vc

+
_

Voc = VTh12 Ω

6 Ω 2 Ω

24 V 7 A

a

b

+

Vc

+
_

_

Figure 3-23: Applying open circuit/short circuit method to find
the Thévenin equivalent for the circuit of Example 3-10.
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Solution: (a) With RL replaced with an open circuit in
Fig. 3-23(b), VTh is the open-circuit voltage between terminals
(a, b). Since no current flows through the 2 � resistor,VTh = Vc

at node c. The node-voltage equation at node c is

Vc − 24

6
+ Vc

12
+ 7 = 0,

which leads to Vc = −12 V. Hence,

VTh = −12 V.

Next, we replace RL with a short circuit (Fig. 3-23(c)) and
repeat the process to find V ′

c :

V ′
c − 24

6
+ V ′

c

12
+ 7 + V ′

c

2
= 0,

whose solution gives V ′
c = −4 V, and

Isc = V ′
c

2

= −4

2

= −2 A.

Hence,

RTh = VTh

Isc

= −12

−2

= 6 �,

and the Thévenin equivalent circuit is shown in Fig. 3-23(d).
(b) In view of Fig. 3-23(d), for IL to be 0.5 A, it is necessary

that

IL = 12

6 + RL

= 0.5 A

or

RL = 18 �.

Exercise 3-11: Determine the Thévenin-equivalent
circuit at terminals (a, b) in Fig. E3.11.

Figure E3.11

2 Ω 5 Ω

3 Ω

4 A 3 A

a

b

Answer: VTh = −3.5 V,  Isc = −1.4 A,  RTh = 2.5 �.
(See         )

3-6.5 Finding RTh—Equivalent Resistance
Method

If the circuit does not contain dependent sources, RTh can
be determined by deactivating all sources (replacing voltage
sources with short circuits and current sources with open
circuits) and then simplifying the circuit down to a single
equivalent resistance between its output terminals, as portrayed
by Fig. 3-24. In that case,

RTh = Req. (3.35)

This method does not apply to circuits that contain dependent
sources.

Example 3-12: Thévenin Resistance

Find RTh at terminals (a, b) for the circuit in Fig. 3-25(a).

Solution: Since the circuit has no dependent sources, we
can apply the equivalent-resistance method. We start by

Req = RTh
Circuit with
all independent
sources deactivated

Equivalent-Resistance Method

Figure 3-24: For a circuit that does not contain dependent
sources, RTh can be determined by deactivating all sources
(replacing voltage sources with short circuits and current sources
with open circuits) and then simplifying the circuit down to a
single resistance Req.
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(a) Original circuit

(b) After deactivating 
sources

(c) After combining 
the two 50 Ω
resistors in parallel

50 Ω
50 Ω

30 Ω

35 Ω

4 A

16 V

a

b

50 Ω
50 Ω

30 Ω

35 Ω

a

b

30 Ω
35 Ω

25 Ω
a

b

(d) Final RTh

a

b

RTh = 20 Ω

+_

Figure 3-25: After deactivation of sources, systematic
simplification leads to RTh (Example 3-12).

deactivating all of the sources (as shown in Fig. 3-25(b)) where
we replaced the voltage source with a short circuit and the
current source with an open circuit. After (a) combining the two
50 � resistors in parallel, (b) combining their 25 � combination
in series with the 35 � resistance, and (c) finally combining the

resultant 60 � with the 30 � resistance in parallel, we obtain

RTh = 20 �.

Exercise 3-12: Find the Thévenin equivalent of the circuit
to the left of terminals (a, b) in Fig. E3.12, and then
determine the current I .

1 Ω

20 V 5 A

Ia

b

0.6 Ω

3 Ω

5 Ω

5 Ω

2 Ω
+
_
+
_

Figure E3.12

Answer:

1 Ω2 V

Ia

b

3 Ω
+
_
+
_

I = 0.5 A.

(See )

3-6.6 Finding RTh—External-Source Method

The equivalent-resistance method described previously does
not apply to circuits containing dependent sources. Hence, an
alternative variation is called for. Independent sources again
are deactivated (but dependent sources are left alone) and an
external voltage source υex is introduced to excite the circuit,
as shown in Fig. 3-26. After analyzing the circuit to determine
the current iex, RTh is found by applying

RTh = υex

iex
. (3.36)

Since iex is caused by υex, it is directly proportional to it.
Hence, we may choose any value for υex, such as υex = 1 V, as
long as we use the same value both in Fig. 3-26 when analyzing
the circuit to find iex and in applying Eq. (3.36) to compute RTh.

Example 3-13: Circuit with Dependent Source

Find the Thévenin equivalent circuit at terminals (a, b) for the
circuit in Fig. 3-27(a) by applying the combination of open-
circuit-voltage and external-source methods.
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External-Source Method

υex

iex
Circuit with only
independent 
sources deactivated

+
_

υex

iex
+
_RTh

Figure 3-26: If a circuit contains both dependent and
independent sources, RTh can be determined by (a) deactivating
only independent sources ( by replacing independent voltage
sources with short circuits and independent current sources
with open circuits), (b) adding an external source υex, and
then (c) solving the circuit to determine iex. The solution is
RTh = υex/iex.

Solution: The KVL equation for mesh current I1 in
Fig. 3-27(a) is given by

−33 + 6I1 + 2I1 + 3Ix = 0.

Recognizing that Ix = I1, solution of the preceding equation
leads to

I1 = 3 A.

Since there is no voltage drop across the 4 � resistor (because
no current is flowing through it),

VTh = Vab = 2I1 + 3Ix = 5I1 = 15 V.

To find RTh using the external-source method, we deactivate the
33 V voltage source and we add an external voltage source Vex,
as shown in Fig. 3-27(b). Our task is to obtain an expression for
Iex in terms of Vex. In Fig. 3-27(b) we have two mesh currents,
which we have labeled I ′

1 and I ′
2. Their equations are given by

6I ′
1 + 2(I ′

1 − I ′
2) + 3Ix = 0,

−3Ix + 2(I ′
2 − I ′

1) + 4I ′
2 + Vex = 0.

After replacing Ix with I ′
1 and solving the two simultaneous

equations, we obtain

I ′
1 = − 1

28
Vex,

(a) Solving for VTh

(b) Solving for Iex

(c) Equivalent circuit for calculating RTh

Iex

Vex

a

b

RTh

a

b

+-

Iex

Vex

3Ix

I1 I2

4 Ω

2 Ω

6 Ω

33 V

a

b

+-

Vab = VTh

3Ix

Ix

Ix

I1

4 Ω

2 Ω

6 Ω

+

−

+_

+_

+
_

+
_

+
_

Figure 3-27: Solution of the open-circuit voltage gives
Vab = VTh = 15 V. Use of the external-voltage method leads
to RTh = 56/11 � (Example 3-13).

and

I ′
2 = −11

56
Vex.

For the equivalent circuit shown in Fig. 3-27(c),

RTh = Vex

Iex
.

In terms of our solution, Iex = −I ′
2. Hence,

RTh = −Vex

I ′
2

= 56

11
�.
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Table 3-1: Properties of Thévenin/Norton analysis techniques.

To Determine Method Can Circuit Contain Dependent Sources? Relationship

υTh Open-circuit υ Yes υTh = υoc
υTh Short-circuit i (if RTh is known) Yes υTh = RThisc

RTh Open/short Yes RTh = υoc/isc
RTh Equivalent R No RTh = Req
RTh External source Yes RTh = υex/iex

iN = υTh/RTh; RN = RTh

iN RN

a

b

Norton equivalent 
circuit

iN = υTh /RTh  
 RN = RTh

υTh

RTh
a

b

Thevenin 
equivalent 
circuit

'

'Thevenin and Norton Equivalency

+
_

Figure 3-28: Equivalence between Thévenin and Norton
equivalent circuits, consistent with the source transformation
method of Section 2-3.4.

3-6.7 Norton’s Theorem

A corollary of Thévenin’s theorem, Norton’s theorem states
that a linear circuit can be represented at its output terminals
by an equivalent circuit composed of a parallel combination of
a current source iN and a resistor RN. Application of source
transformation (Section 2-3.4) on the Thévenin equivalent
circuit shown in Fig. 3-28 leads to the straightforward
conclusion that iN and RN of the Norton equivalent circuit are
given by

iN = υTh

RTh
(3.37a)

and

RN = RTh. (3.37b)

Table 3-1 provides a summary of the various methods available
for finding the elements of the Thévenin and Norton equivalent
circuits.

Concept Question 3-12:Why is the Thévenin-equivalent 
circuit method such a powerful tool when analyzing a 
complex circuit, such as that of a cell phone? (See         )

3-6.8 Analyzing Cascaded Systems

Let us go back to the simple household circuit of Fig. 3-19(b)
and redraw it in Fig. 3-29(a) as a series combination of blocks:
the voltage source consisting of Vs and associated resistance Rs,
the fan, the lamp, and the DVM. We intend to use the circuit to
demonstrate how the Thévenin technique is used in practice
to analyze much more complicated circuits. Our goal is to
determine the voltage measured by the DVM.

Blocks 1 and 2

We start with the combination of the first two blocks, namely
the source and the fan, after disconnecting everything to the
right of terminals (c, d) from the circuit. The Thévenin voltage
between terminals (c, d) in Fig. 3-29(b) is labeled Vcd and is
given by

Vcd = VsRfan

Rs + Rfan
= 110 × 100

10 + 100
= 100 V.

The Thévenin resistance of the circuit at terminals (c, d) in
Fig. 3-29(b) is the parallel combination of Rs and Rfan:

Rcd = Rs ‖ Rfan = 10 ‖ 100 = 9.09 �.
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(a) Total circuit

Source block Fan block Lamp block

Rfan

a

b

Rlamp

DVM block

Vs
Rs = 10 Ω

100 Ω 100 Ω110 V
+
_

c

d

e

f

+ _

(b) Thévenin equivalent of source/fan combination

(c) Thévenin equivalent of first three blocks

(d) Final equivalent circuit

RTh = 8.33 Ω

2 MΩ
DVM

VTh = 91.67 V
+
_

e

f

VDVM
+
_

Rcd = 9.09 Ω

Source block Fan block

Rfan Vcd Vcd

a

b

Vs
Rs = 10 Ω

100 Ω 100 V110 V
+
_

+
_

c

d

c

d

+
_

+
_ Rlamp 100 Ω

Thévenin equivalent
of source/fan combination

Thévenin equivalent of
source/fan/lamp combination

Ve f

Re f  = 8.33 Ω

91.67 V
+
_

e

f

9.09 Ω

100 V

c

d

e

f

Ve f
+
_

Vcd

Figure 3-29: Repeated application of Thévenin-equivalent circuit technique.

Blocks 1, 2, and 3

Next, we repeat the Thévenin technique at terminals (e, f ) by
combining the lamp with the two earlier blocks. The Thévenin
voltage at terminals (e, f ) in Fig. 3-29(c) is labeled Vef and is
given by

Vef = 100 × 100

9.09 + 100
= 91.67 V,

and the Thévenin resistance, Ref , is

Ref = 100 ‖ 9.09 = 8.33 �.

Blocks 1–4

In part (d) of Fig. 3-29, we show the Thévenin equivalent of
all blocks to the left of the DVM connected to the DVM at
terminals (e, f ). Voltage division leads to

VDVM = 91.67 × 2 × 106

8.33 + 2 × 106 ≈ 91.67 V.

This is the same answer we would have obtained had we
analyzed the entire circuit at once using KCL/KVL. For
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this simple circuit, the multiple application of the Thévenin
equivalent technique is obviously unwarranted, but when
dealing with complex circuits comprising multiple subsections,
the Thévenin technique is not only desirable, but also the only
practical way to analyze and design circuits.

Concept Question 3-13: Section 3-6 offers three
different approaches for finding RTh. Which ones apply 
to circuits containing dependent sources? (See         )

Exercise 3-13: Find the Norton equivalent at terminals
(a, b) of the circuit in Fig. E3.13.

I
a

b

3 Ω

10 Ω

3I

2 A

Figure E3.13

Answer:

a

b

4 Ω0.5 A

(See      )

3-7 Comparison of Analysis Methods

In this and the preceding chapter, we presented several different
methods for analyzing electric circuits. Which method is
best? Which one is the easiest to implement and why? The
answer depends on the circuit configuration and the intended
application. Table 3-2 provides a summary of the key attributes
of the three circuit-analysis laws (Ohm’s law, KCL, and KVL)
and the analysis methods covered thus far. If the circuit contains
no dependent sources and the goal is to determine the currents
and voltages in the circuit, the two by-inspection methods
provide a straightforward solution approach. When dependent
sources are present, the node voltage and mesh current methods
are always applicable. For cascaded circuits, the Thévenin (and
Norton) equivalent-circuit technique is invariably the preferred
choice.

3-8 Maximum Power Transfer

Suppose an active linear circuit is connected to a passive linear
circuit, as depicted by Fig. 3-30(a). An active circuit contains
at least one independent source, whereas a passive circuit may
contain dependent sources, but no independent sources. For
convenience, we shall refer to them as the source and load
circuits, respectively. For certain applications, it is desirable
to maximize the magnitude of the current iL that flows from
the source circuit to the load circuit, while other applications
may call for maximizing the voltage υL at the input to the load
circuit, or maximizing the power pL that gets transferred from
the source to the load. Given a specified source circuit, how,
then, does one approach the design of the load circuit so as to
achieve these different goals?

The solution to the problem posed by our question is
facilitated by the equivalence offered by Thévenin’s theorem.
We demonstrated in the preceding section that any active,
linear circuit always can be represented by an equivalent circuit
composed of a Thévenin voltage υTh connected in series with a
Thévenin resistance RTh. In the case of the passive load circuit,
its equivalent circuit consists of only a Thévenin resistance.
To avoid confusion between the two circuits, we denote υTh
and RTh of the source circuit as υs and Rs, and we denote RTh
of the load circuit as RL, as shown in Fig. 3-30(b). The current iL

(b) Replacing source and load circuits with
their Thévenin equivalents

(a) Source and load circuits

υL

iL

Active
circuit

Passive
circuit

+
−
b

a

Source circuit Load circuit

υs

Rs

RL

+

−

b

a

υL

iL

+
_

Figure 3-30: To analyze the transfer of voltage, current, and
power from the source circuit to the load circuit, we first replace
them with their Thévenin equivalents.
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Table 3-2: Summary of circuit analysis methods.

Method Common Use

Ohm’s law Relates V , I , R. Used with all other methods to convert V ⇔ I .

R, G in series
and ‖

Combine to simplify circuits. R in series adds, and is most often used. G in ‖ adds, so may be
used when much of the circuit is in parallel.

Y-� or �-T Convert resistive networks that are not in series or in ‖ into forms that can often be combined in
series or in ‖. Also simplifies analysis of bridge circuits.

Voltage/current
dividers

Common circuit configurations used for many applications, as well as handy analysis tools.
Dividers can also be used as combiners when used “backwards.”

Kirchhoff’s laws
(KVL/KCL)

Solve for branch currents. Often used to derive other methods.

Node-voltage
method

Solves for node voltages. Probably the most commonly used method because (1) node voltages
are easy to measure, and (2) there are usually fewer nodes than branches and therefore fewer
unknowns (smaller matrix) than KVL/KCL.

Mesh-current
method

Solves for mesh currents. Fewer unknowns than KVL/KCL, approximately the same number
of unknowns as node voltage method. Less commonly used, because mesh currents seem less
intuitive, but useful when combining additional blocks in cascade.

Node-voltage
by-inspection
method

Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in practice.
Limited to circuits containing only independent current sources.

Mesh-current
by-inspection
method

Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in practice.
Limited to circuits containing only independent voltage sources.

Superposition Simplifies circuits with multiple sources. Commonly used for both calculation and measurement.

Source transfor-
mation

Simplifies circuits with multiple sources. Commonly used for both calculation/design and
measurement/test applications.

Thévenin
and Norton
equivalents

Very often used to simplify circuits in both calculation and measurement applications.Also used to
analyze cascaded systems. Thévenin is the more commonly used form, but Norton is often handy
for analyzing parallel circuits. Source transformation allows easy conversion between Thévenin
and Norton.

Input/output
resistance
(Rin/Rout)

Commonly used to evaluate when cascaded circuits can be analyzed individually or when full
circuit analysis or a buffer is needed.

and associated voltage υL are given by Ohm’s law as

iL = υs

Rs + RL
,

and by voltage division:

υL = υsRL

Rs + RL
.
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pL

RLRs

pmax
Maximum power
when RL = Rs

0

Figure 3-31: Variation of power pL dissipated in the load RL,
as a function of RL.

If the source-circuit parameters υs and Rs are fixed and the
intent is to transfer maximum current to the load circuit, then RL
should be zero (short circuit). For a real circuit with a functional
purpose, the circuit will need to receive some energy in order to
function. Hence, RL cannot be exactly zero, but it can be made
to be very small in comparison with Rs. Thus, to maximize
current transfer, the load circuit should be designed such that

RL � Rs (maximum current transfer). (3.39)

Based on Eq. (3.38), the opposite is true for maximum voltage
transfer, namely

RL � Rs (maximum voltage transfer). (3.40)

The situation for power transfer calls for maximizing the
product of iL and υL,

pL = iLυL = υ2
s RL

(Rs + RL)2 . (3.41)

The expression given by Eq. (3.41) is a nonlinear function of RL.
The power pL goes to zero as RL approaches either end of its
range (0 and ∞), as illustrated by the plot in Fig. 3-31, and it
is at a maximum when

RL = Rs (maximum power transfer). (3.42)

� This equality is referred to as matching the source to
the load. �

The proof of Eq. (3.42) is given in Example 3-14.
Use of RL = Rs in Eq. (3.41) leads to

pmax = υ2
s RL

(RL + RL)2 = υ2
s

4RL
, (3.43)

which represents 50 percent of the total power generated by the
equivalent input source υs. The other 50 percent is dissipated
in Rs.

Example 3-14: Maximum Power Transfer

Prove that pL, as given by Eq. (3.41), is at a maximum when
RL = Rs.

Solution: To find the value of RL at which the expression
for pL is at a maximum, we differentiate the expression with
respect to RL and then set the result equal to zero. That is,

dpL

dRL
= d

dRL

[
υ2

s RL

(Rs + RL)2

]

= υ2
s

[
1

(Rs + RL)2 − 2RL

(Rs + RL)3

]
= 0.

A few simple steps of algebra lead to

RL = Rs.

Concept Question 3-14: Under what conditions is the
power transferred from a power source to a load resistor
a maximum? When is the voltage a maximum? When is 
the current a maximum? (See         )

Concept Question 3-15: Of the power generated by an
input circuit, what is the maximum fraction that can be 
transferred to an external load? (See         )
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Technology Brief 8
Digital and Analog
Most of electrical engineering depends on the manipu-
lation of voltages and currents. The real world interfaces
with our circuits through sensors (such as the resistive
sensors in Technology Brief 4), and we interface back to
the real world through user interfaces (such as turning
on an LED in Technology Brief 5). In between these
transducers are circuits! In the physical world, most
signals of interest are analog signals; that is, they vary
continuously with time and can take on any value between
their possible minimum and maximum values. When
electrical sensors transduce these signals into changes in
voltage or current, the electrical signals produced are thus
also analog. Analog electrical signals can be transduced
from sound (using a microphone), mechanical vibration
(using a piezoelectric vibration sensor), light or images
(using sensor arrays in a camera), temperature (using a
thermistor), and many other sources.

All of the circuits we have examined so far are analog
circuits. The voltages (and currents) present in these
circuits can take on any value between a maximum and a
minimum (typically set by the power source). By contrast,
a digital signal can only assume a few discrete values.
Most digital systems are binary, which is to say they can
only assume two such values, usually called “0” and “1”
(alternatively, “on” and “off”). The exact voltages which
represent the two logic states depend on the type of digital
logic used; for example, many modern digital processors
represent “0” with 0 V and “1” with 1.2 V.

Because any single digital line can only assume two
values, many such lines can be used to represent a
range of numbers. Consider, for example, Table TT8-1:
three digital lines (or bits) are used to encode 8 different
numbers within a given range. In the same way that

Table TT8-1: Three-bit counting scheme.

Bits Number

000 = 0
001 = 1
010 = 2
011 = 3
100 = 4
101 = 5
110 = 6
111 = 7

base-10 numbers can encode 10N different values with
N discrete numbers in the range 0–9 (e.g., two base
10 numbers can encode 0–99), 2N different values can
be encoded by N binary bits. Eight such bits make
up a byte (e.g., the value 01101111 is a byte). Two
bytes (16 bits) are a word. Standard encoding schemes
exist for representing commonly used data. For example,
letters, carriage returns, and other typographics can be
represented using the 7-bit American Standard Code for
Information Interchange (ASCII, pronounced “ask-ee”).
Table TT8-2 gives these codes for capital letters. Many
such standards exist (ranging from the data encoding
format for, say, Blu-ray data to data transmission across
ATM networks).

When representing floating point numbers (such as
−2.3), the computer must encode the sign (−1), the
number and the exponent. The precision to which a
number can be represented depends on how many bits
are used. Four words (32 bits) are considered single
precision, and 64 bits are double precision. The first bit
is the sign (1 = negative), and the next 8 bits are the
exponent. The remaining 23 bits (single precision) or 55
bits (double precision) are used to represent the number.
This means that the floating point representation of the
number has a certain predictable round-off error, and
when the computer adds, subtracts, multiplies, etc., this
error is also present in the calculations. Usually it is too
small to be noticed, but in some cases (2−1.9999 . . . �= 0)
it can cause unexpected problems in computer programs.

We commonly convert back and forth between analog
and digital voltages. Almost all analog signals are
converted to digital signals for storage (e.g., images),
wireless transmission (your voice in a cell phone call), and
performing mathematical functions (in your calculator).
This is done with an analog-to-digital converter (ADC).
Sometimes the digital signal must be converted back to
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Table TT8-2: ASCII characters for capital letters.

0100 0001 = A 0100 1110 = N
0100 0010 = B 0101 1111 = O
0100 0011 = C 0101 0000 = P
0100 0100 = D 0101 0001 = Q
0100 0101 = E 0101 0010 = R
0100 0110 = F 0101 0011 = S
0100 0111 = G 0101 0100 = T
0100 1000 = H 0101 0101 = U
0100 1001 = I 0101 0110 = V
0100 1010 = J 0101 0111 = W
0100 1011 = K 0101 1000 = X
0100 1100 = L 0101 1001 = Y
0100 1101 = M 0101 1010 = Z

analog (so your friend can hear your voice on his cell
phone). This is done with a digital-to-analog converter
(DAC).

The analog voltage in Fig. TF8-1 can be converted to
digital using an ADC to sample it, find the closest step that
matches the signal, and convert the value of that step to
a digital value. The number of steps (controlled by the
number of bits in the ADC) controls the precision of the
ADC. Figure TF8-1 shows a very coarse 3-bit ADC that
can represent 8 levels.The difference between the actual
analog signal and the level that can be represented with
the ADC is called the quantization error.

One of the strengths of digital representations of data is
that manipulations of this data (mathematical operations,
storage, etc.) can be carried out efficiently with switching
networks.These are circuits of components wherein each
component can only produce one of two voltage values.
Transistors, in particular MOSFETS (see Chapter 4), are
particularly well-suited to act as switches in these circuits;
modern integrated circuits contain on the order of a billion
MOSFETS arranged into circuits to manipulate digital
data. Importantly, most modern integrated circuits contain
both analog and digital circuits and are known as mixed-
signal circuits (see Section 13-9).Using built-in ADC and

Analog

10 V = 111
8.0 V = 110
6.8 V = 101
5.7 V = 100
4.3 V = 011
2.8 V = 010
1.4 V = 001

0 V = 000

Digital

Time

Figure TF8-1: Three-bit digital representation of a continuous signal.
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AND
A

B

Input

0 0 0
0 1 0
1 0 0
1 1 1

A B A and B
Output

OR

Input

0 0 0
0 1 1
1 0 1
1 1 1

A B A or B
Output

A

B
XOR

Input

0 0 0
0 1 1
1 0 1
1 1 0

A B A xor B
Output

A

B

NOT

Input

0 1
1 0

A Not A
Output

A

Figure TF8-2: Logic gates.

DAC circuits, data is moved from the analog to the digital
domain within a single chip.

But sometimes we use only a few gates for simple
control operations or prototyping. Each gate takes two
digital signals (which can be either a 0 or 1) as input, and
outputs a different digital signal (based on these inputs).
Figure TF8-2 shows a few of these common logic gates.
An AND gate outputs a 1 if both input A AND input B
are 1. An OR gate outputs a 1 if either input A OR input B
are 1. A NOT gate outputs a 1 if input A is NOT a 1; i.e.,
it inverts the input. An exclusive OR gate, called an XOR
gate, outputs a 1 if one and only one of input A OR input B
is 1.

One way to prototype with logic gates is to use a
chip that plugs into your protoboard (see Appendix F).
FigureTF8-3 shows an example of a quad AND package.
Each pin on the chip is numbered 1–14 and plugs into
a separate node (row) on the protoboard. Logic gates
are active devices, which means they require an external
power supply, so Vcc is plugged into pin 14, and GND into
pin 7.

Interfacing from the real world to a computer most
often involves an analog sensor (such as a thermistor for
measuring temperature), a level-shifter (amplifier or de-
amplifier or comparator that converts the analog output

1 2 3 4 5 6 7

7408 Quad 2 Input AND

14 13 12 11 10 9 8

GND

Vcc

Figure TF8-3: Quad AND package.

voltage to digital levels), and then a logic circuit to act
upon the output (turn a switch to a heater on or off, for
instance). When interfacing back to the real world, the
digital signal may be applied in digital form, or may need to
be converted back to an analog signal (to drive speakers
for voice and music, or precision control of an engine air
intake, for example).
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Exercise 3-14: The bridge circuit of Fig. E3.14 is
connected to a load RL between terminals (a, b). Choose
RL such that maximum power is delivered to RL. If
R = 3 �, how much power is delivered to RL?

RL

R
a b

R

2R

2R

24 V
+
_
+
_

Figure E3.14

Answer: RL = 4R/3 = 4 �, pmax = 4 W.  (See         )

Example 3-15: Bridge Circuit

In the bridge circuit shown in Fig. 3-32(a), choose RL so that
the power delivered to it is a maximum. How much power will
that be?

Solution: After temporarily removing RL from the circuit,
we proceed to find the Thévenin equivalent of the circuit at
terminals (a, b).

Open-Circuit Voltage: In the circuit shown in Fig. 3-32(b), we
designate the bottom node of the bridge as ground and the top
node as voltage V1. Application of KCL at node V1 gives

V1 − 16

5
+ V1

2 + 4
+ V1

2 + 4
= 0,

which leads to

V1 = 6 V.

Voltage division gives

Va =
(

4

2 + 4

)
V1 = 4 V,

Vb =
(

2

2 + 4

)
V1 = 2 V.

Hence,

VTh = Voc = Va − Vb = 4 − 2 = 2 V.

5 Ω 2 Ω

4 Ω 2 Ω

4 Ω

RL+
_16 V

a b

5 Ω
2 Ω

4 Ω 2 Ω

4 Ω

+
_16 V

a b
I1

I2

I3

Isc

+ _

RL

2.88 Ω
2 V

a b

(a) Original circuit

(b) Open-circuit voltage

(c) Short-circuit current

(d) Thévenin equivalent circuit

5 Ω 2 Ω

4 Ω 2 Ω

4 Ω

+
_16 V

a bVoc+ _

I1 I2

V1

Va Vb

Figure 3-32: Evolution of the circuit of Example 3-15.

Short-Circuit Current: In the circuit configuration shown
in Fig. 3-32(c), terminals (a, b) are connected by a short
circuit. Application of the mesh-analysis by-inspection method
(Section 3-4.2) leads to the matrix equation⎡

⎣11 −2 −4
−2 6 0
−4 0 6

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣16

0
0

⎤
⎦ .
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Matrix inversion by MATLAB or MathScript yields

I1 = 96

46
A, I2 = 32

46
A, I3 = 64

46
A.

Hence, the short-circuit current is

Isc = I3 − I2 = 64

46
− 32

46
= 32

46
= 0.7,

and

RTh = Voc

Isc
= 2

0.7
= 2.88 �.

The Thévenin equivalent circuit is shown in Fig. 3-32(d). Power
transfer to RL is a maximum when

RL = RTh = 2.88 �,

and according to Eq. (3.45),

pmax = υ2
s

4RL
= (2)2

4 × 2.88
= 0.35 W.

3-9 Application Note: Bipolar Junction
Transistor (BJT)

With the exception of the SPDT switch, all of the elements
we have discussed thus far have been two-terminal devices,
each characterized by a single i–υ relationship. These include
resistors, voltage and current sources, as well as the pn-junction
diode of Section 2-6.2. The potentiometer (Fig. 2-3(b)) may
appear to be like a three-terminal device, but in reality it is no
more than two resistors—each with its own pair of terminals.
This section introduces a true three-terminal device, the bipolar
junction transistor (BJT).

The BJT is a three-layer semiconductor structure commonly
made of silicon. Other compounds sometimes are used
for special-purpose applications (such as for operation at
microwave and optical frequencies), but for the present, we
will limit our examination to silicon-based transistors and their
uses in dc circuits. The three terminals of a BJT are called the
emitter, collector, and base, and each is made of either a p-type
(silicon with positive charge carriers) or n-type (silicon with
negative charge carriers) semiconductor material. The emitter
and collector are made of the same material—either p-type or
n-type—and the base is made of the other material. Thus, the
BJT can be constructed to have either a pnp configuration or
an npn configuration, as shown in the diagrams of Fig. 3-33.
The geometries and fabrication details of real transistors are

+

+
+

_

_

_

IC

C

E

B

IE

IB

VBC

VBE

VCE

Configuration Schematic symbol

(a) pnp transistor

pnp

npn

Schematic symbol

(b) npn transistor

+

+
+

_

_

_

IC

C

E

B

IE

IB

VBC

VBE

VCE

Conducting
connector

Conducting
connector

C

E

B

p

p

n

Configuration

C

E

B

n

n

p

Figure 3-33: Configurations and symbols for (a) pnp and
(b) npn transistors.

far more elaborate than the simple diagrams suggest, but the
basic idea that the BJT consists of three alternating layers of
p- and n-type material is quite sufficient from the standpoint of
its external electrical behavior.

Figure 3-33 also shows schematic symbols used for the pnp
and npn transistors. The center terminal is always the base. One
of the three leads includes an arrow. The lead containing the
arrow identifies the emitter terminal and whether the transistor
is a pnp or npn. The arrow always points towards an n-type
material, so in the pnp transistor, the arrow points towards the
base, whereas in an npn transistor, the arrow points away from
the base.
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E

B C

IE

IB

VBE

IC

βIB

Figure 3-34: dc equivalent model for the npn transistor. The
equivalent dc source VBE ≈ 0.7 V.

The directions of the terminal currents shown in Fig. 3-33
are defined such that the base and collector currents IB and IC,
respectively, flow into the transistor, and the emitter current IE
flows out of it. KCL requires that

IE = IB + IC. (3.44)

Under normal operating conditions, IE has the largest
magnitude of the three currents, and IB is much smaller than
either IC or IE. The transistor can operate under both dc
and ac conditions, but we will limit our present discussion
to dc circuits. For simplicity, we will consider only the npn
common-emitter configuration. Accordingly, we can describe
the operation of the npn transistor by the dc equivalent model
shown in Fig. 3-34. The circuit contains a constant dc voltage
source VBE and a dependent current-controlled current source
that relates IC to IB by

IC = βIB, (3.45)

where β is a transistor parameter called the common-emitter
current gain. This is a perfect example of how a nonlinear
element can be modeled in terms of a linear circuit containing
a dependent source. Under normal operation, VBE ≈ 0.7 V,
and β may assume values in the range between 30 and 1000,
depending on its specific design configuration. The VBE source
in Fig. 3-34 models a built-in voltage drop that arises within
the transistor at the interface of p-type and n-type regions; it
is not a true independent source as it can never supply power.
Transistors never supply power, they modify the flow of power
through them in interesting and useful ways. To operate in its
active mode, the transistor requires that certain dc voltages be
applied at its base and collector terminals. We shall refer to
these voltages as VBB and VCC, respectively.

Example 3-16: BJT Amplifier Circuit

Apply the equivalent-circuit model with VBE ≈ 0.7 V and
β = 200 to determine IB, IC, and VCE in the circuit
of Fig. 3-35(a). Assume that VBB = 2 V, VCC = 10 V,
RB = 26 k�, and RC = 200 �.

Solution: Upon replacing the npn transistor with its
equivalent circuit, we end up with the circuit shown in
Fig. 3-35(b). In the left-hand loop, KVL gives

−VBB + RBIB + VBE = 0,

which leads to

IB = VBB − VBE

RB
= 2 − 0.7

26 × 103 = 5 × 10−5 A = 50 μA.

Given that β = 200,

IC = βIB = 200 × 50 × 10−6 = 10 mA

and

VCE = VCC − ICRC = 10 − 10−2 × 200 = 8 V,

which is a 4-times amplification of source VBB.

(a) Transistor circuit

(b) Equivalent circuit

IC

C

E

B IBRB
RC

VBB VCC

VCE

+

_

+

_

IC

C

E

B IBRB

RC
VBB

VCC

VCEVBE βIB

Figure 3-35: Circuit for Example 3-16.
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Example 3-17: Digital-Inverter Circuit

Digital logic deals with two states, “0” and “1” (or equivalently
“low” and “high”). A digital-inverter circuit provides one of the
logic operations performed by a computer processor, namely
to invert the state of an input bit from low to high or from
high to low. Demonstrate that the transistor circuit shown in
Fig. 3-36 functions as a digital inverter by plotting its output
voltage Vout versus the input voltage Vin. A bit is assumed to
be in state 0 (low) if its voltage is between 0 and 0.5 V and
in state 1 (high) if its voltage is greater than 4 V. Assume that
the equivalent model given by Fig. 3-34 is applicable (with
β = 20) with the following qualifications: neither IB nor Vout
can have negative values, so if the analysis using the equivalent-
circuit model generates a negative value for either one of them,
it should be replaced with zero.

Solution: The equivalent circuit shown in Fig. 3-36(b)
provides the following expressions:

IB = Vin − 0.7

20k
, (3.46)

IC = βIB = 200IB, (3.47)

and

Vout = VCC − ICRC. (3.48)

Combining the three equations leads to

Vout = VCC − βRC

RB
(Vin −0.7) = 12−10Vin (V). (3.49)

Since Vout is linearly related to Vin, the plot would be a straight
line, as shown in Fig. 3-36(c), but we also have to incorporate
the provisions that IB cannot be negative (which occurs when
Vin < 0.7 V), and Vout cannot be negative (which occurs when
Vin = 1.2 V). The resultant transfer function clearly satisfies
the digital inverter requirements:

Input: Low Output: High

If Vin < 0.5 V Vout = 5 V,

Input: High Output: Low

If Vin > 1.2 V Vout = 0.

+

_

RB = 20 kΩ
RC = 1 kΩ

Vin VCC = 5 V

Vout

+

_

Inverter circuit

Equivalent circuit

Vout versus Vin

(a)

(b)

(c)

+

_

+

_

ICIBRB = 20 kΩ

1 kΩ
Vin

5 V

Vout0.7 V 200IB

1.20.70
0

1

2

3

4

5

2 3 4 5

Vout (V)

Vin (V)

I

II

State Input Output
I
II

Low
LowHigh
High

Figure 3-36: Circuit for Example 3-17.

Concept Question 3-16: How is the collector current
related to the base current in a BJT? (See         )

Concept Question 3-17: What is a digital inverter? How
are its input and output voltages related to one another?
(See         )
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(a) Six-node circuit

(b) Multisim circuit and solution

2 V Vx 0.1Vx

V1 = 1 V
100 Ω

50 Ω

50 Ω

75 ΩV(1)

V(2)

V(3) V(4) V(5)

+
_

+

_

+_

Figure 3-37: Circuit analysis with Multisim.

Exercise 3-15: Determine IB, Vout1 , and Vout2 in the
transistor circuit of Fig. E3.15, given that VBE = 0.7 V
and β = 200.

Figure E3.15

IB

2 V
8 V Vout2

Vout1

+

_

+
_

200 Ω

100 Ω

5 kΩ

Answer: IB = 51.79 μA, Vout1 = 1.04 V, 
Vout2 = 5.93 V. (See         )

3-10 Nodal Analysis with Multisim

Multisim is a particularly useful tool for analyzing circuits
with many nodes. Consider the six-node circuit shown in
Fig. 3-37(a), in which the voltages and currents are designated
in accordance with the Multisim notation system. In Multisim,
V1 refers to the voltage of source 1 andV(1) refers to the voltage
at node 1. Application of nodal analysis would generate five
equations with five unknowns, V(1) to V(5), whose solution
would require the use of matrix algebra or several steps of
elimination of variables. [For this simple two-loop circuit,
mesh analysis is much easier to apply, as it involves only two
mesh equations and one auxiliary equation for the dependent
current source, but the objective of the present section is to
illustrate how Multisim can be used for circuits involving a
large number of nodes.] When drawn in Multisim, the circuit
appears in the form shown in Fig. 3-37(b). Application of either
Measurement Probes or DC Operating Point Analysis
generates the values of V(1) to V(5) listed in the inset of
Fig. 3-37(b).
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(a) Circuit with SPDT switch

SPDT
2 V Vx

1 V

1

2

I = 0.1Vx
50 Ω

50 Ω

1 A3 kΩ

100 Ω 75 Ω

+
_

+

_

+_

(b) Multisim configuration

Figure 3-38: (a) Circuit with a switch, and (b) its Multisim representation.

For circuits containing more than four or five nodes,
analyzing the circuit by hand becomes unwieldy. Moreover,
some circuits may contain time-varying sources or elements.
Consider, for example, the circuit in Fig. 3-38(a), which is a
replica of the circuit in Fig. 3-37 except for the addition of an
SPDT switch. [In Multisim, the switch can be toggled between
positions 1 and 2 using the space bar on your computer.] When
connected to position 1, the state of the circuit is identical to that
in Fig. 3-37, but when the SPDT switch is moved to position 2,
the new circuit configuration includes two additional elements
and one extra node.

The circuit drawn in Multisim is shown in Fig. 3-38(b).
The SPDT is available in the Select a Component window
under the Basic group in the SWITCH family. Measurement

Probes were added to nodes 4, 5, and 6. Using the Interactive
Simulation feature of Multisim, the circuit can be analyzed in

each of its two states by pressing F5 (or the button or

toggle switch) to start the simulation, and then toggling
the switch by pressing the space bar. This live-action switching
capability is why this particular tool is known as Interactive
Simulation.

In the Multisim section of Chapter 2, we examined how
the DC Operating Point Analysis tool can be used to
determine differences between node voltages. In addition to
basic subtraction, there are many operators that you can apply
to variables (or combinations of variables) to obtain the desired
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quantities. [See the Multisim Tutorial on the book website
http://c3.eecs.umich.edu for a list of the basic operators].

We will now use variable manipulation in the DC Operating
Point Analysis to calculate the power dissipated or supplied in
each component in the circuit in Fig. 3-37(a). To calculate the
power for each component, we need to know both the current
through and voltage across each component. However, for
many devices, Multisim can calculate the power automatically.
Open up the DC Operating Point Analysis window. Notice
that for the voltage sources and resistors, Multisim allows
you to select to solve for the power, using the P() notation.
You can also ask Multisim to solve for expressions which
use the available variables. In the output tab enter equations
via the Add Expression. . . button. We’ll enter an expression
for the power across the controlled source this way using
the expression V(5)*I(BI2). Click OK after entering any
expressions. [Remember proper sign notation and current
direction.] The equations for power should be

Source V1: (V(4)-V(3))*I(v1)
Source V2: (V(1)-V(2))*I(v2)
Source I1: -V(5)*I(v1)
Resistor R1: (V(3)-V(1))*I(v2)
Resistor R2: V(3)*I(v3)
Resistor R3: (V(5)-V(4))*I(v1)
Resistor R4: V(2)*I(v2)

Note: Remember that these variable names apply to the
circuit shown in Fig. 3-39(a). If your circuit has a different
numbering for nodes or voltage sources, your equations will
differ in number accordingly.

Once these equations are entered, the SelectedVariables for
Analysis field should resemble that in Fig. 3-39(b). To obtain
the values, press the Simulate button. The results should agree
with those shown in Fig. 3-39(c).

Knowing how to write equations such as these in Multisim is
very important, because many other Analyses which you will
encounter later in the book utilize identical syntax to that used
for the DC Operating Point Analysis.

Concept Question 3-18: What is the difference between 
the Measurement Probe tool and the DC Operating 
Point Analysis? (See         )

Exercise 3-16: Use Multisim to calculate the voltage at
node 3 in Fig. 3-38(b) when the SPDT switch is connected
to position 2. 

Answer: (See )

(a) Multisim circuit of Fig. 3-32(a) ready for
power calculations

(c) Output of simulations (remember that all values
are in watts)

(b) Selected variables for analysis visible in
DC Operating Point Analysis window

Figure 3-39: Multisim procedure for calculating power
consumed (or generated) by the seven elements in the circuit
of Fig. 3-37(a).
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Summary

Concepts

• After designating one of the extraordinary nodes in a
circuit as reference (ground), KCL at the remaining
extraordinary nodes provides the requisite number of
equations for determining the voltages at those nodes.

• Two extraordinary nodes connected by a solitary voltage
source constitute a supernode. The two nodes can be
treated as a single node, augmented by an auxiliary
relation specifying the voltage difference between them.

• By assigning a mesh current to each independent loop,
application of KVL leads to the requisite number of
equations for determining the unknown mesh currents.

• Two adjoining loops sharing a branch containing a
solitary current source constitute a supermesh. The two
loops can be treated as a single loop, augmented by an
auxiliary relation specifying the relationship between
their mesh currents..

• A circuit containing no dependent sources and only
current sources can be analyzed by the node-voltage
by-inspection method.

• Similarly, a circuit containing no dependent sources and
only voltage sources can be analyzed the mesh-current
by-inspection method.

• Thévenin’s (Norton’s) theorem states that a linear circuit
can be represented by an equivalent circuit composed of
a voltage source (current source) in series (in parallel)
with a resistor.

• Thévenin and Norton equivalent circuits are powerful
tools for analyzing and designing complex, cascaded
circuits.

• The power transferred by an input circuit to an external
load is at a maximum when the load resistance is equal to
the Thévenin resistance of the input circuit. The fraction
of the power thus transferred is 50 percent of the power
supplied by the generator.

• Multisim is a useful tool for simulating the behavior of a
circuit and examining its sensitivity to specific variables
of interest.

Mathematical and Physical Models
Node-voltage method∑

of all current leaving a node = 0
[current entering a node is (−)]

Mesh-current method∑
of all voltages around a loop = 0

[passive sign convention applied to
mesh currents in clockwise direction]

Nodal analysis by inspection GV = It

Mesh analysis by inspection RI = Vt

Thévenin equivalent circuit υTh = υoc
RTh = υoc/isc

Norton equivalent circuit iN = isc
RN = RTh

Maximum power transfer RL = Rs

pmax = υ2
s

4RL

Important Terms Provide definitions or explain the meaning of the following terms:

active
additivity property
artificial sources
base
bipolar junction

transistor (BJT)
block

bridge circuit
by-inspection method
cell-phone circuit
collector
common collector

amplifier
common-emitter amplifier

common-emitter
current gain

conductance matrix
current mirror
decoupled
digital inverter
emitter
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Important Terms (continued)

extraordinary node
homogeneity
impedance
independent
linear circuit
linear elements
load circuit
load impedance
loading
matching
maximum power transfer
mesh

mesh analysis by inspection
mesh current
nodal analysis by inspection
node-voltage method
Norton’s theorem
npn configuration
passive
pnp configuration
quasi-supernode
resistance matrix
scaling
source circuit

source superposition
source vector
supermesh
supernode
superposition principle
Thévenin’s theorem
Thévenin’s voltage
Thévenin’s resistance
uncoupled
voltage vector

PROBLEMS

Section 3-2: Node-Voltage Method

*3.1 Apply nodal analysis to find the node voltage V in the
circuit of Fig. P3.1. Use the information to determine the
current I .

3 Ω

2 Ω 4 Ω2 Ω

16 V
12 V

+
_

+
_

I

V

+
_
+
_

+
_

Figure P3.1: Circuit for Problem 3.1.

3.2 Apply nodal analysis to determine Vx in the circuit of
Fig. P3.2.

1 Ω

2 Ω

4 Ω

2 Ω

3 A Vx
+

_

Figure P3.2: Circuit for Problem 3.2.

∗
Answer(s) available in Appendix G.

*3.3 Use nodal analysis to determine the current Ix and amount
of power supplied by the voltage source in the circuit of
Fig. P3.3.

2 Ω
4 Ω

8 Ω
40 V9 A

Ix +
_

Figure P3.3: Circuit for Problem 3.3.

3.4 For the circuit in Fig. P3.4:

(a) Apply nodal analysis to find node voltages V1 and V2.

(b) Determine the voltage VR and current I .

1 Ω 1 Ω1 Ω

1 Ω 1 Ω

VR+ _
16 V

V1 V2 I
+
_
+
_

Figure P3.4: Circuit for Problem 3.4.

*3.5 Apply nodal analysis to determine the voltage VR in the
circuit of Fig. P3.5.

2 Ω

4 Ω 4 Ω

8 VVR+ _
12 V

+
_

+
_

+
_

+
_

Figure P3.5: Circuit for Problem 3.5.
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3.6 Use the nodal-analysis method to find V1 and V2 in the
circuit of Fig. P3.6, and then apply that to determine Ix .

6 Ω

12 Ω

6 Ω 3 A4 A2 A

V1 V2

Ix

Figure P3.6: Circuit for Problem 3.6.

*3.7 Find Ix in the circuit for Fig. P3.7.

5 Ω 5 Ω 5 Ω

10 Ω
10 Ω

10.5 V21 V

Ix

+
_+

_

Figure P3.7: Circuit for Problem 3.7.

3.8 For the circuit in Fig. P3.8:

(a) Determine I .

(b) Determine the amount of power supplied by the voltage
source.

(c) How much influence does the 4 A source have on the
circuit to the left of the 3 A source?

2 Ω
8 Ω 8 Ω 8 Ω 8 Ω

6 V

3 A

4 A

I

+
_
+
_

Figure P3.8: Circuit for Problem 3.8.

3.9 Apply nodal analysis to find node voltages V1 to V3 in the
circuit of Fig. P3.9 and then determine Ix .

V1 V3
V23 Ω 6 Ω

2 Ω
2 Ω 4 Ω

4 A

48 V

Ix

+
_
+
_

Figure P3.9: Circuit for Problem 3.9.

3.10 The circuit in Fig. P3.10 contains a dependent current
source. Determine the voltage Vx .

2Vx3 Ω

2 Ω

6 Ω6 V Vx
+

_
+
_
+
_

Figure P3.10: Circuit for Problem 3.10.

*3.11 Determine the power supplied by the independent
voltage source in the circuit of Fig. P3.11.

2Vx4 Ω
2 Ω

12 V

Vx+ _

+
_ +_+_
+
_

Figure P3.11: Circuit for Problem 3.11.

3.12 The magnitude of the dependent current source in the
circuit of Fig. P3.12 depends on the current Ix flowing through
the 10 � resistor. Determine Ix .

10 Ω 20 Ω

5 Ω

2 Ω4 Ω12.3 V

Ix

2Ix
+
_
+
_

Figure P3.12: Circuit for Problems 3.12 and 3.13.
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*3.13 Repeat Problem 3.12 after replacing the 5 � resistor in
Fig. P3.12 with a short circuit.

3.14 Apply nodal analysis to find the current Ix in the circuit
of Fig. P3.14.

0.1 Ω

0.1 Ω

0.5 Ω0.5 Ω

0.2 Ω

0.1 Ω

3 V2 V

4 V

Ix

+
_

+
_

+
_

+
_

+ _

Figure P3.14: Circuit for Problem 3.14.

*3.15 Use the supernode concept to find the current Ix in the
circuit of Fig. P3.15.

0.5 Ω

0.5 Ω

0.5 Ω 4 A

2 A

6 V

Ix
+_

Figure P3.15: Circuit for Problem 3.15.

3.16 Apply the supernode technique to determine Vx in the
circuit of Fig. P3.16.

1 kΩ 4 kΩ

6 kΩ

5 kΩ

2 kΩ

6 V

10 V
Vx
+
_

+_

+
_

Figure P3.16: Circuit for Problem 3.16.

*3.17 Determine Vx in the circuit of Fig. P3.17.

I
1 Ω1 Ω

1 Ω

4 Ω

6 Ω2 Ω

Vx
+

_

2I

8 V
+
_

+_

Figure P3.17: Circuit for Problems 3.17 and 3.18.

3.18 Repeat Problem 3.17 after replacing the 2 � resistor in
Fig. P3.17 with a short circuit.

3.19 For the circuit shown in Fig. P3.19:

(a) Determine Req between terminals (a, b).

(b) Determine the current I using the result of (a).

(c) Apply nodal analysis to the original circuit to determine the
node voltages and then use them to determine I . Compare
the result with the answer of part (b).

V0

R

Req

R

R

R

R

R

RR

RRR
a

I

b

+ _

Figure P3.19: Circuit for Problem 3.19.

*3.20 For the circuit in Fig. P3.20, determine the current Ix .

1 Ω
0.1 Ω

0.2 Ω

0.2 Ω

0.1 Ω

1 Ω
4 V

+
_

Ix

Figure P3.20: Circuit for Problem 3.20.
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3.21 Apply nodal analysis to determine Vx in the circuit of
Fig. P3.21.

4 Ω

2 A

+

_

5 Ω

3 Ω 6 Ω 1 A 7 Ω Vx

Figure P3.21: Circuit for Problem 3.21.

3.22 Apply nodal analysis to determine VL in the circuit of
Fig. P3.22.

3 kΩ

4 kΩ1 V
3Vx VL

Vx

+

_

1 kΩ

+

_
2 kΩ

2 kΩ

+_

+
_

Figure P3.22: Circuit for Problem 3.22.

*3.23 Apply nodal analysis to determine Vx in the circuit of
Fig. P3.23.

2 kΩ 5 kΩ

7 kΩ

2 A

Vx
5 V

3 kΩ

+_ + _

+
_7 V

Figure P3.23: Circuit for Problem 3.23.

3.24 Apply nodal analysis to determine Vx in the circuit of
Fig. P3.24.

2 V 8 Ω

+

_

8 Ω

1 Ω 3 Ω

4 Ω

1 Ω

Vx

+
_

2 A

Figure P3.24: Circuit for Problem 3.24.

3.25 Apply nodal analysis to determine Va , Vb, and Vc in the
circuit of Fig. P3.25.

10 Ω

10 V

2.5 Ω

15 Ω

3 A 25 V5 Ω

Va

7.5 Ω 5 Ω
+
_

+
_

50 V

Vc
Vb + _

Figure P3.25: Circuit for Problem 3.25.

Section 3-3: Mesh-Current Method

*3.26 Apply mesh analysis to find the mesh currents in the
circuit of Fig. P3.26. Use the information to determine the
voltage V .

2 Ω

4 Ω
3 Ω

2 Ω

I1 I216 V
12 V

V

+
_ +

_

Figure P3.26: Circuit for Problem 3.26.
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3.27 Use mesh analysis to determine the amount of power
supplied by the voltage source in the circuit of Fig. P3.27.

2 Ω 4 Ω

8 Ω

40 V9 A
+
_

Figure P3.27: Circuit for Problem 3.27.

*3.28 Determine V in the circuit of Fig. P3.28 using mesh
analysis.

2 Ω

4 Ω V 4 Ω

8 V12 V
+
_

+
_

+
_

+
_

Figure P3.28: Circuit for Problem 3.28.

3.29 Apply mesh analysis to find I in the circuit of Fig. P3.29.

1 Ω 1 Ω1 Ω

1 Ω 1 Ω

16 V
+
_

I

Figure P3.29: Circuit for Problem 3.29.

*3.30 Apply mesh analysis to find Ix in the circuit of
Fig. P3.30.

5 Ω

5 Ω

5 Ω

10 Ω
10 Ω

10.5 V21 V

Ix

+
_+

_

Figure P3.30: Circuit for Problem 3.30.

3.31 Apply mesh analysis to determine the amount of power
supplied by the voltage source in Fig. P3.31.

3 Ω 6 Ω

2 Ω
2 Ω 4 Ω

4 A

48 V
+
_

Figure P3.31: Circuit for Problem 3.31.

*3.32 Use the supermesh concept to solve for Vx in the circuit
of Fig. P3.32.

1 Ω

2 Ω

4 Ω

2 Ω

3 A Vx
+

_

Figure P3.32: Circuit for Problem 3.32.

3.33 Use the supermesh concept to solve for Ix in the circuit
of Fig. P3.33.

6 Ω

12 Ω

6 Ω 3 A4 A2 A

Ix

Figure P3.33: Circuit for Problem 3.33.

3.34 Apply mesh analysis to the circuit in Fig. P3.34 to
determine Vx .

2Vx3 Ω

2 Ω

6 Ω6 V Vx
+

_
+
_
+
_

Figure P3.34: Circuit for Problem 3.34.
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3.35 Determine the amount of power supplied by the
independent voltage source in Fig. P3.35 by applying the mesh-
analysis method.

2Vx4 Ω
2 Ω

12 V

Vx+ _

+
_ +_+_
+
_

Figure P3.35: Circuit for Problem 3.35.

*3.36 Use mesh analysis to find Ix in the circuit of Fig. P3.36.

0.1 Ω

0.1 Ω

0.5 Ω0.5 Ω

0.2 Ω

0.1 Ω

3 V2 V

4 V

Ix

+
_

+
_

+ _

Figure P3.36: Circuit for Problem 3.36.

3.37 The circuit in Fig. P3.37 includes a dependent current
source. Apply mesh analysis to determine Ix .

10 Ω 20 Ω

5 Ω

2 Ω4 Ω12.3 V

Ix

2Ix
+
_
+
_

Figure P3.37: Circuit for Problems 3.37 and 3.38.

3.38 Repeat Problem 3.37 after replacing the 5 � resistor in
Fig. P3.37 with a short circuit.

*3.39 Apply mesh analysis to the circuit of Fig. P3.39 to
determine Ix .

0.5 Ω

0.5 Ω

0.5 Ω 4 A

2 A

6 V

Ix
+_

Figure P3.39: Circuit for Problem 3.39.

3.40 Determine Vx in the circuit of Fig. P3.40.

I
1 Ω1 Ω

1 Ω

4 Ω

6 Ω2 Ω

Vx
+

_

2I

8 V
+
_

+_

Figure P3.40: Circuit for Problems 3.40 and 3.42.

3.41 Apply the supermesh technique to find Vx in the circuit
of Fig. P3.41.

1 kΩ 4 kΩ

6 kΩ

5 kΩ

2 kΩ

2 mA

6 V

Vx

+

_

+_

Figure P3.41: Circuit for Problem 3.41.

*3.42 Repeat Problem 3.40 after replacing the 2 � resistor in
Fig. P3.40 with a short circuit.
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3.43 Apply mesh analysis to the circuit of Fig. P3.43 to
find Ix .

1 Ω
0.1 Ω

0.2 Ω

0.2 Ω

0.1 Ω

1 Ω
4 V

+
_

Ix

Figure P3.43: Circuit for Problem 3.43.

3.44 Determine I0 in Fig. P3.44 through mesh analysis.

6 Ω

2 Ω

2 Ω

3 Ω

4 Ω

4 Ω

10 V

10 V

I0

+
_

+
_

Figure P3.44: Circuit for Problem 3.44.

*3.45 Use an analysis method of your choice to determine I0
in the circuit of Fig. P3.45.

5 Ω
10 Ω

10 Ω

10 Ω

10 Ω

10 Ω 5 Ω
12 V

5 Ω

I0

+
_

Figure P3.45: Circuit for Problem 3.45.

3.46 Simplify the circuit in Fig. P3.46 as much as possible
using source transformation and resistance combining, and then
apply mesh analysis to determine Ix .

3 Ω 4 Ω

4 Ω 3 Ω

+
_ 6 Ω6 Ω12 V

3 Ω

1 Ω

Ix
6 Ω

Figure P3.46: Circuit for Problem 3.46.

3.47 Apply mesh analysis to determine I0 in the circuit in
Fig. P3.47.

I0

Ix

2 V

+_

2 Ω

4 Ω

5 Ω3 Ω

2 Ω6 Ω

4Ix

Figure P3.47: Circuit for Problem 3.47.

*3.48 Apply mesh analysis to determine Ix in the circuit in
Fig. P3.48.

2 Ω
15 V

3 Ω2.5 A

Ix

+ _

Figure P3.48: Circuit for Problem 3.48.
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3.49 Apply mesh analysis to determine Ix in the circuit in
Fig. P3.49.

5 Ω
1 A

85 V

10 Ω Ix

50 V
+
_

+ _

10 Ω

5 Ω

10 Ω

10 Ω

5 Ω

Figure P3.49: Circuit for Problem 3.49.

3.50 Apply mesh analysis to determine Vx in the circuit in
Fig. P3.50.

2 Ω 3 Ω

5 Ω 3 Ω

4 Ω

1 A

2 V

Vx+ _

2 Ω

6 Ω2 Ω

+ _

Figure P3.50: Circuit for Problem 3.50.

3.51 Consider the circuit shown in Fig. P3.51.

(a) How many extraordinary nodes does it have?

(b) How many independent meshes does it have?

(c) The values of how many of those mesh currents can be
determined immediately from the circuit?

(d) Apply mesh analysis to find I ′.

I

12 Ω
3 A4 A

15 Ω

7 A

40 V
+
_

6 A

5 V

5 Ω

5 Ω

+
_

2 Ω

20 Ω

10 V

10 V

10 Ω

5 Ω5 Ω

7.5 Ω
1 A

+ _ ′

+_

Figure P3.51: Circuit for Problem 3.51.

Sections 3-4 and 3-5: By-Inspection and Superposition
Methods

*3.52 Apply the by-inspection method to develop a
node-voltage matrix equation for the circuit in Fig. P3.52 and
then use MATLAB or MathScript software to solve for V1
and V2.

6 Ω

12 Ω

6 Ω 3 A4 A2 A

V1 V2

Figure P3.52: Circuit for Problem 3.52.

3.53 Use the by-inspection method to establish a node-voltage
matrix equation for the circuit in Fig. P3.53. Solve the matrix
equation by MATLAB or MathScript software to find V1 to V4.
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8 Ω
9 Ω

5 Ω

3 Ω2 Ω

6 Ω
1 Ω 4 Ω

7 Ω
3 A

2 A

V1

V4V2 V3

Figure P3.53: Circuit for Problem 3.53.

3.54 Develop a mesh-current matrix equation for the circuit
in Fig. P3.54 by applying the by-inspection method. Solve for
I1 to I3.

5 Ω

5 Ω

5 Ω

10 Ω10 Ω 4.2 V21 V

I3I2I1

+
_+

_

Figure P3.54: Circuit for Problem 3.54.

3.55 Find I0 in the circuit of Fig. P3.55 by developing a mesh-
current matrix equation and then solving it using MATLAB or
MathScript software.

10 Ω
20 Ω

20 Ω

20 Ω

20 Ω

20 Ω 10 Ω
12 V

10 Ω

I0

+
_

Figure P3.55: Circuit for Problem 3.55.

*3.56 Apply the by-inspection method to derive a node-voltage
matrix equation for the circuit in Fig. P3.56 and then solve it
using MATLAB or MathScript software to find Vx .

1 kΩ 4 kΩ

6 kΩ4 kΩ

5 kΩ

2 kΩ

2 mA
Vx

+

_

Figure P3.56: Circuit for Problem 3.56.

3.57 Use the by-inspection method to establish the mesh-
current matrix equation for the circuit in Fig. P3.57 and then
solve the equation to determine Vout.

538 V

Vout

2 Ω

1 Ω

4 Ω

2 Ω
4 Ω

8 Ω

16 Ω

8 Ω

+
_

+

_

Figure P3.57: Circuit for Problem 3.57.

*3.58 Develop a node-voltage matrix equation for the circuit
in Fig. P3.58. Solve it to determine I .

1 Ω

5 Ω

2 Ω

4 Ω3 Ω

I

2 A
V3V2

V1

Figure P3.58: Circuit for Problem 3.58.

3.59 Determine the amount of power supplied by the voltage
source in Fig. P3.59 by establishing and then solving the mesh-
current matrix equation of the circuit.
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3 Ω 4 Ω

1 Ω

5 Ω
2 Ω

4 Ω

2 Ω

8 V
+
_

Figure P3.59: Circuit for Problem 3.59.

3.60 Determine the current Ix in the circuit of Fig. P3.60
by applying the source-superposition method. Call I ′

x the
component of Ix due to the voltage source alone, and I ′′

x

the component due to the current source alone. Show that
Ix = I ′

x + I ′′
x is the same as the answer to Problem 3.9.

3 Ω 6 Ω

2 Ω
2 Ω 4 Ω

4 A

48 V
+
_

Ix

Figure P3.60: Circuit for Problem 3.60.

3.61 Apply the source-superposition method to the circuit in
Fig. P3.61 to determine:

(a) I ′
x , the component of Ix due to the voltage source alone

(b) I ′′
x , the component of Ix due to the current source alone

(c) The total current Ix = I ′
x + I ′′

x

(d) P ′, the power dissipated in the 4 � resistor due to I ′
x

(e) P ′′, the power dissipated in the 4 � resistor due to I ′′
x

(f) P , the power dissipated in the 4 � resistor due to the total
current I . Is P = P ′ + P ′′? If not, why not?

2 Ω
4 Ω

8 Ω
40 V9 A

Ix +
_

Figure P3.61: Circuit for Problem 3.61.

*3.62 Perform necessary source transformations and then use
the mesh analysis by-inspection method to determine Vx in the
circuit of Fig. P3.62.

2 A 2 Ω

1 A

4 Ω
3 Ω

7 Ω 9 Ω

+ _

8 Ω

6 Ω

5 Ω

Vx

Figure P3.62: Circuit for Problem 3.62.

3.63 Apply the source-superposition method to the circuit in
Fig. P3.63 to determine:

(a) V ′
x , the component of Vx due to the 1 A current source

alone.

(b) V ′′
x , the component of Vx due to the 10 V voltage source

alone.

(c) V ′′′
x , the component of Vx due to the 3 A current source

alone.

(d) The total voltage Vx = V ′
x + V ′′

x + V ′′′
x .

12 Ω 10 Ω

3 Ω5 Ω

18 ΩVx

15 Ω

10 V1 A
+
_ 3 A

+
_

+ _

Figure P3.63: Circuit for Problem 3.63.

Section 3-6: Thévenin and Norton Equivalents

*3.64 Find the Thévenin equivalent circuit at terminals (a, b)

for the circuit in Fig. P3.64.

1 Ω

2 Ω 3 Ω

4 Ω

2 Ω

3 A

a

b

Figure P3.64: Circuit for Problem 3.64.
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3.65 Find the Thévenin equivalent circuit at terminals (a, b)

for the circuit in Fig. P3.65.

2.5 Ω

4 Ω 6 Ω
3 Ω

4 A
2 V

a

b
+
_

Figure P3.65: Circuit for Problem 3.65.

3.66 The circuit in Fig. P3.66 is to be connected to a load
resistor RL between terminals (a, b).

(a) Find the Thévenin equivalent circuit at terminals (a, b).

(b) Choose RL so that the current flowing through it is 0.5 A.

4 Ω 6 Ω

8 Ω
4 Ω 10 Ω

4 A

48 V

adc

b

+
_

Figure P3.66: Circuit for Problems 3.66 and 3.67.

3.67 For the circuit in Fig. P3.66, find the Thévenin equivalent
circuit as seen by the 6 � resistor connected between terminals
(c, d) as if the 6 � resistor is a load resistor connected to (but
external to) the circuit. Determine the current flowing through
that resistor.

*3.68 Find the Thévenin equivalent circuit at terminals (a, b)

for the circuit in Fig. P3.68.

4 Ω
2 Ω

2 Ω2 Ω

4 Ω

4 Ω

12 V6 V

8 V

a

b

ce

d

+
_

+
_

+ _

Figure P3.68: Circuit for Problems 3.68 through 3.70.

3.69 Repeat Problem 3.68 for terminals (a, c).

3.70 Repeat Problem 3.68 for terminals (d, e) as seen by the
2 � resistor between them (as if it were a load resistor external
to the circuit).

3.71 Find the Thévenin equivalent circuit at terminals (a, b)

of the circuit in Fig. P3.71.

10 Ω 20 Ω 2 Ω

5 Ω

8 Ω4 Ω19 V

Ix

2Ix

a

b
+
_

Figure P3.71: Circuit for Problems 3.71 and 3.72.

*3.72 Find the Norton equivalent circuit of the circuit in
Fig. P3.71 after increasing the magnitude of the voltage source
to 38 V.

3.73 Find the Norton equivalent circuit at terminals (a, b) for
the circuit in Fig. P3.73.

0.2 Ω

0.2 Ω

0.1 Ω 0.25 Ω

a

b

I0

0.2I0+_

Figure P3.73: Circuit for Problem 3.73.

*3.74 Find the Norton equivalent circuit at terminals (a, b) of
the circuit in Fig. P3.74.

4 Ω

3 Ω
6 Ω

a

b

I0

1.2I0

15 V
+
_

Figure P3.74: Circuit for Problems 3.74 and 3.75.
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3.75 Repeat Problem 3.74 after replacing the 6 � resistor with
an open circuit.

3.76 Find the Norton equivalent circuit at terminals (a, b) of
the circuit in Fig. P3.76.

0.2 Ω

0.2 Ω

0.1 Ω

a

b

I0

0.2I0+_

Figure P3.76: Circuit for Problems 3.76.

*3.77 Obtain the Thévenin equivalent circuit at terminals (a, b)

in Fig. P3.77.

4 Ω5 V4 Ω

2 Ω 8 Ω 6 Ω

1 V

a
+
_

+
_

b

Figure P3.77: Circuit for Problem 3.77.

3.78 Obtain the Thévenin equivalent of the circuit to the left
of terminals (a, b) in Fig. P3.78. Use your result to compute
the power dissipated in the 0.4 � load resistor.

a

0.4 Ω
+
_

4 Ω4 Ω2 Ω

3 Ω

1 A

2 V

1 A

3 Ω

b

Figure P3.78: Circuit for Problem 3.78.

3.79 Obtain the Thévenin equivalent of the circuit in
Fig. P3.79 at terminals (a, b).

2I0

I0

2 Ω

4 Ω4 Ω

2 Ω

a

b

− +

Figure P3.79: Circuit for Problem 3.79.

*3.80 Obtain the Thévenin equivalent of the circuit in
Fig. P3.80 at terminals (a, b).

2 A

3 Ω

3 Ω 1 Ω

3 Ω

1 Ω

a b

Figure P3.80: Circuit for Problem 3.80.

Section 3-8: Maximum Power Transfer

3.81 What value of the load resistor RL will extract the
maximum amount of power from the circuit in Fig. P3.81, and
how much power will that be?

2 Ω

4 Ω 6 Ω

8 Ω

4 Ω

3 A RL

a

b

Figure P3.81: Circuit for Problem 3.81.
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3.82 For the circuit in Fig. P3.82, choose the value of RL so
that the power dissipated in it is a maximum.

2 kΩ

6 kΩ

4 kΩ

8 kΩ

2 mA
RL

a

b

Figure P3.82: Circuit for Problem 3.82.

*3.83 Determine the maximum power that can be extracted by
the load resistor from the circuit in Fig. P3.83.

2000Ix

6 kΩ

3 kΩ

4 kΩ

RL

Ix

15 V
+
_

+_

Figure P3.83: Circuit for Problem 3.83.

3.84 Figure P3.84 depicts a 0-to-10 k� potentiometer as a
variable load resistor RL connected to a circuit of an unknown
architecture. When the wiper position on the potentiometer was
adjusted such that RL = 1.2 k�, the current through it was
measured to be 3 mA, and when the wiper was lowered so
that RL = 2 k�, the current decreased to 2.5 mA. Determine
the value of RL that would extract maximum power from the
circuit.

RL
a

b

IL
Circuit }

Figure P3.84: Circuit for Problem 3.84.

*3.85 The circuit shown in Fig. P3.85 is connected to a variable
load RL through a resistor Rs. Choose Rs so that IL never
exceeds 4 mA, regardless of the value of RL. Given that choice,
what is the maximum power thatRL can extract from the circuit?

6 kΩ

3 kΩ

15 V

Rs

RL

IL
+
_
+
_

Figure P3.85: Circuit for Problem 3.85.

3.86 In the circuit shown in Fig. P3.86, a potentiometer is
connected across the load resistor RL. The total resistance of
the potentiometer is R = R1 + R2 = 5 k�.

(a) Obtain an expression for the power PL dissipated in RL
for any value of R1.

(b) Plot PL versus R1 over the full range made possible by the
potentiometer’s wiper.

R2
RL R

R1

2 kΩ

1 kΩ12 V
+
_

Figure P3.86: Circuit for Problem 3.86.

3.87 Determine the maximum power extractable from the
circuit in Fig. P3.87 by the load resistor RL.

200I0
1 kΩ

2 kΩ

2 kΩ

I0

RL
+_

Figure P3.87: Circuit for Problem 3.87.

3.88 In the circuit Fig. P3.88, what value of Rs would result
in maximum power transfer to the 10 � load resistor?

2 A RLRs 10 Ω

Figure P3.88: Circuit for Problem 3.88.
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Section 3-9: Bipolar Junction Transistor

*3.89 The two-transistor circuit in Fig. P3.89 is known as a
current mirror. It is useful because the current I0 controls the
current IREF regardless of external connections to the circuit.
In other words, this circuit behaves like a current-controlled
current source. Assume both transistors are the same size such
that IB1 = IB2 . Find the relationship between I0 and IREF.
(Hint: You do not need to know what is connected above or
below the transistors. Nodal analysis will suffice.)

I0

C2

E2

C1

E1

B
Transistor 2Transistor 1

IREF

Figure P3.89: A simple current mirror (Problem 3.89).

3.90 The circuit in Fig. P3.90 is a BJT common collector
amplifier. Obtain expressions for both the voltage gain
(AV = Vout/Vin) and the current gain (AI = Iout/Iin). Assume
Vin � VBE.

C

E
(Power supply)

B
Iin

RL

V0

Vin

Vout

+

_

Iout

+
_

+
_

Figure P3.90: Circuit for Problem 3.90.

3.91 The circuit in Fig. P3.91 is identical to the circuit in
Fig. P3.90, except that the voltage source Vin is more realistic
in that it has an associated resistance Rin. Find both the voltage
gain (AV = Vout/Vin) and the current gain (AI = Iout/Iin).
Assume Vin � VBE.

C

E
(Power supply)

BIin

RL

Rin

V0

Vin

Vout

+

_

Iout

+
_

+
_

Figure P3.91: Circuit for Problem 3.91.

3.92 The circuit in Fig. P3.92 is a BJT common-emitter
amplifier. Find Vout as a function of Vin.

(Power supply)

RL

Rs
V0

Vin

Vout

+

_

+
_

+
_

Figure P3.92: Circuit for Problem 3.92.

*3.93 Obtain an expression for Vout in terms of Vin for
the common emitter-amplifier circuit in Fig. P3.93. Assume
Vin � VBE.
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(Power supply)

RL

RsV0

Vin

Vout

RE

+

_

+
_

+
_

Figure P3.93: Circuit for Problem 3.93.

Section 3-10: Multisim Analysis

3.94 Using Multisim, draw the circuit in Fig. P3.94 and solve
for voltages V1 and V2.

6 Ω

12 Ω

6 Ω 3 A4 A3 A

V1 V2

Figure P3.94: Circuit for Problem 3.94.

3.95 The circuit in Problem 3.55 was solved using MATLAB
or MathScript software. It can be solved just as easily using
Multisim. Using Multisim, draw the circuit in Fig. P3.55 and
solve for all node voltages and the current I0.

3.96 Using Multisim, draw the circuit in Fig. P3.96 and solve
for Vx .

2Vx9 Ω

2 Ω

6 Ω6 V Vx
+

_
+
_
+
_

Figure P3.96: Circuit for Problem 3.96.

3.97 Use Multisim to draw the circuit in Fig. P3.97 and solve
for Vx .

2Vx4 Ω
2 Ω

12 V

Vx+ _

+
_ +_+_
+
_

Figure P3.97: Circuit for Problem 3.97.

3.98 Use the DC Operating Point Analysis in Multisim to
find the power dissipated or supplied by each component in the
circuit in Fig. P3.98 and show that the sum of all powers is zero.

5 Ω 5 Ω
10 Ω

25 Ω

5 Ω
10 Ω

10 VI
+
_

R1

2.5I R2 R3

R6R5R4

+_

Figure P3.98: Circuit for Problem 3.98.

3.99 Simulate the circuit found in Fig. P3.99 with a 10 �

resistor placed across the terminals (a, b). Then either by hand
or by using tools in Multisim (see Multsim Demo 3.3), find the
Thévenin and Norton equivalent circuits and simulate both of
those circuits in Multisim with 10 � resistors across their output
terminals. Show that the voltage drop across and current through
the 10 � load resistor is the same in all three simulations.

I

25 Ω

50 Ω 10 Ω

a

b
2I+_

R1

R2

R3
12 V

+
_

Figure P3.99: Circuit for Problem 3.99.

Potpourri Questions

3.100 Why is it of interest to measure the conductivity of sea
ice?

3.101 In integrated circuit fabrication, what is a wafer?A die?
A chip?
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3.102 How is lithography related to feature size in IC 
fabrication? Why are ICs fabricated under super-clean 
conditions?

3.103 What is a bit in a digital signal? A byte? A  word? What 
does the acronym ASCII stand for?

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following 
problems using three complementary approaches: (a) 
analytically, (b) with Multisim, and (c) by constructing the 
circuit and using the myDAQ interface unit to measure 
quantities of interest via your computer. [myDAQ tutorials 
and videos are available on                       .]

m3.1 Node-Voltage Method: Apply the node-voltage method 
to determine node voltages V1 to V4 for the circuit of Fig. 
m3.1. From these results determine which resistor dissipates 
the most power and which resistor dissipates the least power, 
and report these two values of power. Use these component 
values:   Isrc1 = 3.79 mA,   Isrc2 = 1.84 mA,   Vsrc = 4.00 V,  
R1 = 3.3 k�,  R2 = 2.2 k�,  R3 = 1.0 k�, and R4 = 4.7 k�.

R3

R2

Isrc1

Vsrc

V3

V2V1 V4R1 R4

+
_

Isrc2

Figure m3.1 Circuit for Problem m3.1.

m3.2 Mesh-Current Method: Apply the mesh-current
method to determine mesh currents I1 to I4 in the circuit
of Fig. m3.2. From these results determine V1, the voltage
across the current source. Use these component values:
Isrc1 = 12.5 mA, Vsrc = 15 V, R1 = 5.6 k�, R2 = 2.2 k�,
R3 = 3.3 k�, and R4 = 4.7 k�.

+

_ +
_

R4

R1Isrc VsrcV1 I1 R2I2 R3I3 I4

Figure m3.2 Circuit for Problem m3.2.

m3.3 Superposition: In the circuit of Fig. m3.3:

(a) Solve for Ia and Vb using nodal analysis.

(b) Solve for Ia and Vb using superposition. Hint: Solve for
Ia and Vb with one source on at a time.

(c) Determine Ia and Vb using any method.

Use these component values: I1 = 1.84 mA, V2 = 3.0 V,
R1 = 1.0 k�, R2 = 2.2 k�, and R3 = 4.7 k�.

+ _

I1 R1

V2

R2

R3

+
_

Vb

Ia

Figure m3.3 Circuit for Problem m3.3.

m3.4 Thévenin Equivalents and Maximum Power Trans-
fer: In the circuit of Fig. m3.4, find the Thévenin equivalent
of the circuit at terminals (a, b) as would be seen by a load
resistor RL. Specifically:

(a) Determine the open-circuit voltage Voc that appears at
terminals (a, b).

(b) Determine the short-circuit current Isc that flows through
a wire connecting terminals (a, b) together.
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(c) Determine the Thévenin resistance.

(d) Determine the maximum power Pmax that could be
delivered by this circuit.

Use these component values: Vsrc = 10 V, R1 = 680 �,
R2 = 3.3 k�, R3 = 4.7 k�, and R4 = 1.0 k�.

+
_

R1

a b
Vsrc

R2

R3

R4

Figure m3.4 Circuit for Problem m3.4.

m3.5 Power Dissipation: For the circuit shown in Fig. m3.5:

(a) Find the combined total power generated by the two
current sources analytically and with Multisim. Do not
build this circuit (there is no myDAQ portion for part (a)).

(b) Use source transformations to reduce the current sources
in Fig. m2.5 into a single voltage source. Now, build
this circuit and measure the total power dissipated by all
four resistors. Hint: To create the voltage source, use the
myDAQ arbitrary waveform generator.

(c) Is the power found in part (a) the same as in part (b)?

I1 0.4 mA R4

R1

I2
0.8 mA22 kΩ

3.3 kΩ

R3

3.3 kΩ

R2
1 kΩ

Figure m3.5 Circuit for Problem m3.5.

m3.6 Thévenin Equivalents: For the circuit in Fig. m3.6:

(a) Find the open circuit voltage between nodes 1 and 2.

(b) Add a short circuit between nodes 1 and 2, and then find the
short circuit current between them. Use this information
to calculate the Thévenin resistance.

(c) Turn off the 4 V and 8 V sources. Verify the Thévenin
resistance from part (b) by measuring the equivalent
resistance between terminals 1 and 2 (using Multisim and
myDAQ).

R1

V1

4.7 kΩ

2 V

1

V2
4 V

R2

R3

1 kΩ
47 kΩ15 kΩ

1 2+_

+
_

+
_

Figure m3.6 Circuit for Problem m3.6.

m3.7 Power Dissipation with Current Source: Creating
an ideal current source with the myDAQ requires a current
regulator. For the myDAQ portion of this problem use the
LM371 and a 220 � resistor to create the current source in
Fig. m3.7.

(a) Determine the power generated by the current source. For
the myDAQ portion of this problem, be sure to measure
the current through the LM371 regulator.

(b) Determine the total power dissipated by all other circuit
elements. Compare your answer to the result obtained in
part (a).

I1 5.68 mA R3

R1

1 kΩ
3.3 kΩ

R2

4.7 kΩ

R4

1 kΩ

Figure m3.7 Circuit for Problem m3.7.
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m3.8 Thévenin Equivalent with Current Source: Creating
an ideal current source with the myDAQ requires a current
regulator. For the myDAQ portion of this problem, use the
LM371 and a 1 k� resistor to create the current source in
Fig. m3.8.

(a) Determine the open circuit voltage.

(b) Determine the short circuit current between the output
terminals.

(c) Determine the Thévenin resistance for the circuit.

I1 1.25 mA R2 Voc1 kΩ R1 2.2 kΩ

R3

1 kΩ

1

2

+

_

Figure m3.8 Circuit for Problem m3.8.
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Objectives

Learn to:

� Describe the basic properties of an op amp and
state the constraints of the ideal op-amp model.

� Explain the role of negative feedback and the
trade-off between circuit gain and dynamic range.

� Analyze and design inverting amplifiers, summing
amplifiers, difference amplifiers, and voltage
followers.

SN741SN741

Dot next to pin #1

1
2

3
4

5
6

7
8

The introduction of the operational amplifier chip in the 1960s
has led to the development of a wide array of signal processing
circuits, enabling the creation of an ever-increasing number of
electronic applications.

� Combine multiple op-amp circuits together to
perform signal processing operations.

� Analyze and design high-gain, high-sensitivity
instrumentation amplifiers.

� Design an n-bit digital-to-analog converter.

� Use the MOSFET in analog and digital circuits.

� Apply Multisim to analyze and simulate circuits
that include op amps.

CHAPTER 4
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Overview
Since its first realization by Bob Widlar in 1963 and then
its introduction by Fairchild Semiconductor in 1968, the
operational amplifier, or op amp for short, has become the
workhorse of many signal-processing circuits. It acquired the
adjective operational because it is a versatile device capable
not only of amplifying a signal but also inverting it (reversing
its polarity), integrating it, or differentiating it. When multiple
signals are connected to its input, the op amp can perform
additional mathematical operations—including addition and
subtraction. Consequently, op-amp circuits often are cascaded
together in various arrangements to support a variety of different
applications. In this chapter, we explore several op-amp circuit
configurations, including amplifiers, summers that add multiple
signals together, and digital-to-analog converters that convert
signals from digital format to analog.

4-1 Op-Amp Characteristics
The internal architecture of an op-amp circuit consists of many
interconnected transistors, diodes, resistors and capacitors

(Fig. 4-1), all fabricated on a chip of silicon. Despite its internal
complexity, however, an op amp can be modeled in terms of a
relatively simple equivalent circuit that exhibits a linear input-
output response. This equivalence allows us to apply the tools
we developed in the preceding chapters to analyze (as well as
design) a large array of op-amp circuits and to do so with relative
ease.

4-1.1 Nomenclature

Commercially available op amps are fabricated in encapsulated
packages of various shapes. A typical example is the eight-
pin DIP configuration shown in Fig. 4-2(a) [DIP stands for
dual-in-line package]. The pin diagram for the op amp is
shown in Fig. 4-2(b), and its circuit symbol (the triangle) is
displayed in Fig. 4-2(c). Of the eight pins (terminals) only five
need to be connected to an outside circuit in order for the op
amp to function (the remaining three are used for specialized
applications). The op amp has two input voltage terminals (υp
and υn) and one output voltage terminal (υo).

Figure 4-1: The circuit diagram of the Model 741 op amp consists of 20 transistors, several resistors, and one capacitor.
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Op-Amp Pin Designation

Pin 2 inverting (or negative) input voltage, υn
Pin 3 noninverting (or positive) input voltage, υp
Pin 4 negative (−) terminal of power supply Vcc
Pin 7 positive (+) terminal of power supply Vcc
Pin 6 output voltage, υo

� The terms used to describe pins 3 and 2 as noninverting
and inverting are associated with the property of the op
amp that its output voltage υo is directly proportional to
both the noninverting input voltage υp and the negative
of the inverting input voltage υn. �

Kirchhoff’s current law applies to any volume of space,
including an op amp. Hence, for the five terminals connected

to the op amp, KCL mandates that

io = ip + in + i+ + i−, (4.1)

where ip, in, and io may be constant (dc) or time-varying
currents. Currents i+ and i− are dc currents generated by the
dc power supply Vcc.

�From here on forward, we will ignore the pins connected
to Vcc when we draw circuit diagrams involving op amps,
because so long as the op amp is operated in its linear
region, Vcc will have no bearing on the operation of the
circuit. �

Hence, the op-amp triangle often is drawn with only three
terminals, as shown in Fig. 4-2(d). Moreover, voltages υp, υn,
and υo are defined relative to a common reference or ground.
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Figure 4-2: Operational amplifier.
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υp − υn

−Vcc

Vcc

υo

0

Positive
saturation region
(+ voltage rail)

Maximum
positive
threshold

Maximum
negative
threshold

Negative
saturation region
(– voltage rail)

Linear range

Figure 4-3: Op-amp transfer characteristics. The linear range
extends between υo = −Vcc and +Vcc. The slope of the line is
the op-amp gain A

The (+) and (−) labels printed on the op-amp triangle simply
denote the noninverting and inverting pins of the op amp not
the polarities of υp or υn.

Ignoring the pins associated with the power-supply voltage
Vcc does not mean we can ignore currents i+ and i−. To avoid
making the mistake of writing a KCL equation on the basis of
the simplified diagram given in Fig. 4-2(d), we explicitly state
that fact by writing

io �= ip + in. (4.2)

4-1.2 Transfer Characteristics

The output voltage υo of the op amp depends on the difference
(υp − υn) at the input side. The plot shown in Fig. 4-3, which
depicts the input-output voltage-transfer characteristic of the
op amp, is divided into three regions of operation, denoted the
negative saturation, linear, and positive saturation regions. In
the linear region, the output voltage υo is related to the input
voltages υp and υn by

υo = A(υp − υn), (4.3)

where A is called the op-amp gain, or the open-loop gain. The
output voltage can be either positive or negative depending on
whether υp is larger than υn or the other way around. Strictly

Rs

υs RL υL = Gυs

Op-amp
circuit with

gain G

Input circuit Output load

+
+
_

_

Figure 4-4: Circuit gain G is the ratio of the output voltage υL
to the signal input voltage υs.

speaking, this relationship is valid only when the op amp is
not connected to an external circuit on the output side (open
loop), but as will become clearer in future sections, it continues
to hold (approximately) if the output circuit satisfies certain
conditions (has high enough input resistance so as not to load
the circuit). The open-loop gain is specific to the op-amp device
itself, in contrast with the circuit gain or closed-loop gain G,
which defines the gain of the entire circuit. Thus, if υs is the
signal voltage of the circuit connected at the input side of the
op-amp circuit (Fig. 4-4), and υL is the voltage across the load
connected at its output side, then

υL = Gυs. (4.4)

According to Eq. (4.3), υo is related linearly to the difference
between υp and υn or to either one of them if the other is held
constant. Excluding circuits that contain magnetically coupled
transformers, in a regular circuit no voltage can exceed the net
voltage level of the power supply.

� The maximum value that υo can attain is |Vcc|. The op
amp goes into a saturation mode if |A(υp − υn)| > |Vcc|,
which can occur on both the negative and positive sides
of the linear region. �

As we will discuss shortly, the op-amp gain A is typically
on the order of 105 or greater, and the supply voltage is on the
order of volts or tens of volts. In the linear region, υo is bounded
between −Vcc and +Vcc, which means that (υp−υn) is bounded
between −Vcc/A and +Vcc/A. For Vcc = 10 V and A = 106,
the operating range of (υp–υn) is −10 μV to +10 μV. So a
basic op-amp configuration is able to amplify only very small
voltages, but the configuration can be modified so as to amplify
a wider range of voltages (Section 4-2). Even in such cases,
however, the maximum output voltage is Vcc and the minimum
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is −Vcc. These are called the voltage rails. It is important to
keep this in mind as we deal with circuits containing operational
amplifiers.

4-1.3 Op-Amp Switch

An op amp is an active device. Hence, to operate, it needs to
be connected to a power supply that can provide the necessary
voltages. Specifically, the op amp requires a positive supply
voltage Vcc at pin 7 and a negative supply voltage −Vcc at
pin 4. The magnitude of Vcc is specified by the manufacturer.
For some models, the positive and negative supply voltages
need not be of the same magnitude, but most often they are.
Hence, our default assumption in all future considerations of
op-amp circuits is that the dc supply voltages connected to pins
4 and 7 are equal in magnitude and opposite in polarity. Among
various op-amp models, Vcc typically is between 5 and 24 V.

As noted earlier in connection with Fig. 4-4, if (υp − υn)

exceeds a certain maximum positive threshold, the output
voltage υo saturates at Vcc, and if (υp −υn) is negative (because
the voltage connected to υp is smaller than that connected to υn)
and its magnitude exceeds a maximum negative threshold, then
υo saturates at −Vcc. This op-amp behavior can be used to
operate the op amp like an electronic switch, either as an
ON/OFF switch, or as a switch to activate one device versus
another. An example is illustrated by the circuit in Fig. 4-5. At

the input side, the positive terminal is connected to a dc voltage
Vp that can be set at either +2 V or −2 V, and the negative input
terminal is connected to ground. At the output side, the op amp
is connected to the parallel combination of two LEDs, one that
can emit red light and another that can emit green light. The two
LEDs are arranged in opposite directions, so that when V0 is
positive and sufficiently large to cause a current to flow through
the red LED, it lights up, but the green LED will neither conduct
nor emit green light because it is reverse biased relative to V0.
This is the scenario depicted in Fig. 4-5(b); the input Vp = +2V
(and Vn = 0) causes the output to saturate at V0 = Vcc = 12 V
(the vertical flag with Vcc = 12V is used to denote that this LED
uses a Vcc = 12 V), which is quite sufficient to cause the red
LED to conduct. When Vp is switched to −2V, as in the scenario
depicted in Fig. 4-5(c), the output saturates at V0 = −12 V, in
which case the green LED starts to conduct and emit green light
and the red LED stops conducting altogether. Thus, switching
the input of the op amp between +2 V and −2 V causes the two
LEDs to alternate roles between active and inactive.

4-1.4 Equivalent-Circuit Model in Linear Region

When operated in its linear region, the op-amp input-output
behavior can be modeled in terms of the equivalent linear circuit
shown in Fig. 4-6. The equivalent circuit consists of a voltage-
controlled voltage source of magnitude A(υp − υn), an input
resistance Ri, and an output resistance Ro. Table 4-1 lists the

(a) Op-amp circuit

Vcc = 12 V

Red LED
Green
LED

Vp V0

R
Vn

−Vcc = −12 V

+
_

R

(b) Vp = +2 V (c) Vp = −2 V

Vcc = 12 V

Red LED
Green
LED

LED acts
like open
circuit

V0 = 12 V

R
−Vcc = −12 V

+
_

R

Vp = 2 V
Vcc = 12 V

Vp = −2 V

Red LED
acts like
open circuit

Green
LED

V0 = −12 V

R
−Vcc = −12 V

+
_

R

Figure 4-5: Op amp operated as a switch. The ±Vcc flags indicate the dc supply voltages connected to pins 7 and 4.
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Table 4-1: Characteristics and typical ranges of op-amp parameters. The rightmost column represents the values assumed by the
ideal op-amp model.

Op-Amp Characteristics Parameter Typical Range Ideal Op Amp

• Linear input-output response Open-loop gain A 104 to 108 (V/V) ∞
• High input resistance Input resistance Ri 106 to 1013 � ∞ �

• Low output resistance Output resistance Ro 1 to 100 � 0 �

• Very high gain Supply voltage Vcc 5 to 24 V As specified by manufacturer

typical range of values that each of these op-amp parameters
may assume. Based on these values, we note that an op amp is
characterized by:

(1) High input resistance Ri: at least 1 M�, which is highly
desirable from the standpoint of voltage transfer from an
input circuit (as discussed previously in Section 3-7).

(2) Low output resistance Ro: which is desirable from the
standpoint of transfering the op-amp’s output voltage to
a load circuit.

(3) High open loop voltage gain A: which is the key, as we
see later, to allowing us to further simplify the equivalent
circuit into an “ideal” op-amp model with infinite gain.

Ri
Ro

υp

io
υo

υn

ip

in

+ +

−

+

−

(υp − υn)
A(υp − υn)+

−
+_

Figure 4-6: Equivalent circuit model for an op amp operating
in the linear range (υo ≤ |Vcc|). Voltages υp, υn, and υo are
referenced to ground.

Example 4-1: Noninverting Amplifier

The circuit shown in Fig. 4-7 uses an op amp to amplify the
input signal voltage υs. The circuit uses feedback to connect
the op-amp output (at node a) to the inverting input terminal
υn through a resistor R1. Obtain an expression for the circuit
gain G = υo/υs, and then evaluate it for Vcc = 10 V, A = 106,
Ri = 10 M�, Ro = 10 �, R1 = 80 k�, and R2 = 20 k�.

Solution: For reference purposes, we label the output as
terminal a and the node from which a current is fed back into the
op amp as terminal b. The current i3 flowing from terminal b to
terminal a is the same as the current i4 flowing from terminal a

towards Ro. (The presence of the voltmeter used to measure
υo has no impact on the operation of the circuit because of the
very high input resistance of the voltmeter.) When expressed in
terms of node voltages, the equality i3 = i4 gives

υn − υo

R1
= υo − A(υp − υn)

Ro
(node a). (4.5)

At node b, KCL gives i1 + i2 + i3 = 0, or

υn − υp

Ri
+ υn

R2
+ υn − υo

R1
= 0. (node b). (4.6)

Additionally,

υp = υs. (4.7)

Solution of these simultaneous equations leads to the following
expression for the circuit gain G:

G = υo

υs
= [ARi(R1 + R2) + R2Ro]

AR2Ri + Ro(R2 + Ri) + R1R2 + Ri(R1 + R2)
.

(4.8)
For Vcc = 10 V, A = 106, Ri = 107 �, Ro = 10 �,
R1 = 80 k�, and R2 = 20 k�,

G = υo

υs
= 4.999975 ≈ 5.0. (4.9)
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Figure 4-7: Noninverting amplifier circuit of Example 4-1.

In the expression for G, the two parameters A and Ri are several
orders of magnitude larger than all of the others. Also, Ro is in
series with R1, which is 8000 times larger. Hence, we would
incur minimal error if we let A → ∞, Ri → ∞, and Ro → 0,
in which case the expression for G reduces to

G ≈ R1 + R2

R2
(ideal op-amp model). (4.10)

This approximation, based on the ideal op-amp model that will
be introduced in Section 4-3, gives

G = 80 k� + 20 k�

20 k�
= 5.

Concept Question 4-1: How is the linear range of an op
amp defined? (See         )

Concept Question 4-2: What is the difference between
the op-amp gain A and the circuit gain G? (See         )

Concept Question 4-3: How is an op amp used as a
switch? (See         )

Concept Question 4-4: An op amp is characterized by
three important input-output attributes. What are they?
(See         )

Exercise 4-1: In the circuit of Example 4-1 shown in
Fig. 4-7, insert a series resistance Rs between υs and υp
and then repeat the solution to obtain an expression for G.
Evaluate G for Rs = 10 � and use the same values listed
in Example 4-1 for the other quantities. What impact does
the insertion of Rs have on the magnitude of G?

Answer:

G = [A(Ri + Rs)(R1 + R2) + R2Ro]
[AR2(Ri + Rs) + Ro(R2 + Ri + Rs)+ R1R2 + (Ri + Rs)(R1 + R2)]

= 4.999977 (negligible impact).

(See )
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Technology Brief 9
Display Technologies

From cuneiform-marked clay balls to the abacus to
today’s digital projection technology, advances in visual
displays have accompanied almost every major leap
in information technology. While the earliest “modern”
computers relied on cathode ray tubes (CRT) to project
interactive images, today’s computers can access a wide
variety of displays ranging from plasma screens and LED
arrays to digital micromirror projectors, electronic ink, and
virtual reality interfaces. In this Technology Brief, we will
review the major technologies currently available for two-
dimensional visual displays.

Cathode Ray Tube (CRT)

The earliest computers relied on the same technology
that made the television possible. In a CRT television or
monitor (Fig. TF9-1), an electron gun is placed behind a
positively charged glass screen, and a negatively charged
electrode (the cathode) is mounted at the input of the
electron gun.

Electron-emitting
heated cathode

Anodes
Deflecting coil

Deflecting coil

Focusing anode

Electron beam

Light emitted
from phosphor

Evacuated
glass enclosure

Figure TF9-1: Schematic of CRT operation.

• During operation, the cathode emits streams of
electrons into the electron gun.

• The emitted electron stream is steered onto different
parts of the positively charged screen by the electron
gun; the direction of the electron stream is controlled
by the electric field of the deflecting coils through
which the beam passes.

• The screen is composed of thousands of tiny dots
of phosphorescent material arranged in a two-
dimensional array. Every time an electron hits a
phosphor dot, it glows a specific color (red, blue,
or green). A pixel on the screen is composed of
phosphors of these three colors.

• In order to make an image appear to move on
the screen, the electron gun constantly steers the
electron stream onto different phosphors, lighting
them up faster than the eye can detect the changes,
and thus, the images appear to move. In modern
color CRT displays, three electron guns shoot
different electron streams for the three colors.
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Figure TF9-2: Schematic of LCD operation.

The basic concept behind CRT was explored in the
early 2000s in the development of field emission
displays (FED), which used a thin film of atomically sharp
electron emitter tips to generate electrons. The electrons
emitted by the film collide with phosphor elements just
as in the traditional CRT. The primary advantage of this
type of “flat-panel” display is that it can provide a wider
viewing angle (i.e., one can look at an FED screen at a
sharp angle and still see a good image) than possible with
conventional LCD or LED technology (discussed next).

Liquid Crystal Displays (LCD)

LCDs are used in digital clocks, cellular phones, desktop
and laptop computers, and some televisions and other
electronic systems. They offer a decided advantage over
other display technologies (such as cathode ray tubes)
in that they are lighter and thinner and consume a lot
less power to operate. LCD technology relies on special
electrical and optical properties of a class of materials
known as liquid crystals, first discovered in the 1880s
by botanist Friedrich Reinitzer. In the basic LCD display,
light shines through a thin stack of layers as shown in
Fig. TF9-2.

• Each stack consists of layers in the following
order (starting from the viewer’s eye): color filter,
vertical (or horizontal) polarizer filter, glass plate with
transparent electrodes, liquid crystal layer, second

glass plate with transparent electrodes, horizontal (or
vertical) polarizer filter.

• Light is shone from behind the stack (called the
backlight). As light crosses through the layer stack,
it is polarized along one direction by the first filter.

• If no voltage is applied on any of the electrodes, the
liquid crystal molecules align the filtered light so that
it can pass through the second filter.

• Once through the second filter, it crosses the color
filter (which allows only one color of light through)
and the viewer sees light of that color.

• If a voltage is applied between the electrodes on the
glass plates (which are on either side of the liquid
crystal), the induced electric field causes the liquid
crystal molecules to rotate.Once rotated, the crystals
no longer align the light coming through the first filter
so that it can pass through the second filter plate.

• If light cannot cross, the area with the applied
voltage looks dark. This is precisely how simple
hand-held calculator displays work; usually the bright
background is made dark every time a character is
displayed.

Modern monitors, laptops, phones, and tablets use a
version of the LCD called thin-film transistor (TFT) LCD;
these also are known as active matrix displays. In TFT
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LCDs, several thin films are deposited on one of the
glass substrates and patterned into transistors.Each color
component of a pixel has its own microscale transistor
that controls the voltage across the liquid crystal; since
the transistors only take up a tiny portion of the pixel
area, they effectively are invisible. Thus, each pixel has
its own electrode driver built directly into it. This specific
feature enabled the construction of the flat high-resolution
screens now in common use (and made the CRT display
increasingly obsolete). Since LCD displays also weigh
considerably less than a CRT tube, they enabled the
emergence of laptop computers in the 1980s. Early
laptops used large, heavy monochrome LCDs; most of
today’s mobile devices use active-matrix displays.

Light-Emitting Diode (LED) Displays

A different but very popular display technology employs
tiny light-emitting diodes (LED) in large pixel arrays on
flat screens (see Technology Brief 5 on LEDs). Each pixel
in an LED display is composed of three LEDs (one each
of red, green, and blue). Whenever a current is made to
pass through a particular LED, it emits light at its particular
color. In this way, displays can be made flatter (i.e., the
LED circuitry takes up less room than an electron gun
or LCD) and larger (since making large, flat LED arrays
technically is less challenging than giant CRT tubes or
LCD displays). Unlike LCDs, LED displays do not need a
backlight to function and easily can be made multicolor.

Modern LED research is focused mostly on flexible and
organic LEDs (OLEDs), which are made from polymer
light-emitting materials and can be fabricated on flexible
substrates (such as an overhead transparency). Flexible
displays of this type have been demonstrated by several
groups around the world.

Plasma Displays

Plasma displays have been around since 1964 when
invented at the University of Illinois.While attractive due to
their low profile, large viewing angle, brightness, and large
screen size, they largely were displaced in the 1980s in
the consumer market by LCD displays for manufacturing-
cost reasons. In the late 1990s, plasma displays became
popular for high-definition television (HDTV) systems.

Each pixel in a plasma display contains one or more
microscale pocket(s) of trapped noble gas (usually neon
or xenon); electrodes patterned on a glass substrate are
placed in front and behind each pocket of gas (Fig.TF9-3).

Insulator

Front display glass

Plasma cells
with phosphors

Row and column
electrodes

Light

Figure TF9-3: Plasma display.

The back of one of the glass plates is coated with
light-emitting phosphors. When a sufficient voltage is
applied across the electrodes, a large electric field is
generated across the noble gas, and a plasma (ionized
gas) is ignited. The plasma emits ultraviolet light which
impacts the phosphors; when impacted with UV light, the
phosphors emit light of a certain color (blue, green, or
red). In this way, each pocket can generate one color.

Electronic Ink

Electronic ink, e-paper, or e-ink are all names for a set of
display technologies made to look like paper with ink on it.
In all cases, the display is very thin (almost as thin as real
paper), does not use a backlight (ambient light is reflected
off the display, just like real paper), and little to no power
is consumed when the image is kept constant. The first
version of e-paper was invented in the 1970s at Xerox,
but it was not until the 1990s that a commercially viable
version was developed at MIT. A number of electronic ink
technologies are in production or in development.

• Most common electronic ink technologies trap a thin
layer of oil between two layers of glass or plastic onto
which have been patterned transparent electrodes.
The total stack is usually less than a tenth of a
millimeter.

• Within the oil are suspended charged particles. In
some versions, the oil is colored.
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Table TT9-1: A comparison of some characteristics of common display technologies; see also http://en.wikipedia.org/wiki/
Comparison of CRT, LCD, Plasma, and OLED.

Pros Cons
Cathode Ray Tube (CRT)

• Good dynamic range (~15,000 : 1)

• Very little distortion

• Excellent viewing angle

• No inherent pixels

• Large and heavy, limiting maximum practical size

• High power consumption and heat generation

• Burn-in possible

• Produces noticeable flicker at low refresh rates

• Minimum size for color limited to 7” diagonal

• Can contain lead, barium, and cadmium, which are toxic

• Excellent contrast ratios (~1,000,000 : 1)

• Sub-millisecond response time

• Near zero distortion

• Excellent viewing angle

• Very scalable (easier than other technologies to make large

displays)

• Large minimum pixel pitch; suitable for larger displays

• High power consumption than LCD

• Limited color depth since plasma pixels can only be turned

on or off, no grading of emission

• Image burn-in possible

Plasma Displays

• Excellent viewing angle

• Very light

• Very fast, so no image distortion during fast motion

• Excellent color quality because no backlight is used

• Limited lifetime of organic materials (but progress in this

area is rapid)

• Burn-in possible

• More expensive than other technologies (ca. 2012)

Organic Light-Emitting Diode (LED) Displays

• Small and light

• Lower power consumption than plasma or CRT

• No geometric distortion

• Can be made in almost any size or shape

• Liquid crystal has no inherent resolution limit

• Limited viewing angle

• Slower response than plasma or CRT can cause

image distortion during fast motion

• Slow response at low temperatures

• Requires a backlight, which can vary across screen

Liquid Crystal Displays (LCD)

• No burn-in

• Cheaper than LCD or plasma displays

• DLPs with LED and laser sources do not need light source

replacement very often

• Excellent for very large screens (theaters) due to possibility

of using multiple color sources (color depth) and no 

inherent size limitation to hardware

• Requires light source replacement

• Reduced viewing angle compared with CRT, plasma, and LCD

• Some viewers perceive the colors in the projection, 

producing a rainbow effect

Digital Light Projection (DLP) Displays

• Very low power consumption

• Works with reflected light; excellent for viewing in bright light

• Lightweight

• Flexible and bendable

• Slow, consumer units not yet suitable for fast video

• Ghost images persist without refresh

• Color displays are still under development

Electronic Ink Displays

• Applying a potential across the electrodes on either
side of the oil suspension attracts the charged
particles to either the top or bottom substrates
(depending on the polarity). Some displays use white

particles in black fluid.Thus, when the white particles
move to the top, they block the black fluid and
the display appears white. When they move to the
bottom, the display appears dark. Some displays use
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FigureTF9-4: A typical digital light processor (DLP) arrangement includes a light source, lenses, and a micromirror array that
steers the light to create projected pixels.

a combination of black and white particles to achieve
the same effect.

Digital Light Processing (DLP)

Digital light processing (DLP) is the name given to
a technology that uses arrays of individual, micro-
mechanical mirrors to manipulate light at each pixel
position. Invented in 1987 by Dr. Hornbeck at Texas
Instruments, this technology has revolutionized projection
technology; many of today’s digital projectors are made
possible by DLP chips. DLP also was used heavily in
large, rear-projection televisions.

• A basic DLP consists of an array of metal
micromirrors, each about 100 micrometers on a side
(Fig. TF9-4(inset)). One micromirror corresponds to
one pixel on a digital image.

• Each micromirror is mounted on micromechanical
hinges and can be tilted towards or away from a light
source several thousand times per second!

• The mirrors are used to reflect light from a light source
(housed within the television or projector case) and
through a lens to project it either from behind a
screen (as is the case in rear-projection televisions)
or onto a flat surface (in the case of projectors), as
in (Fig. TF9-4). If a micromirror is tilted away from
the light source, that pixel on the projected image
becomes dark (since the mirror is not passing the
light onto the lens).

• If it is tilted towards the light source, the pixel lights
up. By varying the relative time a given mirror is in
each position, grey values can be generated as well.

• Color can be added by using multiple light sources
and either one chip (with a filter wheel) or three chips.
The three-chip color DLP used in high-resolution
cinema systems can purportedly generate 35 trillion
different colors!
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4-2 Negative Feedback

� Feedback refers to taking a part of the output signal
and feeding it back into the input. It is called positive
feedback if it increases the intensity of the input signal,
and it is called negative feedback if it decreases it. In
negative feedback, the output terminal is connected to the
υn terminal, either directly or through a resistor. �

Positive feedback causes the op amp to saturate, thereby
forcing its output voltage υo to become equal to its supply
voltage Vcc. This behavior is used to advantage in certain types
of applications but they are outside the scope of this book.
Negative feedback, on the other hand, is an essential ingredient
of all of the op-amp circuits covered in this and forthcoming
chapters.

Why do some op-amp circuits need feedback and why
negative feedback specifically? It seems counter-intuitive to
want to decrease the input signal when the intent is to amplify
it! We will answer this question by examining the circuit of
Example 4-1 in some detail. To facilitate the discussion we
have reproduced the circuit diagram (into a smaller version)
and inserted it in Fig. 4-8(a).

When we say an op amp has a supply voltage Vcc of 10 V,
we actually mean that a positive (10 V) dc voltage source is
connected to pin 7 of its package and another, negative (−10 V)
source is connected to its pin 4 (Fig. 4-2(b)). The op-amp circuit
cannot generate an output voltage υo that exceeds its supply
voltage. Hence, υo is bounded to ±Vcc which means

|υo| ≤ Vcc,

or equivalently,

−Vcc ≤ υo ≤ Vcc. (4.11)

Thus, the linear dynamic range of υo extends from −Vcc to
+Vcc.

According to Example 4-1, υo is related to the signal
voltage υs by

υo = Gυs, (4.12)

with

G ≈ R1 + R2

R2
. (4.13)

Inserting Eq. (4.12) into Eq. (4.11) gives

|Gυs| ≤ Vcc, (4.14)

or

−Vcc

G
≤ υs ≤ Vcc

G
, (4.15)

which states that the linear dynamic range of υs is inversely
proportional to the circuit gain G.

(a) Unity Gain: If R2 = ∞ (open circuit between node b and
ground in the circuit of Fig. 4-8(a)), Eq. (4.13) gives G ≈ 1.
The corresponding dynamic range of υs extends from −Vcc to
+Vcc, the same as the output. The input-output transfer plot
relating υo to υs is displayed in green in Fig. 4-8(b).

(b) Modest Gain: If we choose R1/R2 = 4, Eq. (4.13) gives
G = 5, and the dynamic range of υs now extends from
−(10/5) = −2V to +2 V. Thus, the gain is higher than the
unity-gain case by a factor of 5, but the dynamic range of υs is
narrower by the same factor.

(c) Maximum Gain: If R1 is removed (replaced with an open
circuit between nodes a and b) and R2 is set equal to zero (short
circuit), no feedback will take place in the circuit of Fig. 4-8(a).
Use of the exact expression for G given by Eq. (4.8) leads
to G = A. Since A = 106, the absence of feedback provides
a huge gain, but operationally υs becomes limited to a very
narrow range extending from −10 μV to +10 μV.

� Application of negative feedback offers a trade-off
between circuit gain and dynamic range for the input
voltage. �

Concept Question 4-5: Why is negative feedback used
in op-amp circuits? (See         )

Concept Question 4-6: How large is the circuit gain G in
the absence of feedback? How large is it with 100 percent
feedback (equivalent to setting R1 = 0 in the circuit of 
Fig. 4-8(a))? (See         )
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υ0

υs

Vcc

−Vcc

Dynamic range
(high gain)

Dynamic range
(modest gain)

Dynamic range
(unity gain)

G = 1, |υs| < Vcc
G = 5, |υs| < Vcc / 5
G = 10, |υs| < Vcc / 10

(b) Input-output transfer plots(a)

Ri

R1

R2

Ro

υp

a

b

i4

i3

i2

υo

Vcc = 10 V

υn

υn

υs

i1

+

+

A(υp − υn)

Feedback

_ +_

+
_
+
_ +_

Figure 4-8: Trade-off between gain and dynamic range.

Exercise 4-2: To evaluate the trade-off between the
circuit gain G and the linear dynamic range of υs, apply
Eq. (4.8) to find the magnitude of G and then determine
the corresponding dynamic range of υs for each of the
following values of R2: 0 (no feedback), 800 �, 8.8 k�,
40 k�, 80 k�, and 1 M�. Except for R2, all other
quantities remain unchanged.

Answer: R2 G υs Range

0 106 −10 μV to +10 μV
800 � 101 −99 mV to +99 mV

8.8 k� 10.1 −0.99 V to +0.99 V
40 k� 3 −3.3 V to +3.3 V
80 k� 2 −5 V to +5 V
1 M� 1.08 −9.26 V to +9.26 V

(See )

4-3 Ideal Op-Amp Model

We noted in Section 4-1 that the op amp has a very large
input resistance Ri on the order of 107 �, a relatively small
output resistance Ro on the order of 1–100 �, and an open-
loop gain A ≈ 106. Usually, the series resistances of the input
circuit connected to terminals υp and υn are several orders
of magnitude smaller than Ri. Consequently, not only will
very little current flow through the input circuit, but also the
voltage drop across the input-circuit resistors will be negligibly
small in comparison with the voltage drop across Ri. These
considerations allow us to simplify the equivalent circuit of the
op amp by replacing it with the ideal op-amp circuit model
shown in Fig. 4-9, in which Ri has been replaced with an open
circuit. An open circuit between terminals υp and υn implies
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υo
+

υn

υp

ip = 0

in = 0
(Ro = 0)

(Ri =    )8

+

_

Figure 4-9: Ideal op-amp model.

the following ideal op-amp current constraint:

ip = in = 0 (ideal op-amp model). (4.16)

In reality, ip and in are very small but not identically zero; for
if they were, there would be no amplification through the op
amp. Nevertheless, the current condition given by Eq. (4.16)
will prove quite useful.

Similarly, at the output side, if the load resistor connected in
series with Ro is several orders of magnitude larger than Ro,
then Ro can be ignored by setting it equal to zero. Finally, in
the ideal op-amp model, the large open-loop gain A is made
infinite—the consequence of which is that

υp − υn = υo

A
→ 0 as A → ∞.

Hence, we obtain the ideal op-amp voltage constraint

υp = υn (ideal op-amp model). (4.17)

In reality υp and υn are not exactly equal, but very close
to being equal, and only when negative feedback is in use.
Nevertheless, setting υp = υn leads to highly accurate results
when relating the output to the input. In summary:

� The ideal op-amp model characterizes the op amp in
terms of an equivalent circuit in which Ri = ∞, Ro = 0,
and A = ∞. �

The operative consequences are given by Eqs. (4.16) and (4.17)
and in Table 4-2.

Table 4-2: Characteristics of the ideal op-amp model.

Ideal Op Amp

• Current constraint ip = in = 0
• Voltage constraint υp = υn
• A = ∞ Ri = ∞ Ro = 0

Circuit(a)

Block-diagram representation(b)

Noninverting Amplifier

υs υo = GυsG =
R2

R1 + R2

Rinput ≈ Ri ≈ ∞

in = 0

ip = 0

υp = υn

R1

υn

Rs

Rinput

R2

υp

υo
υn

υs

+

−
+
_

Figure 4-10: Noninverting amplifier circuit: (a) using ideal
op-amp model and (b) equivalent block-diagram representation.

To illustrate the utility of the ideal op-amp model, let us re-
examine the circuit we analyzed earlier in Example 4-1, but we
will do so this time using the ideal model. The new circuit, as
shown in Fig. 4-10, includes a source resistance Rs, but because
the op amp draws no current (ip = 0), there is no voltage drop
across Rs. Hence,

υp = υs, (4.18)

and on the output side, υo and υn are related through voltage
division by

υo =
(

R1 + R2

R2

)
υn. (4.19)

Using these two equations, in conjunction with υp = υn (from
Eq. (4.17)), we end up with the following result for the circuit
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gain G:

G = υo

υs
=
(

R1 + R2

R2

)
, (4.20)

which is identical to Eq. (4.10).

� The input resistance of the noninverting amplifier
circuit shown in Fig. 4-10 is the Thévenin resistance of
the op-amp circuit as seen by the input source υs. Because
ip = 0, it is easy to show that Rinput = Ri ≈ ∞, where Ri
is the input resistance of the op amp (typically on the order
of 109 �). �

� From here on forward, we use the ideal op-amp model
exclusively. �

Concept Question 4-7: What are the current and voltage
constraints of the ideal op amp? (See         )

Concept Question 4-8: What are the values of the input
and output resistances of the ideal op amp? (See         )

Concept Question 4-9: In the ideal op-amp model, Ro
is set equal to zero. To satisfy such an approximation,
does the load resistance need to be much larger or much 
smaller than Ro? Explain.  (See         )

Exercise 4-3: Consider the noninverting amplifier circuit
of Fig. 4-10(a) under the conditions of the ideal op-amp
model. Assume Vcc = 10 V. Determine the value of G

and the corresponding dynamic range of υs for each of
the following values of R1/R2: 0, 1, 9, 99, 103, 106.

Answer:
R1/R2 G υs Range

0 1 −10 V to +10 V
1 2 −5 V to +5 V
9 10 −1 V to +1 V

99 100 −0.1 V to +0.1 V
1000 ∼ 1000 −10 mV to +10 mV (approx.)

106 ∼ 106 −10 μV to +10 μV (approx.)

(See      )

4-4 Inverting Amplifier

� In an inverting amplifier op-amp circuit, the input
source is connected to terminal υn (instead of to
terminal υp) through an input source resistance Rs, and
terminal υp is connected to ground. �

Feedback from the output continues to be applied at υn (through
a feedback resistance Rf ), as shown in Fig. 4-11. It is called an
inverting amplifier because (as we will see shortly) the circuit
gain G is negative.

To relate the output voltage υo to the input signal voltage υs,
we start by writing down the node-voltage equation at
terminal υn as

i1 + i2 + in = 0 (4.21)

or
υn − υs

Rs
+ υn − υo

Rf
+ in = 0. (4.22)

Upon invoking the op-amp current constraint given by
Eq. (4.16), namely in = 0, and the voltage constraint υn = υp,

Inverting Amplifier

Circuit(a)

Block diagram(b)

υs υo = GυsG = − (Rf /Rs)

Rinput ≈ Rs

ip = 0

in = 0

RL

Rs i1
i2

Rf

υp

υoυn

υs +
- +

−

Feedback

+
_

υp = υnυp = υn

Rinput

Figure 4-11: Inverting amplifier circuit and its block-diagram
equivalent.
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as well as recognizing that υp = 0 (because terminal υp is
connected to ground), we obtain the relationship

υo = −
(

Rf

Rs

)
υs. (4.23)

The circuit voltage gain of the inverting amplifier therefore is
given by

G = υo

υs
= −

(
Rf

Rs

)
. (4.24)

� In addition to amplifying υs by the ratio (Rf/Rs), the
inverting amplifier also reverses the polarity of υs. �

� υo is independent of the magnitude of the load
resistance RL, so long as RL is much larger than the op-
amp output resistance Ro (which is an implicit assumption
of the ideal op-amp model). �

Because υn = 0, a Thévenin analysis of the circuit in
Fig. 4-11(a) would reveal that the input resistance of
the inverting amplifier circuit (as seen by source υs) is
Rinput = RTh = Rs.

� Caution: Under the ideal op-amp model, it is not
possible to compute io, the current that flows into the op
amp from output terminal υo. Hence, it is inappropriate
to apply KCL at that terminal because additional current
can be delivered by the supply voltage sources Vcc and
−Vcc. �

Example 4-2: Amplifier with Input Current Source

For the circuit shown in Fig. 4-12(a): (a) obtain an expression
for the input-output transfer function Kt = υo/is and evaluate
it for R1 = 1 k�, R2 = 2 k�, Rf = 30 k�, and RL = 10 k�;
and (b) determine the linear dynamic range of is if Vcc = 20 V.

Solution: (a) Application of the source transformation
method converts the combination of is and R2 into a voltage
source υs = isR2, in series with a resistance R2. Upon
combining R2 in series with R1, we obtain the new circuit
shown in Fig. 4-12(b), which is identical in form to the inverting
amplifier circuit of Fig. 4-11, except that now the source

Original circuit

After source transformation

(a)

(b)

RL

R1

Rf

υp
υo

υn

is R2
+

+−

υo

RL

Rs = R1 + R2

υs = isR2
υp

υn

+

+−

Rf

+
_

Figure 4-12: Inverting amplifier circuit of Example 4-2.

resistance is Rs = (R1 + R2). Hence, application of Eq. (4.23)
gives

υo = −
(

Rf

R1 + R2

)
υs = −

(
Rf

R1 + R2

)
R2is, (4.25)

from which we obtain the transfer function

Kt = υo

is
= − RfR2

R1 + R2
. (4.26)

For R1 = 1 k�, R2 = 2 k�, and Rf = 30 k�,

Kt = υo

is
= −2 × 104 (V/A).

(b) From the expression for Kt ,

is = − υo

2 × 104 ,



“book” — 2015/5/4 — 7:10 — page 200 — #18

200 CHAPTER 4 OPERATIONAL AMPLIFIERS

and since |υo| is bounded by Vcc = 20 V, the linear range for is
is bounded by

|is| =
∣∣∣∣ Vcc

2 × 104

∣∣∣∣ =
∣∣∣∣ 20

2 × 104

∣∣∣∣ = 1 mA.

Thus, the linear range of is extends from −1 mA to +1 mA.

Concept Question 4-10: How does feedback control the
gain of the inverting-amplifier circuit? (See         )

Concept Question 4-11: The expression given by
Eq. (4.24) states that the gain of the inverting amplifier
is independent of the magnitude of RL. Would the 
expression remain valid if RL = 0? Explain. (See         )

Exercise 4-4: The input to an inverting-amplifier circuit
consists of υs = 0.2 V and Rs = 10 �. If Vcc = 12 V,
what is the maximum value that Rf can assume before
saturating the op amp?

Answer: Gmax = −60, Rf = 600 �. (See       C3)

4-5 Inverting Summing Amplifier

By connecting multiple sources in parallel at terminal υn of
the inverting amplifier, the circuit becomes an adder (or more
precisely a scaled inverting adder), as depicted by the block
diagram of Fig. 4-13(d). After we demonstrate how such a
circuit (usually called an inverting summing amplifier) works
for two input voltages υ1 and υ2, we will extend it to multiple
sources. There are many applications where we may want to
scale and add multiple voltages together, such as combining or
averaging results from several sensors.

For the circuit shown in Fig. 4-13(a), our goal is to relate
the output voltage υo to υ1 and υ2. To do so, we apply the
source-transformation technique so as to cast the input circuit
in the form of a single voltage source υs in series with a
source resistance Rs. The steps involved in the transformation
are illustrated in Fig. 4-13(b) and (c). Voltage to current
transformation gives is1 = υ1/R1 and is2 = υ2/R2, which can
be combined together into a single current source as

is = is1 + is2 = υ1

R1
+ υ2

R2
= υ1R2 + υ2R1

R1R2
. (4.27)

Inverting Summing Amplifier

R2

υo

is2
 = 

υ2
R2

is1
 = 

υ1
R1

R1

(b)

After source 
transformation

(c) After combining and retransforming

(d) Block diagram representation

(a)

Original circuit

R2

Rf

υp

υoυn

υ2
υ1

R1

Rf

υp
υn

Summing point

υ1
υo = G1υ1 + G2υ2

G1 = − Rf /R1

υ2 G2 = − Rf /R2

+

+
_

+
_ +

_

+
_

is2
is1

υs

υs = 
υ1R2 + υ2R1

R1 + R2
Rs

Rf

υp

υoυn+
_

+
_

Figure 4-13: Inverting summing amplifier.

Similarly, the two parallel resistors add up to

Rs = R1R2

R1 + R2
. (4.28)
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If we transform (is, Rs) into a voltage source (υs, Rs), we get

υs = isRs =
(

υ1R2 + υ2R1

R1R2

)
R1R2

R1 + R2
= υ1R2 + υ2R1

R1 + R2
.

(4.29)

The circuit in Fig. 4-13(c) is identical in form to that of the
inverting amplifier of Fig. 4-11. Hence, by applying the input-
output voltage relationship given by Eq. (4.23), we have

υo = −
(

Rf

Rs

)
υs = − Rf(

R1R2

R1 + R2

) (υ1R2 + υ2R1

R1 + R2

)

= −
(

Rf

R1

)
υ1 −

(
Rf

R2

)
υ2. (4.30)

This expression for υo can be written in the form

υo = G1υ1 + G2υ2, (4.31)

where G1 = −(Rf/R1) is the (negative) gain applied to source
voltage υ1, and G2 = −(Rf/R2) is the gain applied to υ2. Thus:

� The summing amplifier scales υ1 by negative gain G1
and υ2 by negative gain G2 and adds them together. �

4-5.1 Special Cases

For the special case where R1 = R2 = R,

υo = −
(

Rf
R

)
(υ1 + υ2)

(
equal gain

R1 = R2 = R

)
, (4.32)

and if additionally Rf = R1 = R2, then G1 = G2 = −1. In this
case, the summing amplifier becomes an inverted adder with

υo = −(υ1 + υ2)

(
inverted adder
R1 = R2 = Rf

)
. (4.33)

Generalizing to the case where the input consists of n input
voltage sources υ1 to υn (and associated source resistances
R1 to Rn, respectively), all connected in parallel at the same
summing point (terminal υn), the output voltage becomes

υo =
(

−Rf

R1

)
υ1 +

(
−Rf

R2

)
υ2 + · · · +

(
− Rf

Rn

)
υn.

(4.34)

Example 4-3: Summing Circuit

Use inverting amplifiers to design a circuit that performs the
operation

υo = 4υ1 + 7υ2.

Solution: The desired circuit has to amplify υ1 by a factor
of 4, amplify υ2 by a factor of 7, and add the two together.
A summing amplifier can do that, but it also inverts the sum.
Hence, we will need to use a two-stage cascaded circuit with
the first stage providing the desired operation within a “−” sign
and then follow it up with an inverting amplifier with a gain of
(−1). The two-stage circuit is shown in Fig. 4-14.

For the first stage, we need to select values for R1, R2, and Rf1

such that

Rf1

R1
= 4 and

Rf1

R2
= 7.

Since we have only two constraints, we can satisfy the specified
ratios with an infinite number of combinations. Arbitrarily, we
choose Rf1 = 56 k�, which then specifies the other resistors as

R1 = 14 k� and R2 = 8 k�.

For the second stage, a gain of (−1) requires that

Rf2

Rs2

= 1.

Arbitrarily, we choose Rf2 = Rs2 = 20 k�.

4-5.2 Noninverting Summer

To perform the summing operation, the solution offered in
Example 4-3 employed two inverting amplifier circuits—one
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(a) Two-stage circuit

(b) Block diagram

υ1 υo1 υo2

− 4

υ2

+
− 7

− 1

Rf1

υp1

υo1

υn1

υ1
υ2

+

−
R2

R1
Rf2

υp2

υo2

υn2

+

−
Rs2

Stage 1: Inverting summing amp Stage 2: Inverting amp

−υo1 =
Rf1 Rf1

R1
υ1 +

R2
υ2( ) −( ) −( )υo2 =

Rf2

Rs2
υo1

+
_ +

_

Circuit Design
R1       14 kΩ
R2         8 kΩ
Rf1      56 kΩ
Rs1      20 kΩ
Rf2      20 kΩ

Figure 4-14: Two-stage circuit realization of υo = 4υ1 + 7υ2.

to perform an inverted sum, and a second one to provide
multiplication by (−1). Alternatively, the same result can be
achieved by using a single op amp in a noninverting amplifier
circuit, as shown in Fig. 4-15.

From our analysis in Section 4-3, we established that the
output voltage υo of the noninverting amplifier circuit is related
to υp by

υo

υp
= G = R1 + R2

R2
. (4.35)

For the circuit in Fig. 4-15, in view of the ideal op-amp
constraint that the op amp draws no current (ip = 0), it is a
straightforward task to show that

υp = υ1Rs2 + υ2Rs1

Rs1 + Rs2

. (4.36)

Combining Eqs. (4.35) and (4.36) leads to

υo = G

[(
Rs2

Rs2 + Rs1

)
υ1 +

(
Rs1

Rs1 + Rs2

)
υ2

]
. (4.37)

To realize a coefficient of 4 for υ1 and a coefficient of 7 for υ2,
it is necessary that

GRs2

Rs1 + Rs2

= 4

and
GRs1

Rs1 + Rs2

= 7.

A possible solution that satisfies these two constraints is
Rs1 = 7 k�, Rs2 = 4 k�, and G = 11. Furthermore, the
specified value of G can be satisfied by choosing R1 = 50 k�

and R2 = 5 k�.

4-5.3 Multiple Ways of Building a System

There are often several different choices for how to implement
a linear equation such as υo = 4υ1 + 7υ2 (Example 4-3) with
op-amp circuits. Here are a few options:

(a) υo = (4υ1) + (7υ2): Multiply υ1 by 4 (noninverting
amplifier with a gain of 4) and υ2 by 7 (noninverting
amplifier with a gain of 7), and then add them together
(noninverting summer with a gain of 1).
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Technology Brief 10
Computer Memory Circuits

The storage of information in electronically addressable
devices is one of the hallmarks of all modern computer
systems. Among these devices are a class of storage
media, collectively called solid-state or semiconductor
memories, which store information by changing the state
of an electronic circuit. The state of the circuit usually
has two possibilities (0 or 1) and is termed a bit (see
Technology Brief 8). Values in memories are represented
by a string of binary bits; a 5-bit sequence [V1V2V3V4V5],
for example, can be used to represent any integer decimal
value between 0 and 31. How do computers store these
bits? Many types of technologies have emerged over the
last 40 years, so in this Brief, we will highlight some of the
principal technologies in use today or under development.
It is worth noting that memory devices usually store
these values in arrays. For example, a small memory
might store sixteen different 16-bit numbers; this memory
usually would be referred to as a 16 × 16 block or a 256-
bit memory. Of course, modern multi-gigabyte computer
memories use thousands of much larger blocks to store
very large numbers of bits (Fig. TF10-1).

Figure TF10-1: Integrated circuit die photo of a Micron MT4C1024 220-bit DRAM chip. Die size is 8.662 mm × 3.969 mm.
(Courtesy of ZeptoBars.)

Read-Only Memories (ROMs)

One of the oldest, still-employed, memory architectures
is the read-only memory (ROM). The ROM is so termed
because it can only be “written” once, and after that it can
only be read. ROMs usually are used to store information
that will not need to be changed (such as certain startup
information on your computer or a short bit of code always
used by an integrated circuit in your camera). Each bit in
the ROM is held by a single MOSFET transistor.

Consider the circuit in Fig. TF10-2(a), which operates
much like the circuit in Fig. 4-25. The MOSFET has three
voltages, all referenced to ground. For convenience, the
input voltage is labeled VREAD and the output voltage is
labeled VBIT. The third voltage, VDD, is the voltage of the
dc power supply connected to the drain terminal via a
resistor R. If VREAD � VDD, then the output registers a
voltage VBIT = VDD denoting the binary state “1,” but if
VREAD ≥ VDD, then the output terminal shorts to ground,
generating VBIT = 0 denoting the binary state “0.” But
how does this translate into a permanent memory on
a chip? Let us examine the 4-bit ROM diagrammed
in Fig. TF10-2(b). In this case, some bits simply do
not have transistors; VBIT2, for example, is permanently
connected to VDD via a resistor. This may seem trivial,
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(b) 4-bit ROM

(a) 1-bit ROM

R R R R

VBIT1

VREAD

VBIT2

VDD (dc voltage source)

VBIT3 VBIT4

VBIT

R

VREAD

VDD (dc voltage source)

Figure TF10-2: (a) 1-bit ROM that uses a MOSFET transistor, and (b) 4-bit ROM configured to store the sequence [0100],
whose decimal value is 4.

but this specific 4-bit memory configuration always stores
the value [0100]. In this same way, thousands of such
components can be strung together in rows and columns
in N × N arrays. As long as a power supply of voltage
VDD is connected to the circuit, the memory will report
its contents to an external circuit as [0100]. Importantly,
even if you remove power altogether, the values are not
lost; as soon as you add power back to the chip, the same
values appear again (i.e., you would have to break the
chip to make it forget what it is storing!). Because of the
permanency of this data, these memories also often are
called nonvolatile memories (NVM).

Random-Access Memories (RAMs)

RAMs are a class of memories that can be read to
and written from constantly. RAMs generally fall into two

categories: static RAMs and dynamic RAMs (DRAMs).
Because RAMs lose the state of their bits if the power
is removed, they are termed volatile memories. Static
RAMs not only can be read from and written to, but
also do not forget their state as long as power is
supplied.These circuits also are composed of transistors,
but each single bit in a modern static RAM consists
of four transistors wired up in a bi-stable circuit (the
explanation of which we will leave to your intermediate
digital components classes!). Dynamic RAMs, on the
other hand, are illustrated more easily. Dynamic RAMs
usually hold more bits per area than static RAMs, but
they need to be refreshed constantly (even when power
is supplied continuously to the chip).

Figure TF10-3 shows a simple one-transistor dynamic
RAM. Again, we will treat the transistor as we did in
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Vrow

Vcolumn

C

To other cells

To other cells

N1

Figure TF10-3: 1-bit DRAM cell.

Section 4-11. Note that if we make VROW > VDD, then
the transistor will conduct and the capacitor C will start
charging to whatever value we select for VCOLUMN. When
writing a bit, VCOLUMN usually is set at either 0 (GND)
or 1 (VDD). We can calculate how long this charging-
up process will require, because we know the value
of C and the transistor’s current gain g (see Section
5-7). When the capacitor is charged to VDD, a value
of 1 is stored in the DRAM. Had we applied instead
a value of zero volts to VCOLUMN, the transistor would
have discharged to ground (instead of charged to VDD)
and the bit would have a value of 0. However, note that
unlike the ROM, the state of the bit is not “hardwired.”
That is, if even tiny leakage currents were to flow
through the transistor when it is not on (that is, when
VROW < VDD), then charge will constantly leak away and
the voltage of the transistor will drop slowly with time.
After a short time (on the order of a few milliseconds in
the dynamic RAM in your computer), the capacitor will
have irrecoverably lost its value. How is that mitigated?
Well, it turns out that a modern memory will read and
then re-write every one of its (several billion) bits every
64 milliseconds to keep them refreshed! Because each
bit is so simple (one transistor and one capacitor), it is
possible to manufacture DRAMs with very high memory
densities (which is why 1-Gbit DRAMs are now available
in packages of reasonable size). Other variations of
DRAMs also exist whose architectures deviate slightly
from the previous model—at either the transistor or
system level. Synchronous Graphics RAM (SGRAM),
for example, is a DRAM modified for use with graphics
adaptors; Double Data Rate 4 RAM (DDR4RAM) is a
fourth-generation enhancement over DRAM which allows
for faster clock speeds and lower operating voltages.

Advanced Memories

Several substantially different technologies are emerging
that likely will change the market landscape—just as
Flash memories revolutionized portable memory (like
your USB memory stick). Apart from the drive to increase
storage density and access speed, one of the principal
drivers in today’s memory research is the development
of non-volatile memories that do not degrade over time
(unlike Flash).

The Ferroelectric RAM (FeRAM) is the first of these
technologies to enter mainstream production; FeRAM
replaces the capacitor in DRAM (Fig. TF10-3) with a
ferroelectric capacitor that can hold the binary state
even with power removed. While FeRAM can be faster
than Flash memories, FeRAM densities are still much
smaller than modern Flash (and Flash densities continue
to increase rapidly). FeRAM currently is used in niche
applications where the increased speed is important.
Magnetoresistive RAM (MRAM) is another emerging
technology, currently commercialized by Everspin Tech-
nologies (spun out from Freescale Semiconductor), which
relies on magnetic plates to store bits of data. In MRAM,
each cell is composed of two ferromagnetic plates
separated by an insulator. The storage and retrieval of
bits occurs by manipulation of the magnetic polarization
of the plates with associated circuits. Like FeRAM,
MRAM currently is overshadowed by Flash memories, but
improvements in density, speed, and fabrication methods
may make it a viable alternative in the mainstream
consumer market in the future. Even more speculative
is the idea of using single carbon nanotubes to store
binary bits by changing their configuration electronically;
this technology is currently known as Nano RAM (NRAM).
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Rs1

R1

R2

Rs2

υn

υo

υp

υ1
υ2

+

−
in = 0

ip = 0

+
_ +

_

υ1

υo = G1υ1 + G2υ2

υ2

+

( )Rs2

Rs1
 + Rs2

( )R2

R1 + R2G1 =

( )Rs1

Rs1
 + Rs2

( )R2

R1 + R2G1 =

Figure 4-15: Noninverting summer.

(b) υo = (−4υ1−7υ2)(−1): Multiply υ1 by −4 and υ2 by −7
and add them together (inverting summing amplifier with
gains of −4 and −7), and then multiply the result by −1
(inverting amplifier with a gain of −1).

(c) υo = (4υ1 + 7υ2): Multiply υ1 by 4 and υ2 by 7 and add
them together (noninverting summing amplifier with gains
of 4 and 7).

(d) υo = [(2υ1)+(3.5υ2)]×2: Multiply υ1 by 2 (noninverting
amplifier with a gain of 2) and υ2 by 3.5 (noninverting
amplifier with a gain of 3.5), and then add them
(noninverting summer with a gain of 2).

Why might you choose one of these systems over another?
There are several reasons:

• To minimize the number of op amps (option c)

• To meet gain limitations. An inverting amplifier can have
a gain of less than 1, but a noninverting amplifier cannot.

• To avoid saturation. The output voltage of any individual
stage is limited by its Vcc. The order in which multiplica-

tion/summation is done must keep each individual stage
from exceeding +/ − Vcc.

• Sensitivity when adding large and small values. Care is
typically taken to add values that are similar in magnitude,
so amplification is typically done prior to summation if two
values have significantly different magnitudes.

• Other considerations . . .

Concept Question 4-12: What type of op-amp circuits
(inverting, noninverting, and others) might one use to
perform the operation υo = G1υ1+G2υ2 with G1 and G2 
both positive? (See         )

Concept Question 4-13: What is an inverting adder? 
(See         )

Exercise 4-5: The circuit shown in Fig. 4-14(a) is to be
used to perform the operation

υo = 3υ1 + 6υ2.

If R1 = 1.2 k�, Rs2 = 2 k�, and Rf2 = 4 k�, select 
values for R2 and Rf1 so as to realize the desired result.

Answer: Rf1 = 1.8 k�, R2 = 600 �. (See          )

4-6 Difference Amplifier

When an input signal υ2 is connected to terminal υp of a
noninverting amplifier circuit, the output is a scaled version
of υ2. A similar outcome is generated by an inverting amplifier
circuit when an input voltage υ1 is connected to the op amp’s
υn terminal, except that in addition to scaling υ1 its polarity
is reversed as well. The difference amplifier circuit combines
these two functions to perform subtraction.

In the difference-amplifier circuit of Fig. 4-16(a), the input
signals are υ1 and υ2, R2 is the feedback resistance, R1 is the
source resistance of υ1, and resistances R3 and R4 serve to
control the scaling factor (gain) of υ2. To obtain an expression
that relates the output voltage υo to the inputs υ1 and υ2, we
apply KCL at nodes υn and υp. At υn, i1 + i2 + in = 0, which
is equivalent to

υn − υ1

R1
+ υn − υo

R2
+ in = 0 (node υn). (4.38)
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(a) Difference circuit

(b) Block diagram

υ2

υo = G1υ1 + G2υ2

υ1

+
( )R4

R3 + R4 ( )R1

R1 + R2G2 =

R2
R1

G1 = −

ip = 0

in = 0i1
i2

i4

i3

RL

R1

R2

υp

υoυn

υ1

υ2

R3

R4

+

_

+
_

+
_

Difference Amplifier

Figure 4-16: Difference-amplifier circuit.

At υp, i3 + i4 + ip = 0, or

υp − υ2

R3
+ υp

R4
+ ip = 0 (node υp). (4.39)

Upon imposing the ideal op-amp constraints ip = in = 0 and
υp = υn, we end up with

υo =
[(

R4

R3 + R4

)(
R1 + R2

R1

)]
υ2 −

(
R2

R1

)
υ1,

(4.40)

which can be cast in the form

υo = G2υ2 + G1υ1, (4.41)

where the scale factors (gains) are given by

G2 =
(

R4

R3 + R4

)(
R1 + R2

R1

)
(4.42a)

and

G1 = −
(

R2

R1

)
. (4.42b)

According to Fig. 4-16(b) which is a block-diagram represen-
tation of the difference amplifier circuit:

� The difference amplifier scales υ2 by positive gain G2,
υ1 by negative gain G1 and adds them together. �

For the difference amplifier to function as a subtraction circuit
with equal gain, its resistors have to be interrelated by

R2R3 = R1R4, (4.43)

in which case Eq. (4.41) reduces to

υo =
(

R2

R1

)
(υ2 − υ1) (equal gain). (4.44)

Exact subtraction with no scaling requires that R1 = R2.

Exercise 4-6:The difference-amplifier circuit of Fig. 4-16
is used to realize the operation

υo = (6υ2 − 2) V.

Given that R3 = 5 k�, R4 = 6 k�, and R2 = 20 k�, 
specify values for υ1 and R1.

Answer: υ1 = 0.2 V,  R1 = 2 k�. (See       C3 )
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4-7 Voltage Follower/Buffer

4-7.1 No Buffer

In electronic circuits, we often need to incorporate the
functionality of a relatively simple (but important) circuit that
serves to isolate the input source from variations in the load
resistance RL. Such a circuit is called a voltage follower, buffer,
or unity gain amplifier. To appreciate the utility of the voltage
follower, let us first examine the circuit shown in Fig. 4-17(a).
A source input circuit represented by its Thévenin equivalent
(υs, Rs), is connected to a load RL. The output voltage is

υo = υsRL

Rs + RL
(without voltage follower), (4.45)

which obviously is dependent on both Rs and RL, so if the load
resistance RL changes, so will the output voltage υo.

4-7.2 With Op-Amp Buffer

In contrast, when the op-amp voltage follower circuit shown
in Fig. 4-17(b) is inserted in between the source circuit and
the load, the output voltage becomes completely independent
of both Rs and RL. Because ip = 0, it follows that υp = υs.
Furthermore, in view of the op-amp constraint υp = υn and
because the output node is connected directly to υn, it follows
that

υo = υp = υs (with voltage follower), (4.46)

and this is true regardless of the values of Rs and RL (excluding
Rs = open circuit and/or RL = short circuit, either of which
would invalidate the entire circuit). Thus:

� The output of the voltage follower follows the input
signal while remaining immune to changes in RL because
it has a high input resistance and low output resistance. �

A circuit that offers this type of protection is often called a
buffer.

(a) Source circuit connected directly to a load

(b) Source circuit separated by a buffer

in = 0

ip = 0

RL

Rs υp

υo
υnυs

+

Source circuit Load

Buffer

_
+
_
+
_

No buffer
RL

Rs υo

υs

Source circuit Load

+
_
+
_

Figure 4-17: The voltage follower provides no voltage gain
(υo = υs), but it insulates the input circuit from the load.

� When designing and building a multistage circuit,
designers usually insert buffers between adjacent stages,
which allows them to design each stage separately and
then cascade them all together with buffers in between
them. �

4-7.3 Input-Output Resistance

When is a buffer needed? Consider again the circuit in
Fig. 4-17(a). Let us examine υo for various values of Rs and RL.

Rs (k�) RL (�) υo (V) % change Buffer needed?

1 100 0.09 91% Yes
1 1 0.5 50% Yes
1 10 0.91 9% Probably
1 100 0.99 1% No

If Rs < RL, or even if Rs ≈ RL, there is a substantial difference
between υo and υs. This is overloading the circuit, which we
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typically just call loading. Substantial current is drawn from
the source, and the voltage is decreased as a result. To prevent
this, a buffer is needed. But if Rs � RL, the change is minimal,
and the circuit does not require a buffer.

An additional interesting aspect of buffering has to do with
where the current is coming from and where it is going to in the
circuit. In Fig. 4-17(a), the current is coming from the source
and going to the load. Excess current is being drawn, and the
circuit is (over)loaded, thus reducing the output voltage υo. In
Fig. 4-17(b), the current is not coming from the source, but it is
going to the load. Where is it coming from? The answer is that
it is coming from the output of the buffer, extracted from the
power supply voltage Vcc that powers the op amp in the buffer.

Concept Question 4-14:What is the function of a voltage
follower, and why is it called a “buffer”? (See         )

Concept Question 4-15: How much voltage gain is
provided by the voltage follower? (See         )

Exercise 4-7: Express υo in terms of υ1, υ2, and υ3 for
the circuit in Fig. E4.7.

υo
υ1

υ2
+

3 kΩ

5 kΩ

10 kΩ
0.5 kΩ

1 kΩ

υ3
2 kΩ

_

+
_

Figure E4.7

Answer: υo = 12υ1 + 6υ2 + 3υ3. (See       C3 )

4-8 Op-Amp Signal-Processing
Circuits

Table 4-3 provides a summary of the op-amp circuits we
have considered thus far, together with their functional
characteristics in the form of block-diagram representations.

These circuits can be used in various combinations to
realize specific signal-processing operations. We note that the
input-output transfer functions are independent of the load
resistance RL that may be connected between the output
terminal υo and ground. In the case of the noninverting
amplifier, the transfer function is also independent of the source
resistance Rs.

� When cascading multiple stages of op-amp circuits in
series, care must be exercised to ensure that none of the
op amps is driven into saturation by the cumulative gain
of the multiple stages. �

When analyzing circuits that involve op amps, whether in
configurations similar to or different from those we encountered
so far in this chapter, the basic rules to remember are as follows:

Basic Rules of Op-Amp Circuits

(1) KCL and KVL always apply everywhere in the
circuit, but KCL is inapplicable at the output node
when applying the ideal op-amp model. All other
circuit-analysis tools can be applied to op-amp
circuits.

(2) The op amp will operate in the linear range so long
as |υo| < |Vcc|.

(3) The ideal op-amp model assumes that the source
resistance Rs (connected to terminals υp or υn) is
much smaller than the op-amp input resistance Ri
(which usually is no less than 10 M�), and the load
resistance RL is much larger than the op-amp output
resistance Ro (which is on the order of tens of ohms).

(4) The ideal op-amp constraints are ip = in = 0 and
υp = υn.

Example 4-4: Block-Diagram Representation

Generate a block-diagram representation for the circuit shown
in Fig. 4-18(a).

Solution: The first op amp is an inverting amplifier (Table
4-3(b)) with a dc input voltage υ1 = 0.42 V. Its circuit gain Gi
(with the subscript added to denote “inverting amp”) is

Gi = −30K

10K
= −3,
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Table 4-3: Summary of op-amp circuits.
Op-Amp Circuit Block Diagram
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+
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+
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and its output is

υo1 = Giυ1 = −3(0.42) = −1.26 V.

The second op amp is a difference amplifier. UsingTable 4-3(d),
the gains of its positive and negative channels are

G2 =
(

R4

R3 + R4

)(
R1 + R2

R1

)

=
(

2K

1K + 2K

)(
10K + 20K

10K

)
= 2

and

G1 = −R2

R1
= −20K

10K
= −2.

Hence,

υo = G2υ2 + G1υo1 = 2υ2 − 2(−1.26) = (2υ2 + 2.52) V.

Example 4-5: Elevation Sensor

A hand-held elevation sensor uses a pair of capacitors separated
by a flexible metallic membrane (Fig. 4-19(a)) to measure the
height h above sea level. The lower chamber in Fig. 4-19(a) is
sealed, and its pressure is P0, which is the standard atmospheric
pressure at sea level. The pressure in the upper chamber, which

is open to the outside air, is P . When at sea level, P = P0, so
the membrane assumes a flat shape and the two capacitances
are equal. Since atmospheric pressure decreases with elevation,
a rise in altitude results in a change in the pressure P in
the upper chamber, causing the membrane to bend upwards
(Fig. 4-19(b)), thereby changing the capacitances of the two
capacitors. The sensor measures a voltage υs that is proportional
to the change in capacitance.

Based on measurements of υs as a function of h, the data was
found to exhibit an approximately linear variation given by

υs = 2 + 0.2h (V), (4.47)

where h is in km. The sensor is designed to operate over the
range 0 ≤ h ≤ 10 km. Design a circuit whose output voltage υo
(in volts) is an exact indicator of the height h (in km).

Solution: Based on the given information, the sensor
voltage υs will serve as the input to the circuit we are asked to
design, and the output υo will represent the height elevation h.
We therefore need a circuit that can perform the operation

υo = h = 1

0.2
υs − 2

0.2
= 5υs − 10, (4.48)

where we have inverted Eq. (4.47) to solve for h in terms
of υs. The functional form of Eq. (4.48) indicates that we have

υo1

υ1

+

-

υo

+

υ2

0.42 V
30 kΩ10 kΩ

10 kΩ

2 kΩ

1 kΩ

20 kΩ

(a) Circuit

(b) Block diagram

0.42 V
−1.26 V 2.52 V

υo1
υo = (2υ2 + 2.52) V

υ2
2υ2

+
−3 −2

2

+

−
Op 
Amp 1

+

−
Op 
Amp 2

+
_

Figure 4-18: Block-diagram representation (Example 4-4).
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Circuit realization

Capacitances
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(c)

(b)

(a)

1

2

3

C1
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P

Metal plate
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1
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3

1

2

3

C1

C2
P0

P

P < P0
Sensor

R1

R2

υpυ1 = 1 V

R1 = 2 kΩ
R2 = 20 kΩ
R3 = 10 kΩ
R4 = 8.33 kΩ

υ2 = υs

υo

υn

R3

R4

+

−+
−

Sensor

Figure 4-19: Design of a circuit for the pressure sensor of
Example 4-5 with P0 = pressure at sea level and P = pressure
at height h.

only one active (variable) input, namely υs, which we need to
amplify by a factor of 5, but we also need to subtract 10 V from
it. There are multiple circuit configurations that can achieve
the desired operation, including the subtractor circuit shown in
Table 4-3(d) and in Fig. 4-19(c). According to Eq. (4.40), the
output of the difference amplifier is given by

υo =
[(

R4

R3 + R4

)(
R1 + R2

R1

)]
υ2 −

(
R2

R1

)
υ1. (4.49)

Equation (4.49) can be made to implement Eq. (4.48) if we
select the following

(a) υs = υ2

(b) υ1 as a dc voltage source such that (R2/R1)υ1 = 10 V,
which can be satisfied by arbitrarily selecting υ1 = 1 V
and (R2/R1) = 10

(c) values for R1 through R4 that simultaneously satisfy the
conditions

R2

R1
= 10 and

(
R4

R3 + R4

)(
R1 + R2

R1

)
= 5.

A possible set of values that meets these conditions is

R1 = 2 k�, R2 = 20 k�,

R3 = 10 k�, R4 = 8.33 k�.

Before we conclude the design, we should check to make
sure that the op amp will operate in its linear range over the
full range of operation of the sensor. According to Eq. (4.47),
as h varies from zero to 10 km, υs varies from 2 V to 4 V. The
corresponding range of variation of υo, from Eq. (4.48), is from
zero to 10 V. Hence, we should choose an op amp designed to
function with a dc supply voltage Vcc that exceeds 10 V.

Example 4-6: Circuit with Multiple Op Amps

Relate the output voltage υo to the input voltages υ1 and υ2 of
the circuit in Fig. 4-20.

Solution: By comparing the circuit connections surrounding
the four op amps with those given in Table 4-3, we recognize
op amps 1 and 2 as noninverting amplifiers (sources υ1 and
υ2 are connected to + input terminals), op amp 3 as an
inverting amplifier with a gain of −1 (equal input and feedback
resistors R4), and op amp 4 as an inverting summing amplifier
(Table 4-3(b)) with equal gain (same input resistances R6 at
summing point).

We start by examining the pair of input op amps. Because
they are not among the standard configurations in Table 4-3,
we will use KVL/KCL to evaluate them. For op amp 1, υp1 = υ1
and υp1 = υn1 (op-amp voltage constraint). Hence,

υa = υn1 = υ1.

Similarly, for op amp 2,

υb = υn2 = υ2.
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Figure 4-20: Example 4-6.

Since in1 = in2 = 0 (op-amp current constraint),

i2 = υb − υa

R2
= υ2 − υ1

R2
,

and

υo2 − υo1 = i2(R1 + R2 + R3)

=
(

R1 + R2 + R3

R2

)
(υ2 − υ1). (4.50)

Op amp 3 is a standard inverting amplifier, so we can use Table
4-3(c) to obtain

υ ′
o2

= −
(

R4

R4

)
υo2 = −υo2 .

Op amp 4 is an inverting summing amplifier (Table 4-3(c)) with
output

υo = −R5

R6
(υo1 + υ ′

o2
)

= −R5

R6
(υo1 − υo2)

= R5

R6
(υo2 − υo1) = R5

(
R1 + R2 + R3

R6R2

)
(υ2 − υ1).

(4.51)

Example 4-7: Interesting Op-Amp Circuit

Generate a plot for iL at the output side of the circuit shown in
Fig. 4-21(a) versus υs, covering the full linear range of υs.

Solution: This circuit is not one of the standard op-amp
configurations in Table 4-3, so we need to analyze it using
KVL/KCL. At node υn, KCL gives

υn

2k
+ υn − υo

6k
= 0,

which leads to

υo = 4υn.

At node υp, KCL gives

υp − (υs − 0.5)

2k
= 0,

which leads to

υp = υs + 0.5.

By imposing the op-amp constraint υp = υn, we have

υo = 4υn = 4(υs + 0.5) = 4υs + 2.
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At the output side,

iL = υo − 4

1k
= 4υs + 2 − 4

1k
= (4υs − 2) mA.

For υo = Vcc = 10 V,

10 = 4υs + 2, or υs = 2 V,

and for υo = −Vcc = −10 V,

−10 = 4υs + 2, or υs = −3 V.

Hence, linear range of υs is

−3 V ≤ υs ≤ 2 V (linear range).

Figure 4-21(b) displays a plot of iL versus υs over the latter’s
linear range. Note that the linear range is not symmetrical.

4-9 Instrumentation Amplifier

�An electric sensor is a circuit used to measure a physical
quantity, such as distance, motion, temperature, pressure,
or humidity. In some applications, the intent is not to
measure the magnitude of a certain quantity, but rather
to sense small deviations from a nominal value. �

For example, if the temperature in a room is to be maintained
at 20 ◦C, the functional goal of the temperature sensor is to
measure the difference between the room temperature T and
the reference temperature T0 = 20 ◦C and then to activate an
air conditioning or heating unit if the deviation exceeds a certain
prespecified threshold. Let us assume the threshold is 0.1 ◦C.
Instead of requiring the sensor to be able to measure T with an
absolute accuracy of no less than 0.1 ◦C, an alternative approach
would be to design the sensor to measure �υ = υ2 −υ1, where
υ2 is the voltage output of a thermocouple circuit responding to
the room temperature T and υ1 is the voltage corresponding
to what a calibrated thermocouple would measure when
T0 = 20 ◦C. Thus, the sensor is designed to measure the
deviation of T from T0, rather than T itself, with an absolute
accuracy of no less than 0.1 ◦C. The advantage of such an
approach is that the signal is now �υ, which is more than two
orders of magnitude smaller than υ2. A circuit with a precision
of 10 percent is not good enough for measuring υ2, but it is
plenty good for measuring �υ.

RL

iL

6 kΩ

0.5 V
4 Vυs

υp

υn
υo

2 kΩ

2 kΩ
1 kΩ

Vcc = 10 V
+

_

+
_

+
_

(υs + 0.5)

in = 0

ip = 0

(a) Circuit

(b) iL − υs transfer plot

iL(mA)

υs (V)
−1−2−3−4 1 3 4

−14−15

−12

−9

−6

3

6

9

12

15

2
−3

Figure 4-21: Circuit for Example 4-7.

To appreciate the advantage of the differential measurement
approach over the direct measurement approach, consider the
two system configurations represented in Fig. 4-22.

(a) Direct Measurement Approach

In the configuration depicted in Fig. 4-22(a), input voltage υ2
represents the voltage across a thermistor used to measure the
temperature T in a house. The voltage is related to T by

υ2 = 0.01T ,

with T in ◦C. The application circuit has a gain of 100 and a
measurement precision of ±1% of the amplified output. Thus,

υo = (100 ± 1)υ2 = (100 ± 1) × 0.01T = T ± 0.01T .
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(a) Direct measurement

Thermistor
υ2 = 0.01T

υ2 G = 100
± 1% of

υo

υo = (G ± 1)υ2
    = T ± 0.01T.
For T = 21 ˚C,
υo = (21 ± 0.21) ˚C.

(b) Differential measurement

Thermistor
υ2 = 0.01T

υ1 = 0.2 V

υ2 G = 100
± 1% of

υo

υo = G(υ2 − υ1) ± 1%
         of G(υ2 − υ1)
    = (T − 20) 
        ± 0.01(T − 20).
For T = 21 ˚C,
υo = (1 ± 0.01) ˚C.

+_

Fixed reference
temperature = 20 ˚C

Much better
measurement uncertainty

Figure 4-22: Comparison of direct and differential measure-
ment uncertainties.

If T = 21 ◦C, the output registers 21 ◦C, and the associated
precision is 0.21 ◦C.

(b) Differential Measurement Approach

The differential system in Fig. 4-22(b) also uses υ2 to
measure T , but it also uses a fixed voltage υ1 at the negative
terminal, with υ1 set at the desired reference temperature of
20 ◦C. Hence, υ1 = 0.2 V. The differential output is given by

υo = 100(υ2 − υ1) ± (υ2 − υ1)

= 100(υ2 − 0.2) ± (υ2 − 0.2)

= 100(0.01T − 0.2) ± (0.01T − 0.2)

= (T − 20) ± 0.01(T − 20).

If T = 21 ◦C,

υo = (1 ± 0.01) ◦C.

In the differential system, υo measures the deviation from the
reference temperature of 20 ◦C, which is the same information

provided by the direct measurement system, but with an
associated precision on the order of 20 times better (±0.01 ◦C
compared with ±0.21 ◦C for the direct measurement system).

� The instrumentation amplifier is perfectly suited for
detecting and amplifying a small signal deviation when
superimposed on one or the other of two much larger (and
otherwise identical) signals. �

An instrumentation amplifier consists of three op amps, as
shown in Fig. 4-23. The circuit configuration for the first two
is the same as the one we examined earlier in connection with
Example 4-6. According to Eq. (4.50), the voltage difference
between the outputs of op amps 1 and 2 is

υo2 − υo1 =
(

R1 + R2 + R3

R2

)
(υ2 − υ1) = G1(υ2 − υ1),

(4.52)
where G1 is the circuit gain of the first stage (which includes
op amps 1 and 2) and is given by

G1 = R1 + R2 + R3

R2
. (4.53)

The third op amp is a difference amplifier that amplifies
(υo2 − υo1) by a gain factor G2 given by

G2 = R4

R5
. (4.54)

Hence,

υo = G2G1(υ2 − υ1) =
(

R4

R5

)(
R1 + R2 + R3

R2

)
(υ2 − υ1).

(4.55)
To simplify the circuit, and improve precision, all resistors—
with the exception of R2—often are chosen to be identical
in design and construction, thereby minimizing deviations
between their resistances. If we set R1 = R3 = R4 = R5 = R

in Eq. (4.55), the expression for υo reduces to

υo =
(

1 + 2R

R2

)
(υ2 − υ1). (4.56)

In that case, R2 becomes the gain-control resistance of the
circuit; its value (relative to R) sets the gain. If the expected
signal deviation (υ2 − υ1) is on the order of microvolts to
millivolts, the instrumentation amplifier is designed to have an
overall gain that would amplify the signal to the order of volts.
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Instrumentation Amplifier

υo1

υ1

υo

R1 R5

R2

υ2

υo2R3 R5

R4

R4

+

−

Op 
Amp 1

+

−
Op 
Amp 2

+

−
Op 
Amp 3Gain control

υ2

υ1 ( )R4
R5 ( )R2

R1 + R2 + R3G =

G(υ2 − υ1)

Figure 4-23: Instrumentation-amplifier circuit.

� The instrumentation amplifier is a high-sensitivity,
high-gain, deviation sensor. Several semiconductor
manufacturers offer instrumentation-amplifier circuits in
the form of integrated packages. �

Concept Question 4-16: When designing a multistage 
op-amp circuit, what should the design engineer do to 
insure that none of the op amps is driven into saturation?
(See         )

Concept Question 4-17: If the goal is to measure small
deviations between a pair of input signals, what is the
advantage of using an instrumentation amplifier over 
using a difference amplifier?  (See         )

Exercise 4-8: To monitor brain activity, an
instrumentation-amplifier sensor uses a pair of needle-
like probes inserted at different locations in the brain
to measure the voltage difference between them. If
the circuit is of the type shown in Fig. 4-23 with
R1 = R3 = R4 = R5 = R = 50 k�, Vcc = 12 V, and 
the maximum magnitude of the voltage difference that 
the brain is likely to exhibit is 3 mV, what should R2 be 
to maximize the sensitivity of the brain sensor?

Answer: R2 = 25 �. (See        C)

4-10 Digital-to-Analog Converters
(DAC)

� A digital-to-analog converter (DAC) is a circuit that
transforms a digital sequence presented to its input into an
analog output voltage whose magnitude is proportional to
the decimal value of the input signal. �

An n-bit digital signal is described by the sequence
[V1V2V3 . . . Vn], where V1 is called the most significant bit
(MSB) and Vn is the least significant bit (LSB). Voltages V1
through Vn can each assume only two possible states—either a 0
or a 1. When a bit is in the 1 state, its decimal value is 2m, where
m depends on the location of that bit in the sequence. For the
most significant bit (V1), its decimal value is 2(n−1); for V2 it is
2(n−2); and so on. The decimal value of the least significant bit is
2n−n = 20 = 1, when that bit is in state 1. Any bit in state 0 has
a decimal value of 0. Table 4-4 illustrates the correspondence
between the binary sequences of a 4-bit digital signal and their
decimal values. The binary sequences start at [0000] and end at
[1111], representing 16 decimal values extending from 0 to 15
and inclusive of both ends. To do so, the DAC in Fig. 4-24 has
to sum V1 to Vn after weighting each by a factor equal to its
decimal value. Thus, for a 4-bit digital sequence, for example,
the output voltage of the DAC has to be related to the input by

Vout = G(24−1V1 + 24−2V2 + 24−3V3 + 24−4V4)

= G(8V1 + 4V2 + 2V3 + V4), (4.57)
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n-bit digital input
signal [V1V2KVn]

V1

V2

Vout = G(2n −1V1 + 2n −2V2 + L + 2Vn −1 + Vn)
Vn

M

MSB

LSB

DAC

Figure 4-24: A digital-to-analog converter transforms a digital signal into an analog voltage proportional to the decimal value of the digital
sequence.

Table 4-4: Correspondence between binary sequence and
decimal value for a 4-bit digital signal and output of a DAC
with G = −0.5.

V1V2V3V4 Decimal Value DAC Output (V)

0000 0 0
0001 1 −0.5
0010 2 −1
0011 3 −1.5
0100 4 −2
0101 5 −2.5
0110 6 −3
0111 7 −3.5
1000 8 −4
1001 9 −4.5
1010 10 −5
1011 11 −5.5
1100 12 −6
1101 13 −6.5
1110 14 −7
1111 15 −7.5

where G is a scale factor that has no influence on the relative
weights of the four terms. The magnitude of G is selected
to suit the range of the output voltage. If the input is a 3-bit
sequence whose range of decimal values extends from 0 to 7,
one might design the circuit so that G = 1, because in that case,
the maximum output voltage is 7 V, which is below Vcc for most
op amps. For digital signals with longer sequences, G needs to
be smaller than 1 in order to avoid saturating the op amp.

The weighted-sum operation of a DAC can be realized by
many different signal-processing circuits. A rather straightfor-
ward implementation is shown in Fig. 4-25, where an inverting
summer (Table 4-3(c)) uses the ratios of Rf to the individual
resistances to realize the necessary weights, and the positions
of the switches determine the 0/1 states of the 4 bits. Reference

to either Table 4-3(c) or Eq. (4.34) yields

Vout = −Rf

R
V1 − Rf

2R
V2 − Rf

4R
V3 − Rf

8R
V4

= −Rf

8R
(8V1 + 4V2 + 2V3 + V4), (4.58)

which satisfies the relative weights given in Eq. (4.57). Also, in
this case,

G = − Rf

8R
. (4.59)

For [V1V2V3V4] = [1111], Vout = 15G. By selecting
G = −0.5 (corresponding to Rf = 4R), the output will
vary from 0 to −7.5.

Example 4-8: R–2R Ladder

The circuit in Fig. 4-26(a) offers an alternative approach to
realizing digital-to-analog conversion of a 4-bit signal. It is
called an R–2R ladder, because all of the resistors of its
input circuit have values of R or 2R, thereby limiting the
input resistance seen by the dc source to a 2 : 1 range no
matter how many bits are contained in the digital sequence.
This is in contrast with the DAC of Fig. 4-25, whose input-
resistance range is dependent on the number of bits; 8 : 1 for a
4-bit converter, and 128 : 1 for an 8-bit converter. Additionally,
circuit performance and precision depend on resistor tolerance
and are superior when fewer groups of resistors are involved
in the input circuit. Resistors fabricated in the same production
process are likely to exhibit less variability among them than
resistors fabricated by different processes.

Show that the R–2R ladder in Fig. 4-26(a) does indeed
provide the appropriate weighting for a 4-bit DAC. If R = 2 k�

and Vcc = 10 V, what is the maximum realistic value that Rf
can have?
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Figure 4-25: Circuit implementation of a DAC.
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2
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8
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Figure 4-26: R–2R ladder digital-to-analog converter.
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Solution: Even though we know that (depending on the
positions of the switches) V1 to V4 can each assume only 2
binary values, namely 0 or 1 V, let us treat V1 to V4 as dc
power supplies and apply multiple iterations of voltage-current
transformations (starting on the left with the LSB) to arrive
at the Thévenin equivalent circuit at the input side of the op
amp. The result of such a transformation process is shown in
Fig. 4-26(b), in which

VTh = V1

2
+ V2

4
+ V3

8
+ V4

16
(4.60a)

and

RTh = R. (4.60b)

Consequently,

Vout = − Rf

RTh
VTh

= −Rf

R

(
V1

2
+ V2

4
+ V3

8
+ V4

16

)

= − Rf

16R
(8V1 + 4V2 + 2V3 + V4) . (4.61)

The voltage |Vout| is a maximum when [V1V2V3V4] = [1111],
in which case

Vout = −15

16

Rf

R
.

To insure that |Vout| does not exceed |Vcc| = 10 V as well as to
provide a safety margin of 2 V it is necessary that

8 ≥ 15

16

Rf

2k
,

which gives Rf ≤ 17.1 k�.

Concept Question 4-18: In a digital-to-analog converter,
what dictates the maximum value that Rf can assume?
(See         )

Concept Question 4-19: What is the advantage of 
the R–2R ladder (Fig. 4-26) over the traditional DAC 
(Fig. 4-25)? (See         )

(a) MOSFET symbol (b) Voltages

Source (S)

Drain (D)

Gate (G)

Insulator

VGS

D

G

S

+

_

VDS
IDS

+

_

Figure 4-27: MOSFET symbol and voltage designations.

Exercise 4-9: A 3-bit DAC uses an R–2R ladder design
with R = 3 k� and Rf = 24 k�. If Vcc = 10 V, write an
expression for Vout and evaluate it for [V1V2V3] = [111].
Answer:

Vout = − Rf

8R
(4V1 + 2V2 + V3) = −(4V1 + 2V2 + V3).

For [V1V2V3] = [111], Vout = −7 V, whose magnitude is 
smaller than Vcc = 10 V. (See         )

4-11 The MOSFET as a
Voltage-Controlled Current
Source

In earlier sections, we demonstrated how op amps can be used
to build buffers and amplifiers. We now examine how to realize
the same outcome using MOSFETs. The simplest model of a
MOSFET, which stands for metal-oxide semiconductor field-
effect transistor, is shown in Fig. 4-27(a). The vast majority
of commercial computer processors are built with MOSFETs;
as mentioned in Technology Brief 1 on nanotechnology, a
2010 Intel Core processor contains over 1 billion independent
MOSFETs. A MOSFET has three terminals: the gate (G), the
source (S), and the drain (D). Actually, it has a fourth terminal,
namely its body (B), but we will ignore it for now because for
many applications it is simply connected to the ground terminal.
The circuit symbol for the MOSFET may look somewhat
unusual, but it is actually a stylized depiction of the physical
cross section of a real MOSFET. In a real MOSFET, the gate
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consists of a very thin layer (< 500 nm thick) of a conducting
material adjacent to an even thinner layer (< 100 nm) of
insulator. The insulator in turn is placed directly on the surface
of a relatively large slab of semiconductor material, usually
referred to as “the chip” in everyday conversation (usually made
of silicon 0.5 to 1.5 mm thick). The drain and the source sections
are fabricated into this semiconductor chip on either side of the
gate.

� Because the gate G is separated from the rest of the
transistor by the thin insulating layer, no dc current can
flow from G to either D or S. �

Nonetheless, it turns out that the voltage difference between
terminals G and S is key to the operation of the MOSFET.

Using terminal S as a reference in Fig. 4-27(b), we denote
VDS and VGS as the voltages at terminals D and G, respectively.
We also denote the current that flows through the MOSFET from
D to S as IDS. This simplification is justified by the assumption
that no current flows through the gate node to either the drain
or source node. The operation of the MOSFET can be analyzed
by placing it in the simple circuit shown in Fig. 4-28(a), in
which VDD is a dc power supply voltage usually set at a level
close to but not greater than, the maximum rated value of
VDS for the specific MOSFET model under consideration. The
resistance RD is external to the MOSFET, and its role will be
discussed later. The input voltage is synonymous with VGS and
the output voltage is synonymous with VDS,

Vin = VGS, and Vout = VDS. (4.62)

Moreover Vout is related to VDD by

Vout = VDD − IDSRD. (4.63)

Since current cannot flow from G to either D or S, the
only current that can flow through the MOSFET is IDS.
The dependence of IDS on VGS and VDS is shown for a
typical MOSFET in Fig. 4-28(b) in the form of characteristic
curves displaying the response of IDS to VDS at specific
values of VGS. We observe that if VDS is greater than a
certain saturation threshold value VSAT, the curves assume
approximately constant levels, and that these levels are

approximately proportional to VGS. These observations allow us
to characterize the MOSFET in terms of the simple, equivalent
circuit model shown in Fig. 4-28(c), which consists of a single
dependent current source given by

IDS = gVGS, (4.64)

where g is a MOSFET gain constant. The characteristic
curves associated with this model, which is valid only if VDS
exceeds VSAT, are shown in Fig. 4-28(d).

Even though this equivalent circuit is very simple and
more sophisticated models usually are required, it nevertheless
serves as a useful approximate model for introducing some
common uses of MOSFETs. In real MOSFETs, the relationship
between IDS and VGS at saturation is not strictly linear. How
linear the relationship is depends (in part) on the size of
the transistor. Modern sub-micron transistors used in digital
processors exhibit a linear relationship between IDS and VGS at
saturation, whereas larger MOSFETs used for power switching
may behave nonlinearly. For our purposes, the simplification
denoted by Eq. (4.64) will suffice.

4-11.1 Digital Inverter

We now will use the model given by Eq. (4.64) to demonstrate
how the MOSFET can function as a digital inverter by
generating an output state of “0” when the input state is “1,”
and vice versa. Combining Eqs. (4.62) to (4.64) gives

Vout = VDD − gRDVin. (4.65)

The constant g is a MOSFET parameter, so if we choose RD
such that gRD ≈ 1, Eq. (4.65) simplifies to

Vout

VDD
= 1 − Vin

VDD
. (4.66)

In a digital inverter, we are interested in output responses to
only two input states. According to Eq. (4.66):

If
Vin

VDD
= 1,

Vout

VDD
= 0, (4.67a)

and

if
Vin

VDD
= 0,

Vout

VDD
= 1. (4.67b)

Hence, the MOSFET circuit in Fig. 4-28(a) behaves like a
digital inverter, provided the model given by Eq. (4.64) holds
true and requiring that VDS exceeds VSAT. In a real circuit,
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Inverter circuit Typical characteristic curves

Equivalent circuit
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VGS = 2 V
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+
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Figure 4-28: MOSFET (a) circuit, (b) characteristic curves, (c) equivalent circuit, and (d) associated characteristic lines.

Vin and Vout are not given by the simple results indicated by
Eq. (4.67), but each can be categorized easily into high and low
voltage values to satisfy the functionality of a digital inverter.

4-11.2 NMOS versus PMOS Transistors

The MOSFET circuit of Fig. 4-28(a) actually is called an n-
channel MOSFET or NMOS for short. Its operation is limited
to the first quadrant in Fig. 4-28(d), where both IDS and VDS
can assume positive values only. A second type of MOSFET
called PMOS (p-channel MOSFET) is designed and fabricated
to operate in the third quadrant, corresponding to negative
values for IDS and VDS, as illustrated in Fig. 4-29. To distinguish
between the two types, the symbol for PMOS includes a small
open circle at terminal G.

The NMOS inverter circuit of Fig. 4-28(a) provides the
correct functionality required from a digital inverter, but it
suffers from a serious power-dissipation problem. Let us
consider the power consumed by RD under realistic conditions:

Input State 0:

Vin

VDD
= 0 IDS ≈ 0 PRD = I 2

DSRD ≈ 0

(4.68a)
Input State 1:

Vin

VDD
= 1 IDS = VDD

RD
PRD = V 2

DD

RD
. (4.68b)
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Figure 4-29: Complementary characteristic curves for NMOS and PMOS.

Heat dissipation in RD is practically zero for input state 0, but
for input state 1, it is equal to V 2

DD/RD. The value of VDD, which
is dictated by the MOSFET specifications, is typically on the
order of volts, and RD can be made very large—on the order of
k� or tens of k�. If RD is much larger than that, IDS becomes
too small for the MOSFET to function as an inverter. For VDD
on the order of 1 V and RD on the order of 10 k�, PRD for
an individual NMOS is on the order of 100 μW. This amount
of heat generation is trivial for a single transistor, but when we
consider that a typical computer processor contains on the order
of 109 transistors, all confined to a relatively small volume of
space, the total amount of heat that would be generated by such
an NMOS-based processor would likely burn a hole through
the computer! To address this heat-dissipation problem, a new
technology was introduced in the 1980s called CMOS, which
stands for complementary MOS.

� CMOS has revolutionized the microprocessor industry
and led to the rise of the x86 family of PC processors. �

VDD
PMOS

VoutVin

D
G

S

D

G S

+

_

+

_NMOS

Figure 4-30: CMOS inverter.

CMOS is a configuration that attaches an NMOS to a PMOS
at their drain terminals, as shown in Fig. 4-30. The CMOS
inverter provides the same functionality as the simpler NMOS
inverter, but it has the distinct advantage in that it dissipates
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Figure 4-31: MOSFET amplifier circuit for Example 4-9.

negligible power for both input states. The significance of the
inverter is in the role it plays as a basic building block for more
complicated logic circuits, such as those that perform AND and
OR operations.

4-11.3 MOSFETs in Analog Circuits

In addition to their use in digital circuits, MOSFETs also
can be used in analog circuits as buffers and amplifiers, as
demonstrated by Examples 4-9 and 4-10. As we discussed
earlier in Section 4-7, a buffer is a circuit that insulates the
input voltage from variations in the load resistance.

Example 4-9: MOSFET Amplifier

The circuit shown in Fig. 4-31(a) is known as a common-
source amplifier and uses a MOSFET with a dc drain voltage

VDD = 10V and a drain resistance RD = 1 k�. The input signal
vs(t) is an ac voltage with a dc-bias given by

υs(t) = [500 + 40 cos 300t] (μV).

Note that the amplitude of the input ac signal is several orders
of magnitude smaller than that of the dc voltage VDD. Apply
the MOSFET equivalent model with g = 10 A/V to obtain an
expression for υout(t).

Solution: Upon replacing the MOSFET with its equivalent
circuit, we end up with the circuit in Fig. 4-31(b). At the input
side, because no current flows through Rs, it follows that

υGS(t) = υs(t),

and at the output side,

υout(t) = VDD − iDSRD

= VDD − gRDυGS(t)

= VDD − gRDυs(t).

We observe that the output voltage consists of a constant dc
component (namely VDD) and an ac component that is directly
proportional to the input signal υs(t). For the element values
specified in the problem,

υout(t) = 10 − 10 × 103 × (500 + 40 cos 300t) × 10−6

= 5 − 0.4 cos 300t V.

The 5 V dc component is simply a level shift superimposed on
which is a cosinusoidal signal that is identical to the input signal
but is inverted and amplified by an ac gain of 104 (from 40 μV
to 0.4 V).

Example 4-10: MOSFET Buffer

The circuit in Fig. 4-32(a) consists of a real voltage source
(υs, Rs) connected directly to a load resistor RL. In contrast, the
circuit in Fig. 4-32(b) uses a common-drain MOSFET circuit
inbetween the source and the load to buffer (insulate) the source
from the load. Let us define the source as being buffered from
the load if the output voltage across the load is equal to at
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(b) Buffer circuit

(a) Source connected to load directly
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+
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+

_

Rs

υs
+
_

RL υout2MOSFET
buffer

Figure 4-32: Buffer circuit for Example 4-10.

least 99 percent of υs. For each circuit, determine the condition
on RL that will satisfy this criterion. Assume Rs = 100 � and
the MOSFET gain factor g = 10 A/V.

Solution:

(a) No-Buffer Circuit

For the circuit in Fig. 4-32(a),

υout1 = υsRL

Rs + RL
.

In order for υout1/υs ≥ 0.99, it is necessary that

RL

Rs
≥ 99

or

RL ≥ 9.9 k� (for Rs = 100 �).

(b) With MOSFET Buffer

For the circuit in Fig. 4-32(c), in which the MOSFET has been
replaced with its equivalent circuit, KVL gives

−υs + υGS + υout2 = 0.

Also,

υout2 = IDSRL

= gRLυGS.

Simultaneous solution of the two equations gives

υout2 =
(

gRL

1 + gRL

)
υs.

With g = 10A/V and in order for υout2 to be no less than 0.99υs,
it is necessary that

RL ≥ 9.9 �,

which is three orders of magnitude smaller than the requirement
for the unbuffered circuit.

Concept Question 4-20: What is the major advantage of
a CMOS over an NMOS circuit as a digital inverter?
(See         )

Concept Question 4-21: When a MOSFET is used in
a buffer circuit, υout ≈ υs, where υs is the input signal 
voltage. So, why is it used? (See         )

Exercise 4-10: In the circuit of Example 4-9, what value
of RD will give the highest possible ac gain while keeping
υout(t) always positive?

Answer: RD = 1.85 k�. (See       C3 )

Exercise 4-11: Repeat Example 4-10, but require that
υout be at least 99.9 percent of υs. What should RL be
(a) without the buffer and (b) with the buffer?

Answer: (a) RL ≥ 99.9 k�, (b) RL ≥ 99.9 �. (See      C3 )
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Technology Brief 11
Circuit Simulation Software

In Chapters 2 and 3 we examined all of the common
methods used for analyzing linear electric circuits. In
practice, these are used for designing and analyzing
the many building blocks that make up larger circuits,
or for obtaining approximate solutions for how more
complex circuits function. In Technology Brief 1, we noted
that very large scale integrated circuits (VLSI) have
experienced exponential scaling for almost 50 years, so
some of today’s electrical networks may include as many
as 100 billion transistors! The standard circuit analysis
methods available to us are accurate and applicable,
but it takes a great deal of computer automation to
apply them to a 100 billion–transistor network. The
Multisim circuit analysis software provides an excellent
start towards modeling the behavior of complex circuits.
Accordingly, Multisim will be the first of two computer-
based tools we will explore in this Technology Brief.
Whereas Multisim is an excellent tool, it treats a circuit as
a 2-D configuration, which does not account for thermal
effects associated with heat generation by the circuit
elements, nor possible capacitive or inductive cross-
coupling of voltages between elements (through the air
or insulator medium between them). To account for these
effects, we need to use a sophisticated 3-D computer
simulation tool. This is the subject of the second part of
this Technology Brief.

Multisim Software

(1) Using Simulation Tools to Calculate and
Understand

Engineers use electronic design automation (EDA)
tools, such as Multisim, to understand the function of a
circuit and calculate its response. Consider the simple
example shown in Fig. TF11-1(a), and let us assume we
need to determine what voltage Vr would be measured by
the voltmeter shown in the circuit. In this case, because
the circuit is very simple, we can analyze it by hand or we
can implement it and solve it by Multisim (Fig.TF11-1(b)).
But if the circuit has more than five nodes, the by-
hand approach becomes tedious, and the Multisim option
becomes far more practical.

(a) Circuit

(b) Multisim layout

5 V
+
_ 5 V

+
_3 kΩ1 kΩ

3.8 kΩ 1.2 kΩ

Vr

Figure TF11-1: Two-source circuit and Multisim repre-
sentation using switches to switch one or both voltage
sources on or off.

(2) Using Simulation Tools to Lay Out a Circuit

Once a circuit has been designed, we can either build it on
a protoboard or, alternatively, we can have a circuit board
built for it and then solder the parts to the board to create
the circuit. Printed circuit board (PCB) layout tools
help us plan the circuit layout and routing architecture,
which often are multiple layers deep, as in the circuit of
Fig. TF11-2.

When using silicon chips, for example, these designs
involve hundreds, millions, or trillions of components
arranged in one or more layers, and carrying thousands
of simultaneous signals throughout the circuit, all acting
together to obtain the desired voltage and/or current
output of the circuit. Classic EDA tools (such as Multisim)
begin with a graphical user interface (GUI) that allows
users to specify what type of circuit elements (sources,
resistors, switches, etc.) are needed and how they are
connected together. Circuits made up of several elements
can often be grouped or bundled together and stored
in libraries for later reuse. Often, libraries of complex
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Figure TF11-2: Multilayer PCB layout, with each layer assigned a different color. Holes and solder pads are planned for
each chip and component attached to the board, and multilayer routing built into the circuit board connects them all together.
(Courtesy of ZYPEX Inc.)

circuits (such as the core of a computer processor)
are shared or purchased to reduce engineering design
time. For circuits whose design can be expressed as
either logical rules or a desired logical function—primarily
digital circuits—modern software tools transform circuit
design into an exercise in writing code. In essence,
programs can be written in hardware description
languages (HDL), which define the structure and/or
operation of digital circuits.The program is then executed
and a circuit description suitable for manufacture,
or instantiation into a field-programmable gate array
(FPGA), is synthesized. Programming in HDLs is similar
to assembly language or C coding, although major

differences exist.Most modern complex digital circuits are
designed, simulated, and synthesized with the aid of HDL
tools.

Once the elements and their connections are defined,
they are then modeled with either more or less detail (by
specifying tolerance levels or other relevant parameters)
depending on the level of accuracy needed. Simulation
results are only as good as the circuit model and input
parameters, so this is a very important consideration
when using EDA software. The more detailed the model,
the more accurate the results can be expected to be, but
also the longer it takes the simulation to run. Consider,
for example, the ideal and the more realistic models
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for voltage and current sources listed in Table 1-5. The
realistic source models are certainly more accurate
than the ideal models, but even the “realistic” models
are approximate, because they neglect nonlinearities,
stray capacitance and inductance, and potential feedback
loops within the sources. For many applications, the
ideal model is sufficient, for others the first-order realistic
model (including a resistor) is sufficient, but for others,
a more detailed nonlinear model is required. How do
you, the engineer, know what model to use? The intuition
and knowledge gained from working with the common
circuit analysis tools from Chapters 2 and 3 help you
determine when you may or may not need a more realistic
model. Often, we will first try a simplified model, and
then one that is slightly more realistic. If there is minimal
change, we do not go on to a more complex model, but
if there is substantial change, we may try more and more
realistic models (each requiring more time and memory
for the software to run), until the result converges and
we are satisfied that we have modeled the real system at
hand.

Now let’s consider VLSI circuits involving trillions of
transistors. Even with relatively simple models of the
transistor (such as the BJT in Section 3-9 or MOSFET
in Section 4-11), there are still more unknowns than
we generally care to wait for the computer to solve.
In this case, two simplifications are essential. First, we
must break the circuit down into functional blocks, so
we can design each block individually and cascade or
connect the blocks together.We have already seen simple
examples of doing this using the Thévenin equivalent
circuit technique. Thévenin is also used this way in much
larger circuits, including VLSI designs. Second, we must
simplify the models we use for each circuit element.
Fortunately (or perhaps necessarily!) the largest circuits
electrical engineers design are digital circuits, for which
we can use the simplest models of all. We can assume
that all voltages are either high/on (digital 1) or low/off
(digital 0). This flexibility in the voltages allows us to
use much simpler models. The transistor, for example,
can be modeled as just a switch (on or off), or just
as a resistor that is switched in or out of the circuit.
Assuming all voltages are either on or off is the simplest
assumption. We also can model them as on/off or in
transition between on and off. The transition (which is
actually a bouncy switch) can be modeled as a linear
slope from low to high or high to low. The length of
this slope is the rise time of the transition, and the
faster the rise time, the faster the circuit can send
data.

3-D Modeling Tools

Model-based EDA tools define how a circuit is supposed
to function electrically, but sometimes effects not included
in the models come into play to make the circuit
malfunction.Two of these that are particularly relevant are
associated with thermal problems and coupling problems.
We know that resistors and other devices are designed
with specific power ratings. The power rating is related to
the size and material the resistors are made of and their
ability to withstand the heat generated by current moving
through them. If we start pushing all of the elements of
the circuit to their maximum capability, their interactions
(hot chips next to other hot chips) may make the most
vulnerable of these parts fail. But how do we determine
which parts are the most vulnerable, and what solution
can we offer to mitigate the heat problem? 3-D simulation
tools help us to identify these potential problems or (all
too often) diagnose them when they occur. The 3-D
simulation process starts with the physical model of a
given part, such as the high-speed IC package shown
in Fig. TF11-3(a). The spatial distributions of electrical
voltage and current are then modeled for part or all of
the package, as shown in Fig. TF11-3(b). The current
density at a given location is representative of what the
temperature will be at that location. If overheating were
to occur, it would most likely occur at the points with
the highest current. More detailed thermal modeling can
include the effects of heat sinks, fans, and other cooling
effects.The voltage is used to calculate coupling between
nearby electrical signals (such as two adjacent legs of this
package).

Another interesting circuit simulation is shown in
Fig.TF11-4, which displays the amount of power radiated
by a crescent antenna.

So WHY Should You Learn the Circuit Analysis
Methods Introduced in This Book?

Having learned how to apply the various circuit analysis
tools covered in this book thus far, you may wonder why
you need to learn so many different methods when they
all can give you the same result. And now that you have
read this Technology Brief and seen that you can use a
computer to analyze circuits, you may wonder why you
need to learn these analytical methods at all!

While it is true that automated tools are essential
for testing circuits used in practical applications, it is
equally true that the success of the design process is
highly coupled to one’s understanding of the fundamental
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(a) Physical package (b) Current density contour

Figure TF11-3: High-speed IC package and contour and vector plot of the current density flowing through it at 5 GHz. The
brighter/redder colors show higher current density (A/m2) (which also results in higher temperature) than the darker/bluer
colors. The arrows show the direction in which the current is flowing, and the size of the arrow is also proportional to the
magnitude of the current density. (Courtesy: CST MICROWAVE STUDIO r© IC Package Simulation.)

concepts in circuit analysis and design. Designing a new
circuit to address a specified application is a creative
endeavor that relies on one’s past experience and fluency
in circuit behavior and performance. Once an initial circuit

configuration has been developed, computer simulation
tools are then used to fine-tune the design and optimize
the circuit performance.

Figure TF11-4: This 3D electromagnetic simulation was used to evaluate the fields (in this case the square of the electric
field, which is proportional to power) in the nanocrescent antenna shown in Technology Brief 1. We can see the strong fields
at the tips (because charge congregates there), and also in the center. (Credit: Miguel Rodriguez.)
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Figure 4-33: Three-dimensional neural probe (5 mm × 5 mm
× 3 mm). (Courtesy of Prof. Ken Wise and Gayatri Perlin,
University of Michigan.)

4-12 Application Note: Neural Probes

The human brain is composed, in part, of interconnected
networks of individual, information-processing cells known
as neurons. There are about one trillion (1012) neurons in
the human brain with each neuron having on average 7000
connections to other neurons. Although the working of the
neural system is well beyond the scope of this book, it is
important to note that when a neuron transmits information,
it causes a change in the concentrations of various ions in
its vicinity. This movement of ions gives rise to an electric
current through the neuron’s membrane which in turn generates
a change in potential (voltage) between various parts of the cell
and its surroundings. Thus, when a given neuron fires, a small
(∼ 100 mV) but detectable potential drop develops between the
cell and its surroundings.

Over the past few decades, various types of devices were built
for measuring this electrical phenomenon in neurons. In recent
years, however, the field has achieved phenomenal success due
in part to the successful development of neural probes (also
known as neural interfaces) with very high sensitivities. An
example of a 3-dimensional probe is shown in Fig. 4-33. It
consists of a 2-D array of very thin probes—each instrumented
with a sensor at each of several locations along its length.
With such a probe, it is now possible to measure the action
potentials of firing neurons at a large number of brain locations
simultaneously. Modern neural interface systems also have been
developed to stimulate or change the electrical state of specific
neurons, thereby affecting their operation in the brain. These
types of devices not only offer the potential of unraveling

aspects of brain development and operation, but they also are
beginning to see use in clinical applications for the treatment
of chronic neurological disorders, such as Parkinson’s disease
(see Technology Briefs 17 and 32 on neural stimulation and
computer-brain interfaces, respectively).

Because these voltage signals are so small, on-board
amplification, noise-removal, and analog-to-digital circuitry are
needed to process the signal from the brain to the recording
device.

Example 4-11: Neural Probe

The neural probe shown in Fig. 4-34 consists of a long shank at
the end of which lie two metal electrodes. This shank is inserted
a short distance into the brain and the signal coming from these
electrodes is recorded. For simplicity, we will model the brain
activity between the two probes just like a realistic voltage
source Vs in series with a resistance Rs. The source produces
inverted pulses with −100 mV amplitudes. Note that neither Va

nor Vb are grounded relative to the ground level of the circuit.
The neural signal needs to be inverted and amplified so that it
can be presented to an analog-to-digital converter (ADC) which
only operates in the 0 to 5 V range. Design the amplifier circuit.

Solution: The input signal is represented by the difference
between Va and Vb, and since neither of those terminals is
grounded, some sort of differential amplifier is the logical
choice for the intended application.

The amplifier should invert the input signal and amplify it into
the 0 to 5 V range required by theADC. Given these constraints,
we propose to use the op-amp instrumentation amplifier circuit
of Fig. 4-23 with Va as input υ1 and Vb as input υ2. The amplifier
output is proportional to (υ2 −υ1), so the choice of connections
we made will realize the inversion requirement automatically.
According to Eq. (4.56), if we choose the circuit resistors such
that R1 = R3 = R4 = R5 = R, the output voltage is given by

υo =
(

1 + 2R

R2

)
(υ2 − υ1)

=
(

1 + 2R

R2

)
(Vb − Va) = −

(
1 + 2R

R2

)
(Va − Vb).

To amplify (Va − Vb) from −100 mV to +5 V, the ratio
(R/R2) should be chosen such that

5 = −
(

1 + 2R

R2

)
× (−100 × 10−3)

or, equivalently,
R

R2
= 24.5.

If we set R = 100 k�, then R2 should be 4.08 k�. This will
yield a 5 V pulse to the ADC every time a −100 mV pulse is
generated by the neuron.
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Figure 4-34: Neural-probe circuit for Example 4-11.

4-13 Multisim Analysis

One of the most attractive features of Multisim is its interactive-
simulation mode, which we began to utilize in Sections 2-7 and
3-8. The simulation mode allows you to connect virtual test
instruments to your circuit and to operate them in real time as
Multisim simulates the circuit behavior. In this section, we will
explore this feature with an op-amp circuit and two MOSFET
circuits.

4-13.1 Op Amps and Virtual Instruments

The circuit shown in Fig. 4-35 uses a resistive Wheatstone
bridge (Section 2-5) to detect the change of resistance induced in
a sensor modeled as a variable resistor (see Technology Brief 4
on resistive sensors). The output of the bridge is fed into a
pair of voltage followers and then into a differential amplifier.
The circuit can be constructed and tested in Multisim using
the components listed in Table 4-5. The resistance value of
the potentiometer component is adjustable with a keystroke

(the default is the key “a” to change the resistance in one
direction and the default key combination Shift-a to change
the resistance in the opposite direction) or by using the mouse
slider under the component. In order to observe how changes
in the potentiometer cause changes in the output, we need to
connect the output to an oscilloscope. Multisim provides several
oscilloscopes to choose from, including a generic instrument
and virtual versions of commercial oscilloscopes made by
Agilent and Tektronix. For starters, it is easiest to use the
generic instrument by selecting Simulate → Instruments →
Oscilloscope, or by selecting and dragging an oscilloscope
from the instrument dock. Figure 4-36 shows the complete
circuit drawn in Multisim. The power supplies for the op amps
can be found under Components → Sources → POWER
SOURCES → VDD (or VSS). Once placed, double-click the
VDD (or VSS) component, select the values tab and set the
voltage to 15 V for VDD and −15 V for VSS. Once the circuit
is complete, you can begin the simulation by pressing F5 (or
Simulate → Run) and pause it by pressing F6. Double-click
on the oscilloscope element in the schematic to bring up the
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Figure 4-35: Wheatstone-bridge op-amp circuit.

oscilloscope’s screen. The output voltage should be visible as
Channel A in the oscilloscope window. In order to get a good
view of the trace, you might need to adjust both its timebase
and voltage scale using the controls found at the bottom of
the Oscilloscope window. Observe the change in the amplitude
of the output by shifting the resistance value of the sensor
potentiometer.

With Multisim, you can modify different parts of the circuit
and observe the consequent changes in behavior. Make sure
to stop your simulation (not just pause it) before changing
components or wiring.

Concept Question 4-22: What types of Multisim
instruments are available for testing a circuit? (See         )

Concept Question 4-23: Explain what the timebase is on
the oscilloscope. (See         )

Exercise 4-12:Why are the voltage followers necessary in
the circuit of Fig. 4-36? Remove them from the Multisim
circuit and connect the resistive bridge directly to the two
inputs of the differential amplifier. How does the output 
vary with the potentiometer setting?

Answer:  (See  )

4-13.2 The Digital Inverter

The MOSFET inverter introduced in Section 4-11.2 provides
a good opportunity to explore the difference between steady-
state and time-dependent analysis techniques. Consider again
the MOSFET digital inverter of Fig. 4-30. When analyzing
this type of logic gate, we usually are interested in both the
response of the output voltage to a change in input voltage and
in how fast the gate generates the output voltage in response to
a change in input voltage. Both types of analyses are possible
with Multisim.

Table 4-5: List of Multisim components for the circuit in Fig. 4-35.

Component Group Family Quantity Description

1.5 k Basic Resistor 7 1.5 k� resistor

15 k Basic Resistor 2 15 k� resistor

3 k Basic Variable resistor 1 3 k� resistor

OP AMP 5T VIRTUAL Analog Analog Virtual 3 Ideal op amp with 5 terminals

AC POWER Sources Power Sources 1 1 V ac source, 60 Hz

VDD Sources Power Sources 1 15 V supply

VSS Sources Power Sources 1 −15 V supply
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Figure 4-36: Multisim window of the circuit of Fig. 4-35. The oscilloscope trace shows the 60 Hz waveform of the output voltage. Had
the voltage source been a dc source, the oscilloscope trace would have been a horizontal line.

Figure 4-37 shows a MOSFET inverter circuit in Multisim.
To draw this circuit, you need the components listed in
Table 4-6.

Transient Analysis

We can use a function generator (Simulate → Instruments
→ Function Generator) to observe the inverter output as a
function of time. Double-click on the function generator to bring
up its control window. Set the function generator to Square
Wave mode with a frequency of 1 kHz, amplitude of 2.5 V,

and an offset of 1.25 V. This will generate a 0–2.5 V square-
wave input. The input and output can be plotted separately as
a function of time using Simulate → Analyses → Transient
Analysis. Whereas in Interactive Simulation the course of time
is open ended (by default it is limited to a duration of 1×1030 s),
when using Transient Analysis we can define the start and stop
times. Maintain the start time at 0 s, set the final time to 0.005 s,
and under the Output tab select the input voltage V(1) as the
voltage to plot. Click Simulate. The input voltage is plotted
as a function of time, as in Fig. 4-38(a). Repeat the simulation
after removing V(1) and adding V(2) under the Output tab.
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Table 4-6: Components for the circuit in Fig. 4-37.

Component Group Family Quantity Description

MOS N Transistors Transistors VIRTUAL 1 3-terminal N-MOSFET

MOS P Transistors Transistors VIRTUAL 1 3-terminal P-MOSFET

VDD Sources Power Sources 1 2.5 V supply

GND Sources Power Sources 2 Ground node

Figure 4-37: Multisim equivalent of the MOSFET circuit of
Fig. 4-30.

Figure 4-38(b) shows the output voltage as a function of time.
The input and output plots are essentially mirror images of one
another.

Input voltage(a)

Output voltage(b)

Figure 4-38: Input and output voltages V(1) and V(2) in the
circuit of Fig. 4-37 as a function of time.

Steady-State Analysis

In order to analyze the steady-state output behavior, we first
must remove the function generator and replace it with a
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DC Sweep

Figure 4-39: Output response of the MOSFET inverter circuit
of Fig. 4-37 as a function of the amplitude of the input voltage.

dc voltage source. The actual voltage value of the source is
unimportant. Once wired, select Simulate → Analyses →
DC Sweep. This analysis is similar to the DC Operating
Point Analysis, but it sweeps through a range of voltages at
a node of your choice and solves for the resultant steady-state
voltage (or current) at any other node you select. In this way,
you can generate and plot input-output relationships for circuits
and components.

Choose the source name vv1 as the input and enter 0 V,
2.5 V, and 0.01 V for the start, stop, and increment values,
respectively. Under the Output tab, select the output voltage
V(2) as the voltage to plot. Click Simulate. Figure 4-39 shows
that the output displays the expected inverter behavior: an input
in the 0 to 500 mV range generates an output of ∼ 2.5 V;
conversely, when the input is in the range between 2 and 2.5 V,
the circuit generates an output voltage of ∼ 0 V. In between,
we see a gradual transition zone.

Concept Question 4-24: How do the DC Operating 
Point Analysis, Transient Analysis, and DC Sweep 
analyses differ? (See         )

Concept Question 4-25: How many types of waveforms
can the generic function-generator instrument provide?
(See         )

Exercise 4-13: The IV Analyzer is another useful 
Multisim instrument for analyzing circuit performance. 
To demonstrate its utility, let us use it to generate 
characteristic curves for an NMOS transistor similar to 
those in Fig. 4-28(b). Figure E4.13(a) shows an NMOS 
connected to an IV Analyzer. The instrument sweeps 
through a range of gate (G) voltages and generates a 
current-versus-voltage (IV) plot between the drain (D) 
and source (S) for each gate voltage. Show that the 
display of the IV analyzer is the same as that shown in 
Fig. E4.13(b).

Answer:  (See  C3)

(a)

(b)

VGS = 5 V

VGS = 3.75 V

VGS = 2.5 V
VGS = 1.25 V

VGS = 0

Figure E4.13 (a) Circuit schematic and (b) IV analyzer
traces for IDS versus VDS at selected values of VGS.
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Summary

Concepts

• Despite its complex circuit architecture, the op amp
can be modeled in terms of a relatively simple, linear
equivalent circuit.

• The ideal op amp has infinite gain A, infinite input
resistance Ri, and zero output resistance Ro.

• Through resistive feedback connections between its
output and its two inputs, the op amp can be made to
amplify, sum, and subtract multiple input signals.

• Multistage op-amp circuits can be configured to support
a variety of signal-processing functions.

• Cascaded circuit blocks can be analyzed or designed
individually and then combined together if Ro of the first
circuit is much smaller than Ri of the second circuit.

• Buffers are used to increase Ri of the followup circuit.

• The instrumentation amplifier is a high-gain, high-
sensitivity detector of small signals, making it
particularly suitable for sensing deviations from
reference conditions.

• Multisim can accommodate op-amp circuits and
simulate their input-output responses.

Mathematical and Physical Models

Ideal op amp υp = υn
ip = in = 0

Noninverting amp∗ G = υo

υs
= R1 + R2

R2

Inverting amp∗ G = υo

υs
= −

(
Rf

Rs

)

Summing amp∗ υo = −Rf

(
υ1

R1
+ υ2

R2

)

Difference amp∗ υo = G2υ2 + G1υ2

Voltage follower∗ υo = υs

Instrumentation amp υo =
(

1 + 2R

R2

)
(υ2 − υ1)

(with gain-control resistor R2)

MOSFET Vout = VDD − gRDVin

∗See Table 4-3.

Important Terms Provide definitions or explain the meaning of the following terms:

action potential
ADC
adder
bit
buffer
circuit gain
closed-loop gain
CMOS
complementary MOS
current constraint
difference amplifier
digital inverter
digital-to-analog

converter
DIP configuration
drain
dynamic range
feedback
feedback resistance
gain-control resistance

gate
ideal op-amp current

constraint
ideal op-amp voltage

constraint
input resistance
input source resistance
instrumentation amplifier
inverter
inverting
inverting adder
inverting amplifier
inverting input
inverting summing

amplifier
IV Analyzer
least significant bit
linear
linear dynamic range
loading

metal-oxide semiconductor
field-effect transistor

MOSFET
MOSFET gain constant
most significant bit
negative feedback
negative saturation
neural interface
neural probe
neuron
NMOS
noninverting amplifier
noninverting
noninverting input
noninverting summing

amplifier
oscilloscope
op amp
op-amp gain
open-loop gain

operational amplifier
output resistance
overloading
percent clipping
PMOS
positive feedback
positive saturation
R–2R ladder
saturation threshold value
scaled inverting adder
sensor
signal-processing circuit
source
subtraction
summing amplifier
unity gain amplifier
voltage constraint
voltage follower
voltage rails
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PROBLEMS

Sections 4-1 and 4-2: Op-Amp Characteristics and
Negative Feedback

*4.1 An op amp with an open-loop gain of 106 and Vcc = 12 V
has an inverting-input voltage of 20 μV and a noninverting-
input voltage of 10 μV. What is its output voltage?

4.2 An op amp with an open-loop gain of 6 × 105 and
Vcc = 10 V has an output voltage of 3 V. If the voltage at
the inverting input is −1 μV, what is the magnitude of the
noninverting-input voltage?

*4.3 What is the output voltage for an op amp whose
noninverting input is connected to ground and its inverting-
input voltage is 4 mV? Assume that the op-amp open-loop gain
is 2 × 105 and its supply voltage is Vcc = 10 V.

4.4 With its noninverting-input voltage at 10 μV, the output
voltage of an op amp is −15 V. If A = 5×105 and Vcc = 15 V,
can you determine the magnitude of the inverting-input voltage?
If not, can you determine its possible range?

4.5 For the op-amp circuit shown in Fig. P4.5:

(a) Use the model given in Fig. 4-6 to develop an expression
for the current gain Gi = iL/is.

(b) Simplify the expression by applying the ideal op-amp
model (taking A → ∞, Ri → ∞, and Ro → 0).

+
_

RL

R1

iL
Rs

υp
υn

is

Figure P4.5: Circuit for Problem 4.5.

4.6 The inverting-amplifier circuit shown in Fig. P4.6 uses a
resistor Rf to provide feedback from the output terminal to the
inverting-input terminal.

∗
Answer(s) available in Appendix G.

(a) Use the equivalent-circuit model of Fig. 4-6 to obtain an
expression for the closed-loop gain G = υo/υs in terms of
Rs, Ri, Ro, RL, Rf , and A.

(b) Determine the value of G for Rs = 10 �, Ri = 10 M�,
Rf = 1 k�, Ro = 50 �, RL = 1 k�, and A = 106.

(c) Simplify the expression for G obtained in (a) by letting
A → ∞, Ri → ∞, and Ro → 0 (ideal op-amp model).

*(d) Evaluate the approximate expression obtained in (c) and
compare the result with the value obtained in (b).

RL

Rf
Rs

υp

υn
υo

υs

+
_

+
_

Figure P4.6: Circuit for Problem 4.6.

4.7 For the circuit in Fig. P4.7:

(a) Use the op-amp equivalent-circuit model to develop an
expression for G = υo/υs.

(b) Simplify the expression by applying the ideal op-amp
model parameters, namely A → ∞, Ri → ∞, and
Ro → 0.

RL

υo

υs

+

_

+
_

Figure P4.7: Circuit for Problem 4.7.

4.8 The op-amp circuit shown in Fig. P4.8 has a constant dc
voltage of 6 V at the noninverting input. The inverting input is
the sum of two voltage sources consisting of a 6 V dc source
and a small time-varying signal υs.
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(a) Use the op-amp equivalent-circuit model given in Fig. 4-6
to develop an expression for υo.

(b) Simplify the expression by applying the ideal op-amp
model, which lets A → ∞, Ri → ∞, and Ro → 0.

RL

υo

υs

6 V
6 V

+
_

+
_+

_
+
_

Figure P4.8: Circuit for Problem 4.8.

Sections 4-3 and 4-4: Ideal Op Amp and Inverting Amp

Assume all op amps to be ideal from here on forward.

*4.9 The supply voltage of the op amp in the circuit of Fig. P4.9
is 16 V. If RL = 3 k�, assign a resistance value to Rf so that
the circuit would deliver 75 mW of power to RL.

RLRf

Vcc = 16 V

3 V

50 Ω

4 kΩ

+
_

+
_

Figure P4.9: Circuit for Problem 4.9.

4.10 In the circuit of Fig. P4.10, a bridge circuit is connected
at the input side of an inverting op-amp circuit.

(a) Obtain the Thévenin equivalent at terminals (a, b) for the
bridge circuit.

(b) Use the result in (a) to obtain an expression for G = υo/υs.

(c) Evaluate G for R1 = R4 = 100 �, R2 = R3 = 101 �,
and Rf = 100 k�.

υo

υs

R2

b

a

Rf

R1

R4R3

+

_

+_

Figure P4.10: Circuit for Problem 4.10.

4.11 Determine the output voltage for the circuit in Fig. P4.11
and specify the linear range for υs, given that Vcc = 15 V and
V0 = 0.

υo

υs V0

100 kΩ

200 kΩ
2 kΩ

Vcc = 15 V
+

_

+
_

Figure P4.11: Circuit for Problems 4.11 and 4.12.

4.12 Repeat Problem 4.11 for V0 = 0.1 V.

*4.13 Obtain an expression for the voltage gain G = υo/υs for
the circuit in Fig. P4.13.

υo

υs

+

_

R2

R3

RLRs
R1

Figure P4.13: Circuit for Problem 4.13.

4.14 For the op-amp circuit shown in Fig. P4.14:

(a) Obtain an expression for the current gain Gi = iL/is.
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*(b) If RL = 12 k�, choose Rf so that Gi = −15.

iL
is +

_

Rf

RL
Rs

Figure P4.14: Circuit for Problem 4.14.

4.15 Determine the gain G = υL/υs for the circuit in
Fig. P4.15 and specify the linear range of υs for RL = 4 k�.

RL

υLυo

υs

70 kΩ
20 kΩ

4 kΩ

5 kΩ

10 kΩ

+
_

Vcc = 6 V

Figure P4.15: Circuit for Problems 4.15 and 4.16.

*4.16 For the circuit of Fig. P4.15, what should the resistance
value of RL be so as to have maximum transfer of power into
it?

4.17 Determine υo across the 10 k� resistor in the circuit of
Fig. P4.17.

1 V

υo

10 kΩ

2 kΩ

50 Ω

5 V

+

_

+
_

+
_

Figure P4.17: Circuit for Problem 4.17.

4.18 Evaluate G = υo/υs for the circuit in Fig. P4.18, and
specify the linear range of υs. Assume Rf = 2400 �.

υo

υs

Rf

1200 Ω
400 Ω

600 Ω 1200 Ω
Vcc = 7 V

+

_

+
_

Figure P4.18: Circuit for Problems 4.18 and 4.19.

*4.19 Repeat Problem 4.18 for Rf = 0.

4.20 Determine the linear range of the source υs in the circuit
of Fig. P4.20.

υo

υs

200 Ω 400 Ω

1.2 kΩ

Vcc = 12 V
2 V

+

_

+
_

Figure P4.20: Circuit for Problems 4.20 and 4.21.

*4.21 Repeat Problem 4.20 after replacing the 2 V dc source
in Fig. P4.20 with a short circuit.

4.22 The circuit in Fig. P4.22 uses a potentiometer whose
total resistance is R = 10 k� with the upper section being βR

and the bottom section (1−β)R. The stylus can change β from
0 to 0.9. Obtain an expression for G = υo/υs in terms of β and
evaluate the range of G (as β is varied over its own allowable
range).

υo
υs

R = 10 kΩ

100 Ω

6
7

8
6

7
8

678
678
678
678

βR

(1 − β)R

+
_

Figure P4.22: Circuit for Problem 4.22.
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4.23 For the circuit in Fig. P4.23, obtain an expression for
voltage gain G = υo/υs.

+
_ 6 kΩ

10 kΩ

4 kΩ
υs

+
_

υo

5 kΩ

Figure P4.23: Circuit for Problem 4.23.

*4.24 Find the value of υo in the circuit in Fig. P4.24.

+
_

υo

2 mA

5 V

2 kΩ

6 kΩ
6 kΩ

+
_

4 kΩ

Figure P4.24: Circuit for Problem 4.24.

4.25 Determine the linear range of υs for the circuit in
Fig. P4.25.

+
_ υo

Vcc = 16 V

υs
+
_

+
_

10 kΩ

15 kΩ
20 kΩ

2 V

Figure P4.25: Circuit for Problem 4.25.

Sections 4-5 and 4-6: Summing and Difference Amplifiers

4.26 If R2 = 4 k�, select values for Rs1 , Rs2 , and R1 in the
circuit of Fig. 4-15 so that υo = 3υ1 + 5υ2.

4.27 Design an op-amp circuit that performs an averaging
operation of five inputs υ1 to υ5.

4.28 For the circuit in Fig. P4.28, generate a plot for υL as a
function of υs over the full linear range of υs.

υs

RL

υL

20 kΩ

4 kΩ 4 V

0.5 V Vcc = 12 V
+

_

+
_

+_

Figure P4.28: Circuit for Problem 4.28.

4.29 Relate υo in the circuit of Fig. P4.29 to υs and specify
the linear range of υs. Assume V0 = 0.

υs V0
RL

υo
io

8 kΩ

8 kΩ

4 V3 V

4 kΩ2 kΩ

Vcc = 16 V

+

_

+
_

+
_

+
_

Figure P4.29: Circuit for Problems 4.29 through 4.31.

*4.30 Repeat Problem 4.29 for V0 = 6 V.

4.31 Determine the current io flowing into the op-amp of the
circuit in Fig. P4.29 under the conditions υs = 0.5 V, V0 = 0,
and RL = 10 k�.

4.32 Design a circuit containing a single op amp that can
perform the operation υo = 3 × 104(i2 − i1), where i2 and i1
are input current sources.

4.33 Design a circuit that can perform the operation
υo = 3υ1 + 4υ2 − 5υ3 − 8υ4, where υ1 to υ4 are input voltage
signals.
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4.34 Relate υo in the circuit of Fig. P4.34 to υ1, υ2, and υ3.

υ1 υ2 υ3

R1 R2

R4

R5

RLR3

υo
+

_

Figure P4.34: Circuit for Problem 4.34.

*4.35 For the circuit in Fig. P4.35, obtain an expression for υo
in terms of υ1, υ2, and the four resistors. Evaluate υo if
υ1 = 0.1 V, υ2 = 0.5 V, R1 = 100 �, R2 = 200 �,
R3 = 2.4 k�, and R4 = 1.2 k�.

υ1

υ2

R1

υo

Vcc = 16 V

R4

R3

R2
+

_

Figure P4.35: Circuit for Problem 4.35.

4.36 Find the value of υo in the circuit in Fig. P4.36.

4 kΩ
6 kΩ

2 kΩ

+
_

υo

5 kΩ 4 kΩ

+
_

+
_ 9 V3 V

Figure P4.36: Circuit for Problem 4.36.

4.37 Find the range of Rf for which the op amp in the circuit
of Fig. P4.37 does not saturate.

+
_

υo

4 V6 V

3 kΩ

+
_

4 kΩ Rf

+
_

+
_7 V

Vcc = 10 V

Figure P4.37: Circuit for Problem 4.37.

*4.38 Determine υo and the power dissipated in RL in the
circuit of Fig. P4.38.

2 kΩ

7 kΩ

3 kΩ4 V

2 V

+
_

4 kΩ 2 kΩ

5 kΩ

+
_

+_
υo

RL

3 kΩ

Figure P4.38: Circuit for Problem 4.38.

4.39 The circuit in Fig. P4.39 contains two single-pole single-
throw switches, S1 and S2. Determine the closed-circuit gain
G = υo/υs for each of the four possible closed/open switch
combinations.

υs

S2 S1 υo

24 kΩ

6 kΩ

6 kΩ 6 kΩ

+

_

Figure P4.39: Circuit for Problem 4.39.
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Section 4-8: Op-Amp Signal-Processing Circuits

4.40 Develop a block-diagram representation for the circuit
in Fig. P4.40 for υs2 = υs3 = 0 and

*(a) R1 = open circuit

(b) R1 = 10 k�.

υs1

υs2

υs3

R1

υo

400 kΩ4 kΩ

2 kΩ

20 kΩ

24 kΩ

+

_
+

_

Figure P4.40: Circuit for Problems 4.40 through 4.42.

4.41 Develop a block-diagram representation for the circuit
in Fig. P4.40 for υs3 = 0 and R1 = ∞.

4.42 Develop a block-diagram representation for the circuit
in Fig. P4.40 for υs2 = 0 and R1 = ∞.

4.43 For the circuit in Fig. P4.43:

(a) Develop a block-diagram representation with RL as a
variable parameter.

(b) Specify the linear range of υs.

(c) Determine υo for υs = 0.3 V and RL = 10 k�.

υs

RL

υo

4 kΩ

2 kΩ

10 kΩ

80 kΩ

+
_+

_

0.4 V

Vcc = 12 V Vcc = 12 V

+_

Figure P4.43: Circuit for Problem 4.43.

4.44 Design an op-amp circuit that can perform the operation
υo = 12υs1 + 3υs2 , while simultaneously presenting an input
resistance of 50 k� on the input side for source υs1 and an
input resistance of 25 k� on the input side for source υs2 .

4.45 Design an op-amp circuit that can perform the operation
υo = 4υs1 − 3υs2 , while simultaneously presenting an input
resistance of 10 k� on the input side for source υs1 and an
input resistance of 5 k� on the input side for source υs2 .

*4.46 Relate υo in the circuit of Fig. P4.46 to υs.

υs υo

+

_
+

_
R3

R2

R1

Rs

RL

Figure P4.46: Circuit for Problem 4.46.

4.47 In the circuit of Fig. P4.47, op amp 1 receives feedback
at its input from its own output as well as from the output of op
amp 2. Relate υo to υs.

υs

υo+
+

_

Rf3

Rs2

Rf2

Rf1

Rs1 _
Op 
Amp 1
+

_
Op 
Amp 2
+

Figure P4.47: Circuit for Problem 4.47.

4.48 Relate υo in the circuit of Fig. P4.48 to υ1 and υ2.

+
_ υo

+
_

υ1

υ2

+
_

8 kΩ

2 kΩ

2 kΩ

16 kΩ

40 kΩ

40 kΩ

20 kΩ
10 kΩ

4 kΩ

10 kΩ

0.5 kΩ

0.5 kΩ

+
_ +

_

Figure P4.48: Circuit for Problem 4.48.

4.49 Design an op-amp circuit that can perform the operation
io = (30i1 − 8i2 + 0.6) A where i1 and i2 are input current
sources.
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*4.50 Relate the output voltage υo in Fig. P4.50 to υs.

υs

υo

50 kΩ

8 kΩ

2 kΩ

6 kΩ

12 kΩ

10 kΩ

4 kΩ

+
_

+
_

Figure P4.50: Circuit for Problem 4.50.

4.51 Solve for υo in terms of υs for the circuit in Fig. P4.51.

+
_

υo

υs
+
_4 V

2 kΩ

+
_

+
_3 V

10 kΩ
12 kΩ

6 kΩ

+
_

Figure P4.51: Circuit for Problem 4.51.

*4.52 Find the value of υo in the circuit in Fig. P4.52.

+
_

υo

+

_

9 V 5 V 8 kΩ
3 kΩ

4 kΩ

3 kΩ

6 kΩ

+
_

+
_8 kΩ

Figure P4.52: Circuit for Problem 4.52.

4.53 Solve for υo in the circuit in Fig. P4.53.

+
_

υo

+
_

6 Ω

2 Ω

3 Ω

4 Ω

2 Ω

5 V

+_

5 V

+
_ 6 Ω

4 Ω

2 Ω 4 Ω

4 Ω

+_

+_

3 V

Figure P4.53: Circuit for Problem 4.53.

*4.54 If υo = −3 V, what is the value of υs in the circuit in
Fig. P4.54?

7 kΩ

+
_

υo

+
_ 2 V

10 kΩ

3 kΩ
υs

6 kΩ

+
_+_

Figure P4.54: Circuit for Problem 4.54.

Sections 4-9 and 4-10: Instrumentation Amp and D/A
Converter

4.55 The instrumentation-amplifier circuit shown in Fig. 4-23
is used to measure the voltage differential �υ = υ2 − υ1. If
the range of variation of �υ is from −10 to +10 mV and
R1 = R3 = R4 = R5 = 100 k�, choose R2 so that the corre-
sponding range of υo is from −5 to +5 V.

*4.56 An instrumentation amplifier with R1 = R3 = 10 k�,
R4 = 1 M�, and R5 = 1 k� uses a potentiometer for the gain-
control resistor R2. If the potentiometer resistance can be varied
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between 10 and 100 �, what is the corresponding variation of
the circuit gain G = υo/(υ2 − υ1)?

4.57 Design a five-bit DAC using a circuit configuration
similar to that in Fig. 4-25.

4.58 Design a six-bit DAC using a R–2R ladder configura-
tion.

Section 4-11: MOSFET

4.59 In Example 4-9, we analyzed a common-source
amplifier without a load resistance. Consider the amplifier in
Fig. P4.59; it is identical to the circuit in Fig. 4-31, except that
we have added a load resistor RL. Obtain an expression for υout
as a function of υs.

υout(t)

RD

VDD

Rs

υs(t)
S

G
D +

_
+
_

RL

Figure P4.59: MOSFET circuit for Problem 4.59.

*4.60 Determine υout(t) as a function of υs(t) for the circuit
in Fig. P4.60. Assume VDD = 2.5 V.

υout(t)

VDD

υs(t)
+

_

+
_

10 Ω

1 kΩ

1 kΩ

g1 = 10 A/V g2 = 100 A/V

Figure P4.60: Two-MOSFET circuit for Problem 4.60.

4.61 In Problem 3.73 of Chapter 3, we analyzed a current
mirror circuit containing BJTs. Current mirror circuits also
can be designed using MOSFETs, as shown in Fig. P4.61.
Determine the relationship between I0 and IREF.

IREF

D D

S SG

I0

Figure P4.61: Circuit for Problem 4.61.

Section 4-13: Multisim Analysis

4.62 Draw a noninverting amplifier (Fig. 4-7) with a gain
of 2 in Multisim. Show that the circuit works as expected by
connecting a 1V pulse source and plotting both the input and the
output voltages using the Grapher Tool and Transient Analysis.
Use the 3-terminal virtual op-amp component.

4.63 Draw an inverting amplifier (Fig. 4-11) with a gain of
−3.5 in Multisim. Show that the circuit works as expected by
connecting a 1 V dc voltage source and solving the circuit using
the DC Operating Point analysis. Use the 3-terminal virtual op-
amp component.

4.64 In Multisim, draw a summing amplifier that adds the
values of four different dc voltage sources, each with an
inverting gain of 4. Use the DC Operating Point analysis tool
to verify the circuit performance.

4.65 In Multisim, draw a noninverting summing amplifier that
adds the values of three different dc voltage sources V1, V2,
and V3 with gains of 1, 2, and 5, respectively. Apply the DC
Operating Point Solution tool to demonstrate that the circuit
functions as specified.

4.66 Draw the op-amp circuit shown in Fig. P4.66 in
Multisim, provide a DC Operating Point Analysis solution that
demonstrates its operation, and state what function the circuit
performs.
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υin1

υin2

υout

50 kΩ50 kΩ

40 kΩ

10 kΩ

50 kΩ

50 kΩ

+

_+
_

+

_
+

_

+

_

Figure P4.66: Circuit for Problem 4.66.

4.67 Construct the noninverting amplifier circuit shown in
Fig. P4.67 in Multisim. Set the value of R to 50 k� and then
perform a DC Sweep analysis of the input voltage from −5 to
+5 V. Plot the Output. Now change the value of R to 80 k�

and repeat the DC Sweep analysis. Compare the two plots either
side by side or by overlapping them using the Overlay Traces
button on the Grapher toolbar. (Use the three-terminal virtual
op amp for the simulation.)

R1
R

Vout
Vin

10 kΩ

+
_

Figure P4.67: Circuit for Problem 4.67.

4.68 Until the 1970s, much research was carried out on analog
computers (as distinguished from the digital computers found
everywhere today). In fact, analog computers were one of the
originally intended users of operational amplifiers. Op amps
easily can be incorporated to perform many mathematical
operations.

Using the basic op-amp circuits shown in this chapter,
construct a circuit that expresses the following algebraic
equation in voltage:

υ = 2x − 3.5y + 0.2z,

where υ is the output voltage and x, y, and z are three
input voltages. Once you have the circuit designed, build it in
Multisim and demonstrate that the circuit behaves appropriately
by giving it the following inputs: x = 1.2, y = 0.4, and
z = 0.9.

Potpourri Questions

4.69 Based on the information provided in Table TT9-1 of 
Technology Brief 9, which types of display technologies are 
best suited for a large football stadium? A home TV? A cell 
phone screen?

4.70 What are the limitations of today’s computer memory 
circuits (ROM and RAM), and what emerging technologies are 
becoming available to improve them?

4.71 Circuit analysis and design can be performed analyti-
cally by applying the techniques covered in this book, or they 
can be performed by computer simulation.Are these competing 
or complementary approaches? Explain.

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using 
the myDAQ interface unit to measure quantities of interest 
via your computer. [myDAQ tutorials and videos are available 
on        .]

m4.1 Ideal Op-Amp Model:

(a) Determine a general expression for υout in terms of the
resistor values and is for the circuit of Fig. m4.1 (no
Multisim or myDAQ for this part).

(b) Find Vout for these specific component values:
R1 = 3.3 k�, R2 = 4.7 k�, R3 = 1.0 k�, and
Is = 1.84 mA.

(c) Replace R2 with a potentiometer. Use myDAQ and the
potentiometer to determine Vout for each of the following
values of R2: 2.5 k�, 10 k�, and 25 k�.

R2

R1

+
_

Vout

Is

R3

Figure m4.1 Circuit for Problem m4.1.
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m4.2 Noninverting Amplifier: The circuit in Fig. m4.2 uses
a potentiometer whose total resistance is R1. The movable
stylus on terminal 2 creates two variable resistors: βR1 between
terminals 1 and 2 and (1−β)R1 between terminals 2 and 3. The
movable stylus varies β over the range 0 ≤ β ≤ 1.

(a) Obtain on expression for G = υo/υs in terms of β.

(b) Calculate the amplifier gain for β = 0.0, β = 0.5,
and β = 1.0 with component values R1 = 10 k� and
R2 = 1.5 k�.

(c) Let υs be a 100 Hz sinusoidal signal with a 1 V peak value.
Plot υo and υs to scale for β = 0.0, β = 0.5, and β = 1.0.

R1

βR1

+
_

R2

1

2

3

υs υ0

(1 − β)R1

Figure m4.2 Circuit for Problem m4.2.

m4.3 Summing Amplifier:

(a) Design an op-amp summing circuit that performs the
operation υo = −(2.14υ1 + 1.00υ2 + 0.47υ3). Use not
more than four standard-value resistors with values
between 10 k� and 100 k�. Refer to the resistor parts
list in Appendix A of the myDAQ tutorial on the EM .

(b) Draw the output waveform υo for the input waveforms υ1
and υ2 shown in Fig. m4.3 and υ3 = 4.7 V.

(c) State the minimum and maximum values of υo.

m4.4 Signal Processing Circuits:

(a) Design a two-stage signal processor to serve as a
“distortion box” for an electric guitar. The first-stage
amplifier applies a variable gain magnitude in the range
13.3 to 23.3 while the second-stage amplifier attenuates
the signal by 13.3, i.e., the second-stage amplifier has
a fixed gain of 1/13.3. Note that when the first-stage
amplifier gain is 13.3 the overall distortion box gain
is unity. The distortion effect relies on intentionally

υ1

t (ms)
5

−1 V

1 V

10

υ2

t (ms)
52.5 7.5

1 V

10

Figure m4.3 Input waveforms for Problem m4.3.

driving the first-stage amplifier into saturation (also 
called “clipping”) when its gain is higher than 13.3. Use 
a 10 k� potentiometer and standard-value resistors in the 
range 1.0 k� and 100 k�; see the resistor parts list in 
Appendix  A of the myDAQ tutorial on        .  You may 
combine two standard-value resistors in series to achieve 
the required amplifier gains.

(b) Derive a general formula for percent clipping of a unit-
amplitude sinusoidal test signal; this is the percent of
time during one period in which the signal is clipped.
The formula includes the peak sinusoidal voltage Vp that
would appear at the output of the first-stage amplifier with
saturation ignored and the actual maximum value Vs due
to saturation.

(c) Apply your general formula to calculate percent clipping
of a 1 V peak amplitude sinusoidal signal for the
potentiometer dial in three positions: fully counter-
clockwise (no distortion), midscale (moderate distortion),
and fully clockwise (maximum distortion). Assume the
op-amp outputs saturate at ±13.5 V.

(d) Apply a 1 V peak amplitude sinusoidal signal with 100 Hz
frequency to the distortion box input and plot its output for
the potentiometer dial in the same three positions as above.
State the maximum and minimum values of the distortion
box output.

m4.5 Multiple Op-Amp Stages: Determine Vout in each of
the two circuits in Fig. m4.5.
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(a)

10 kΩ

10 kΩ

1

4 V

2 V

+

_+_

+_

+_

+_

+

_

V1

Vout1R3

5.6 kΩ

R1

V2

(b)

10 kΩ

10 kΩ

1

4 V

2 V

+

_
V1

R3

5.6 kΩ

R1

1.5 kΩ

R2

V2 +

_ 1 kΩ

R4

+

_
Vout2

Figure m4.5 Circuits for Problem m4.5.

m4.6 The Importance of Voltage Followers: Suppose you
are asked to design a circuit to power a certain gadget and the
only source available to you is the 15 V source from your NI
myDAQ. Your boss tells you that in order for the gadget to
operate properly, its input voltage should be 10.3 V. Moreover,
you are told that the input equivalent load resistance of the
gadget is exceedingly high (greater than 10 M�). To generate
the required 10.3 V source, you used the voltage divider shown
in Fig. m4.6.

(a) Confirm that the voltage divider provides an output voltage
of 10.3 V.

(b) It turns out that the information given to you about the
load resistance is in error; the true load resistance of the
gadget is 10 k�, not 10 M�, and the required input current
is 1.03 mA. Reevaluate your circuit in light of the new
information. What is the input voltage for the gadget and
what is the input current?

R1

+
_

+
_

15 kΩ

R3 Vin33 kΩ
15 V

Gadget

Figure m4.6 Circuit for Problem m4.6.

(c) To fix the problem, you decide to use a voltage follower.
Design a voltage follower in conjunction with your voltage
divider from part (a) to achieve a 1.03 mA current through
the 10 k� load resistor.
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100 kΩ
+
_

V1

R3

10 kΩR1

V1
V31 kΩ

R7

+

_

1 kΩ

R85.6 kΩ

R2

3.3 kΩ

R6

1 V

1 kΩ +

_

V2

R4

V2

3.3 kΩ

R5

1 V

+
_

+
_

Figure m4.7 Circuit for Problem m4.7.

m4.7 Cascaded Op Amps: Find the voltage at each of the
three op-amp outputs in the circuit of Fig. m4.7.
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Objectives

Learn to:

� Use mathematical functions to describe several
types of nonperiodic waveforms.

� Define the electrical properties of a capacitor,
including its i-υ relationship and energy equation.

� Combine multiple capacitors when connected in
series or in parallel.

� Define the electrical properties of an inductor,
including its i-υ relationship and energy equation.

� Combine multiple inductors when connected in
series or in parallel.

Charge/discharge time

Capacitors (C) and inductors (L) are energy storage devices,
in contrast with resistors, which are energy dissipation devices.
This chapter examines the behavior of RC and RL circuits, to
be followed in Chapter 6 with an examination of RLC circuits.

� Analyze the transient responses of RC and RL
circuits.

� Design RC op-amp circuits to perform differenti-
ation and integration and related operations.

� Apply Multisim to analyze RC and RL circuits.

CHAPTER 5
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Overview

A resistor is characterized by a linear i–υ relationship, namely
υ = iR, which does not involve time explicitly. When we
apply Kirchhoff’s current and voltage laws to resistive circuits,
we end up with one or more simultaneous linear equations.
The process of solving a set of linear equations is relatively
straightforward and does not involve time explicitly, but if i

varies with time, so will υ, in a linearly proportionate manner,
and the character of the time variation remains the same for
both. Hence, even when a certain voltage or current source
in the circuit varies with time, we solve the resistive circuit
using static formulas that do not depend on time rather than
dynamic formulas that do, because the time variation is merely
a scale change. Another important feature of resistive elements
is that they consume electrical energy by converting it into
heat.

Resistive circuits are used to change the relationship
between υ and i, divide voltages and currents, and (with the
addition of op amps) amplify, add, subtract, and compare
voltages. Resistive sensors allow us to convert properties of
the physical world—light, heat, sound, moisture, pressure,
etc.—to voltage and current values that we can use in our
circuits.

� Capacitors and inductors represent a contrasting (yet
complimentary) class of electrical devices. Not only is
time t (or more precisely d/dt) at the heart of how
capacitors and inductors function, but they also differ
from resistors in that they do not dissipate energy. They
can store energy and then release it—but not consume
it. �

The addition of capacitors and inductors to circuits
containing time-varying sources opens the door to dynamic
circuits with a wide range of practical applications. Because
capacitors and inductors store energy, they can be used to
smooth out or average time-varying voltages or currents, select
or filter out different frequencies, and delay circuit responses.
Capacitive sensors can also be used to measure proximity,
touch, pressure, moisture, vibration, and more. Both capacitors
and inductors also are found as unintended parasitics in all
circuits. The dynamic, time-varying responses of capacitors
and inductors provide a new and important set of tools
for controlling voltage and current. The dynamic response
of a circuit to a certain voltage or current source depends
on both the architecture of the circuit and the waveform
characterizing the time variation of that source. In general, the

response consists of a transient component and a steady-state
component.

� The transient response represents the initial reaction
immediately after a sudden change, such as closing or
opening a switch to connect a source to the circuit. This
is also called the early time response. �

Most (but not all) electronic circuits are designed such
that the transient response usually dies out or reaches an
approximately constant level within a fraction of a second after
the introduction of the external excitation. An example of a
transient response is when the energy stored in a capacitor is
transferred into the flashbulb of a camera. Figure 5-1 shows
examples of two typical circuit responses. In part (a), the
external excitation is a dc voltage source, and the displayed
response represents the current flowing through a certain
capacitor in the circuit, starting when the switch is closed.
This is much like the camera flash example. The current
levels labeled i0 and i∞ denote the values exhibited by
the transient response at the onset of the change (closing
the switch at t = 0) and a long time afterward (at t = ∞),
respectively. They are called the initial and final (or steady
state) values of i(t). For this example, the steady state current
is i∞ = 0.

Our second example displays in Fig. 5-1(b) the response
of another circuit to turning on a sinusoidally time-varying
source. The combination of the ac source and switch action
initially elicit a transient response that quickly transitions into
a steady-state response. This steady state ac case belongs to
a class of external excitations and circuit responses called
periodic waveforms (which repeat periodically). In contrast,
a dc waveform is nonperiodic (it does not repeat). As we
shall see later, the tools of circuit analysis and design lend
themselves to different mathematical approaches when dealing
with periodic versus nonperiodic waveforms. We will first
examine the behavior of circuits excited by nonperiodic external
excitations in this and the following chapter, before we pursue
the treatment of periodic ac circuits starting in Chapter 7.

Section 5-1 introduces some of the nonperiodic waveforms
commonly used in electric circuits, followed in Sections 5-2 and
5-3 with presentations of the circuit properties of capacitors and
inductors, respectively. Our treatment of the circuit response
to nonperiodic excitations is divided into two segments. The
first, covered in Sections 5-4 through 5-6 of this chapter, deals
with first-order circuits, so named because their Kirchhoff
voltage and current equations are characterized by first-order
differential equations.
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(a) dc transient response
0

0

(b) Combined response to ac excitation

υ(t)
+
_

t = 0

Circuit

R

i(t)

i(t)

i0 (initial value)

i
t8

Transient response

Steady−state response

t

+
_

 (final value)

Figure 5-1: Circuit response to (a) dc source υ(t) = V0 and (b) ac source υ(t) = V0 cos ωt .

� First-order circuits include RC circuits—composed
of sources, resistors, and a single capacitor (or multiple
capacitors that can be combined into a single equivalent
capacitor)—and RL circuits, but not circuits containing
capacitors and inductors simultaneously. �

RLC circuits, which give rise to second-order differential
equations, are the subject of Chapter 6.

Concept Question 5-1: What is the difference between 
the transient and steady-state components of the circuit 
response? (See         )

Concept Question 5-2: Why do we study the circuit
response to dc and ac sources separately? (See         )

5-1 Nonperiodic Waveforms
Among the multitudes of possible nonperiodic waveforms, the
step, ramp, pulse, and exponential waveforms are encountered
most frequently in electrical circuits. In this section, we review
the geometrical properties and corresponding mathematical
expressions associated with each of these four waveforms, as
well as introduce some of the connections between them.

5-1.1 Step-Function Waveform

The waveform υ(t) shown in Fig. 5-2(a) is an (ideal) step
function: it is equal to zero for t < 0, at t = 0 it makes a
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(a) Ideal step function

Step Functions

(b) Realistic step function

(c) Time-shifted step u(t − T) with T = 3s

T > 0

(d) Time-shifted step u(t − T) with T = 3s

t

υ(t)

V0 u(t)

V0 u(t − 3)

V0

0

t∆t

υ(t)

V0

0
t (s)

υ(t)

V0

3

V0 u(3 − t)

0
t (s)

υ(t)

V0

3

Figure 5-2: Step functions: (a) ideal step function, (b) realistic
step function with transition duration �t , (c) time-shifted step
function V0 u(t − 3), (d) time-shifted step function V0 u(3 − t).

discontinuous jump to V0, and from there on forward it remains
at V0. The process represents an ideal switch that turns on a dc
voltage at t = 0. Mathematically, it can be described as

υ(t) = V0 u(t), (5.1)

where u(t) is known as the unit step function and is defined as

u(t) =
{

0 for t < 0,

1 for t > 0.
(5.2)

In reality, it is not possible to turn on a switch with an (ideal)
step function, because that would require changing the value of
υ(t) from 0 to V0 in zero time. A more realistic shape of the step
function is illustrated in Fig. 5-2(b); the discontinuous jump is
replaced with a ramp waveform with rise time �t , providing a
smooth voltage turn-on.

If υ(t) transitions between its two levels at a time other than
zero, such as at t = T , it is written as

υ(t) = V0 u(t − T ) =
{

0 for t < T ,

V0 for t > T .
(5.3)

� u(t −T ) is called the time-shifted step function, which
is defined to be zero when its argument (t −T ) is less than
zero and 1 when its argument is greater than zero. Thus,
u(t − T ) = 1 for t > T . �

By the same definition, u(T − t) is zero when T − t < 0
(which is true when t > T ), and 1 when T − t > 0 (which is
true when t < T ). Figure 5-2(c) and (d) display step-function
waveforms for V0 u(t − 3) and V0 u(3 − t), respectively. We
often use combinations of step functions to represent voltage
sources turning on and off.

An example of a step function is when a switch is closed so as
to connect a voltage source to a circuit, as shown in Fig. 5-3(a).
When writing KCL and KVL equations for circuits that include
switches, the switching action (closing or opening) can be
represented mathematically by step functions. In Fig. 5-3(a),
closing the switch at t = 3 s is represented by u(t −3), whereas
disconnecting the source by opening the switch in Fig. 5-3(b)
is represented by u(3 − t).

If the time associated with closing the switch is very short
in comparison with the time scale of interest, then it may be
acceptable to approximate the switch closing by an ideal step
function. On the other hand, if we are interested in analyzing
the circuit response at a sampling rate whose interval is shorter
than or comparable with the transition interval associated with
closing the switch, then it may be necessary to use a more
realistic, continuous, step function to represent the switch
action.
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Circuit

t = 3 s
+
_

a

b

V0

+
_

a

b

V0 u(t − 3)
Circuit

Circuit

t = 3 s

+
_

a

V0

+
_

a

b

V0 u(3 − t)
Circuit

(a) Switch closes
at t = 3 s

(b) Switch opens
at t = 3 s

Figure 5-3: Connecting/disconnecting a voltage source to/from
a circuit via a switch can be represented mathematically by a step
function.

5-1.2 Ramp-Function Waveform

A waveform that varies linearly with time, starting at a specific
time t = T , is called a time-shifted ramp function and is
denoted by r(t − T ). If T = 0, it simply is called a ramp
function and is denoted by r(t). Formally, r(t − T ) is defined
as

r(t − T ) =
{

0 for t ≤ T ,

(t − T ) for t ≥ T .
(5.4)

Plots of υ(t) = r(t −T ) are displayed in Fig. 5-4(a) and (b) for
T = −1 s and T = 2 s, respectively. A voltage υ(t) that ramps
up at 3 V per second, starting at t = 1 s, is shown graphically
in Fig. 5-4(c). Mathematically, υ(t) can be expressed as

υ(t) = 3r(t − 1) V. (5.5)

If the coefficient of r(t − T ) is negative, υ(t) would
exhibit a negative slope, as illustrated by Fig. 5-4(d) for
υ(t) = −2r(t + 1).

(a)

(b)
0−1−2−3 1 2 3 4

t (s)

υ(t)

2 V
3 V

1 V r(t − 2)

Ramp Functions

−1−2−3 10 2 3 4
t (s)

υ(t)

2 V
3 V

1 V
r(t + 1)

(c)

(d)

−1−2−3 1 2 3 4
t (s)

υ(t)

6 V
3 V 3r(t − 1)

Slope = 3 V/s

0

1 2 3 4−1−2−3
t (s)

υ(t)

−2 V

2 V

−4 V −2r(t + 1)
Slope = −2 V/s

0

Figure 5-4: Time-shifted ramp functions.

A unit ramp function is related to the unit step function by

r(t) =
t∫

−∞
u(t) dt = t u(t), (5.6)
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and for the case where the ramping action starts at t = T ,

r(t − T ) =
t∫

−∞
u(t − T ) dt = (t − T ) u(t − T ). (5.7)

Example 5-1: Realistic Step Waveform

Generate an expression to describe the waveform shown in
Fig. 5-5(a). Note that the time scale is in ms.

Solution: The voltage υ(t) can be synthesized as the sum
of two time-shifted ramp functions (Fig. 5-5(b)): one with a
positive slope of 3 V/s and a ramp start-up time T = −2 ms

−1−2−3−4−5 1 2 3 4
t (ms)

υ (V)

3
6

9
12

(a) Original function

(b) As sum of two time-shifted ramp functions

0

υ (V)

−1−2−3−4−5 1 2 3 4
t (ms)

6

9
12

−6
−9

−12

3

−3

υ2(t) = −3r(t − 2 ms)

υ1(t) = 3r(t + 2 ms)

Composite
waveform

0

Figure 5-5: Step waveform of Example 5-1.

and a second ramp function that starts at T = +2 ms but its
slope is −3 V/s. Thus,

υ(t) = υ1(t) + υ2(t) = 3r(t + 2 ms) − 3r(t − 2 ms) V.

In view of Eq. (5.7), υ(t) also can be expressed in terms of
time-shifted step functions as

υ(t) = 3(t + 2 ms) u(t + 2 ms)

− 3(t − 2 ms) u(t − 2 ms) V.

5-1.3 Pulse waveform

The diagram in Fig. 5-6(a) depicts a SPDT switch that moves
from position 1 to position 2 at t = 1 s, connects a dc voltage
source to an electric circuit, and then returns to position 1 at
t = 5 s. From the standpoint of the circuit, the switch actions
constitute the introduction of a rectangular pulse of voltage V0,
as illustrated in Fig. 5-6(b). A pulse also may be triangular or
Gaussian in shape or may assume other forms, but in all cases,
it usually is assumed that a pulse rises from some specified base
level up to a peak value, remains constant for a while, and then
declines back to its original base level.

(a) Circuit with input switch

(b) Equivalent input pulse

V0

Moves from 1 to 2 @ t = 1 s
Returns to 1 @ t = 5 s

+
_ Circuit

SPDT 2
1+

_ υ(t)
+

_

V0
Circuit

t = 1 s t = 5 s
3 s

υ(t)
+

_

rect

(
t − 3

4

)

Figure 5-6: Connecting a switch to a dc source at t = 1 s and
then returning it to ground at t = 5 s constitutes a voltage pulse
centered at T = 3 s and of duration τ = 4 s.
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Rectangular Pulses

(a)

t (s)

τ

υ(t)

1

T0

rect ( )t − T
τ

(b)

(c)

t (s)

υ(t)

−1−2
T = −2

−3

V0

0

2

V0 rect ( )t + 2
2

υ(t)

t (s)

−8

2 3 4
0 2

−8 rect ( )t − 3
2

T = 3

Figure 5-7: Rectangular pulses.

A rectangular pulse can be described in terms of the unit
rectangular function rect[(t − T )/τ ], which is characterized
by two parameters: location of the center of the pulse T and the
duration of the pulse τ , as shown in Fig. 5-7. Its mathematical
definition is given by

rect

(
t − T

τ

)

=

⎧⎪⎨
⎪⎩

0 for t < (T − τ/2),

1 for (T − τ/2) ≤ t ≤ (T + τ/2),

0 for t > (T + τ/2).

(5.8)

A rectangular pulse can be constructed out of two time-shifted
step functions: one that causes the rise in level and another
(delayed in time) that cancels the first one. The details are given
in Example 5-2.

Example 5-2: Pulses

Construct expressions for (a) the rectangular pulse shown in
Fig. 5-8(a) and (b) the trapezoidal pulse shown in Fig. 5-8(b)
in terms of step and ramp functions.

Solution: (a) From Fig. 5-8(a), it is evident that the
amplitude of the rectangular pulse is 4 V and its duration is
2 s, extending from T1 = 2 s to T2 = 4 s. Hence, with its center
at 3 s and its duration equal to 2 s,

υa(t) = 4 rect

(
t − 3

2

)
V. (5.9)

The sequential addition of two time-shifted step functions, υ1(t)

at t = 2 s and υ2(t) at t = 4 s, as demonstrated graphically in
Fig. 5-8(c), accomplishes the task of synthesizing the rectangle
function in terms of two step functions. Specifically,

υa(t) = υ1(t)+υ2(t) = 4[u(t −2)−u(t −4)] V. (5.10)

(b) The trapezoidal pulse consists of three segments, a ramp
with a positive slope that starts at t = 0 and ends at t = 1 s,
followed by a plateau that extends to t = 3 s, and finally, a
ramp with a negative slope that ends at 4 s. Building on the
experience gained from Example 5-1, we can synthesize the
trapezoidal pulse in terms of four ramp functions. The process,
which is illustrated graphically in Fig. 5-8(d), leads to

υb(t) = υ1(t) + υ2(t) + υ3(t) + υ4(t)

= 5[r(t) − r(t − 1) − r(t − 3) + r(t − 4)] V.

(5.11)

Equivalently, using the relationship between the ramp and step
functions given by Eq. (5.7), υb(t) can be expressed as

υb(t) = 5[t u(t) − (t − 1) u(t − 1)

− (t − 3) u(t − 3) + (t − 4) u(t − 4)] V.

(5.12)

There are often multiple ways for representing waveforms of
these types, all of which should lead to the same result in the
end.
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Waveform Synthesis

(b) Trapezoidal pulse

(c) υa(t) = 4u(t − 2) − 4u(t − 4) (d) υb(t) = υ1(t) + υ2(t) + υ3(t) + υ4(t)

t (s)

υa(t)

4 V

−4 V
1 2 3 4 5

−4u(t − 4)

4u(t − 2)

0

υb(t)

5 V

−1−2 1 2 3 4 5
t0

4 5

υb(t)

5 V

−1−2 1 2 3
t

υ1(t)
υ4(t)

υ3(t)
υ2(t)

0

(a) Rectangular pulse

1 2 3 4 5
t (s)

υa(t)

4 V

0

4 rect ( )t − 3
2

Figure 5-8: Rectangular and trapezoidal pulses of Example 5-2.

Concept Question 5-3: What determines the slope of a
ramp waveform? (See         )

Concept Question 5-4: How are the ramp and rectangle
functions related to the step function? (See         )

Concept Question 5-5: A unit step function u(t) is 
equivalent to closing an SPST switch at t = 0. What is 
u(−t)  equivalent to? (See         )

Exercise 5-1: Express the waveforms shown in Fig. E5.1
in terms of unit step functions.

Answer:
(a) υ(t) = 10 u(t) − 20 u(t − 2) + 10 u(t − 4),
(b) υ(t) = 2.5 r(t)  − 10 u(t − 2) − 2.5 r(t  − 4).

(a)

υ

t (s)
2 4

10

−10

(b)

υ

t (s)
2 4

5

−5

0

0

Figure E5.1

(See         )
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Exercise 5-2: How is u(t) related to u(−t)?

Answer: They are mirror images of one another (with 
respect to the y-axis). (See     C)

Exercise 5-3: Consider the SPDT switch in Fig. 5-6(a).
Assume that it started out at position 2, was moved to
position 1 at t = 1 s, and then moved back to position 2
at t = 5 s. This is the reverse of the sequence shown
in Fig. 5-6(a). Express υ(t) in terms of (a) units step
functions and (b) the rectangle function.

Answer: (a) υ(t) = V0[u(1 − t) + u(t − 5)],
(b) υ(t) = V0

[
1 − rect

(
t−3

4

)]
.

5-1.4 Exponential waveform

The exponential function is a particularly useful tool for
characterizing fast-rising and fast-decaying waveforms, which,
as we will see in later sections, are related to the transient
responses of RC and RL circuits. The (positive) exponential
function given by

υp(t) = et/τ (5.13)

is shown graphically in Fig. 5-9 for a positive value of the
time constant τ . The figure also includes a plot of the negative
exponential function, where

υn(t) = e−t/τ . (5.14)

When t = τ , υn = e−1 = 0.37. Thus, if a certain quantity (such
as a voltage or current) is said to decay exponentially with

−1−2−3 1 2 3
t/τ

1

0.37

Positive exponential

Negative 
exponential

υn = e−t/τ

υp = et/τ

0

Figure 5-9: By t = τ , the exponential function e−t/τ has
decayed to 37 percent of its original value at t = 0.

time, it means that after τ seconds its amplitude decreases
to 1/e or 37 percent of its initial value. Symmetrically,
υp = e−1 = 0.37 when t = −τ .

�An exponential function with a short time constant rises
or decays faster than an exponential function with a longer
time constant, as illustrated by the plots in Fig. 5-10(a). �

Replacing t in the exponential with (t−T ) shifts the exponential
curve to the right if T has a positive value and to the left
if T is negative (Fig. 5-10(b)). In Fig. 5-10(c), the range
of the exponential function has been limited to t > 0 by
multiplying e−t/τ by u(t), and in Fig. 5-10(d) the function
υ(t) = V0(1 − e−t/τ ) u(t) is used to describe a waveform
that builds up as a function of time towards a saturation
value V0.

Table 5-1 provides a summary of common waveform shapes
and their equivalent expressions.

Concept Question 5-6: If the time constant of a 
negative exponential function is doubled in value, will 
the corresponding waveform decay faster or slower?
(See         )

Concept Question 5-7: What is the approximate shape
of the waveform described by the function (1 − e−|t|)?
(See         )

Exercise 5-4:The radioactive decay equation for a certain
material is given by n(t) = n0e

−t/τ , where n0 is the initial
count at t = 0. If τ = 2 × 108 s, how long is its half-life?
[Half-life t1/2 is the time it takes a material to decay to 50
percent of its initial value.]

Answer: t1/2 = 1.386 × 108 s = 4 years, 144 days, 
12 hours, 10 minutes, 36 s. (See      )

Exercise 5-5: If the current i(t) through a resistor R

decays exponentially with a time constant τ , what is the
value of the power dissipated in the resistor at t = τ ,
compared with its value at t = 0?

Answer: p(t) = i2R = I 2
0 R(e−t/τ )2 = I 2

0 Re−2t/τ ,
p(τ )/p(0) = e−2 = 0.135 or 13.5 percent. (See       C3 )

 (See          )
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Longer time constant,
slower decay Shorter time constant,

faster decay

(b) Role of time shift T(a) Role of time constant τ

(c) (d)

Exponential Functions

t

et/2ete−t/2 e−t
υ(t)

t

e(t − 1)ete(t + 1)υ(t)

1
1

0 0

V0e−t/τ u(t)

t

υ(t)
V0

t

υ(t)
V0

0.63V0

0.37V0

0 0

−1 1

ττ

V0[1 − e−t/τ] u(t)

Figure 5-10: Properties of the exponential function.

Table 5-1: Common nonperiodic waveforms.

waveform Expression General Shape

Step u(t − T ) =
{

0 for t < T

1 for t > T t

u(t − T)
1

T0

Ramp r(t − T ) = (t − T ) u(t − T )

t

r(t − T)

T

Slope = 1

0

Rectangle rect

(
t − T

τ

)
= u(t − T1) − u(t − T2)

T1 = T − τ

2
; T2 = T + τ

2
t

1

T1 T20

τrect
t − T

Exponential exp[−(t − T )/τ ] u(t − T )

t

exp[−(t − T)/τ] u(t − T)1

T0
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+ + + +
+ + + +

+ + + +

υ E
E

+q

−q

_ _ _ _
_ _ _ _

_ _ _ _ Dielectric ε

Area A

d

+
_
+
_

Figure 5-11: Parallel-plate capacitor with plates of area A,
separated by a distance d, and filled with an insulating dielectric
material of permittivity ε.

5-2 Capacitors

� When separated by an insulating medium, any two
conducting bodies (regardless of their shapes and sizes)
form a capacitor. A capacitor can store electric charge. �

The parallel-plate capacitor shown in Fig. 5-11 represents a
simple configuration in which two identical conducting plates
(each of area A) are separated by a distance d containing an
insulating (dielectric) material of electrical permittivity ε. The
permittivity of a material is usually referenced to that of free
space, namely ε0 = 8.85 × 10−12 farads/m (F/m). Hence, the
relative permittivity of a material is defined as

εr = ε

ε0
. (5.15)

When a dielectric material is subjected to an electric field, its
atoms become partially polarized; i.e., the atom is rearranged
into positive and negative domains.. The electric field E

induced in the space between the conducting plates is the
result of the voltage υ applied across the plates. The electrical
susceptibility χe of a material is a measure of how susceptible
that material is to electrical polarization. The permittivity ε and
susceptibility χe are related by

ε = ε0(1 + χe). (5.16)

In view of Eq. (5.15), the relative permittivity εr is given by

εr = ε

ε0
= 1 + χe. (5.17)

Table 5-2: Relative electrical permittivity of common
insulators: εr = ε/ε0 and ε0 = 8.854 × 10−12 F/m.

Material Relative Permittivity εr

Air (at sea level) 1.0006
Teflon 2.1
Polystyrene 2.6
Paper 2–4
Glass 4.5–10
Quartz 3.8–5
Bakelite 5
Mica 5.4–6
Porcelain 5.7

Free space contains no atoms; hence, its χe = 0 and εr = 1. For
air at sea level, εr = 1.0006 ≈ 1.0. Table 5-2 provides typical
values of εr for common types of insulators.

Returning to the parallel-plate capacitor, if a voltage source
is connected across the two plates, as shown in Fig. 5-11,
charge of equal and opposite polarity is transferred to the
conducting surfaces. The plate connected to the (+) terminal of
the voltage source will accumulate charge +q, and charge −q

will accumulate on the other plate. The charges induce a nearly
uniform electric field E in the dielectric medium, given by

E = q

εA
, (5.18)

with the direction of E being from the plate with +q to the
plate with −q. Moreover, E, whose unit is V/m, is related to
the voltage υ through

E = υ

d
(V/m) (parallel-plate capacitor). (5.19)

� For any capacitor, its capacitance C, measured in
farads (F), is defined as the amount of charge q that its
positive-polarity plate holds, normalized to the applied
voltage responsible for that charge accumulation. �

Thus,

C = q

υ
(F) (any capacitor). (5.20)
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For the parallel-plate capacitor, combining Eqs. (5.18) and
(5.19) leads to q = εAυ/d. Upon inserting this expression for q

in Eq. (5.20), we have

C = εA

d
(parallel-plate capacitor). (5.21)

Even though the expression given by Eq. (5.21) is specific to
the parallel-plate capacitor, the general tenor of the expression
holds true for other geometrical configurations as well. In
general, the capacitance C of any two-conductor system
increases with the area of the conducting surfaces, decreases
with the separation between them, and is directly proportional
to ε of the insulating material. For example, the capacitance
of a coaxial capacitor consisting of two concentric conducting
cylinders of radii a and b (Fig. 5-12(a)) and separated by a
dielectric material of permittivity ε is given by

C = 2πε	

ln(b/a)
(coaxial capacitor), (5.22)

where 	 is the length of the capacitor and ln(b/a) is the
natural logarithm of (b/a). The spacing between the cylinders is
(b−a); reducing this spacing, while holdingb constant, requires
reducing the ratio (b/a), which reduces the value of ln(b/a),
thereby increasing the magnitude of C.

The mica capacitor shown in Fig. 5-12(b) consists of a stack
of conducting plates, interleaved by sheets of mica (dielectric).
The plastic-foil capacitor in Fig. 5-12(c) is constructed by
rolling flexible conducting foils (separated by a plastic layer)
into a spindle-like configuration. Small capacitors used in
microcircuits typically have capacitances in the picofarad
(10−12 F) to microfarad (10−6 F) range. Large capacitors used
in power-transmission substations may have capacitors in the
range of millifarads (10−3 F). Using thin-film polymers for
the dielectric insulator and carbon nanotubes for the electrodes
(terminals), a new type of capacitor (sometimes called a
supercapacitor or nanocapacitor) was developed in the 1990s
with the express goal of significantly increasing the amount
of charge that the conductors can hold (at a specified voltage
level). Such capacitors have capacitance values that are several
orders of magnitude greater than conventional capacitors of
comparable size. The new fabrication techniques have not only
expanded the versatility of capacitors in electronic circuits,
but they have also introduced the use of supercapacitors as
energy-storage devices in many electronic applications (see
Technology Brief 12: Supercapacitors).

(a) Coaxial capacitor

(b) Mica capacitor

(c) Plastic foil capacitor

l Dielectric ε

Conductors

2a
2b

Metal foil
Mica insulator

Plastic insulator

Inner metal foil
Lead to
inner foil sheet

Lead to
outer foil sheet

Outer metal foil

Figure 5-12: Various types of capacitors.

5-2.1 Electrical Properties of Capacitors

According to Eq. (5.20), q = Cυ. Application of the standard
definition for current (Eq. (1.3) provides the expression for the
current i through a capacitor as

i = dq

dt
= C

dυ

dt
, (5.23)

where the direction of i and the polarity of υ are defined
in accordance with the passive sign convention (Fig. 5-13).
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+
_

i

υ dυ
i = C dtC

Figure 5-13: Passive sign convention for capacitor: if current i

is entering the (+) voltage terminal across the capacitor, then
power is getting transferred into the capacitor. Conversely, if i

is leaving the (+) terminal, then power is getting released from
the capacitor.

The i–υ relationship expressed by Eq. (5.23) conveys a very
important condition, namely:

� The voltage across a capacitor cannot change
instantaneously, but the current can. �

This assertion is supported by the observation that if υ were to
change values in zero time, dυ/dt would be infinite, as a result
of which the current i would be also infinite. Since i cannot be
infinite, υ cannot change instantaneously.

Another attribute of Eq. (5.23) relates to the behavior of
a capacitor under dc conditions (constant voltage across it).
Since dυ/dt = 0 for a dc voltage, it follows that i = 0. Such
a behavior is characteristic of an open circuit, through which
no current flows even when a non-zero voltage exists across it.
Thus:

� Under dc conditions, a capacitor behaves like an open
circuit. �

To express υ(t) in terms of i(t), we replace t with a dummy
variable t ′ and integrate both sides of Eq. (5.23) from t ′ = t0 to
t ′ = t ,

t∫
t0

(
dυ

dt ′

)
dt ′ = 1

C

t∫
t0

i dt ′, (5.24)

where t0 is the initial reference point in time at which the initial
condition υ(t0) is known. Since the integral of the derivative of
a function is the function itself, integrating the left-hand side
and rearranging terms leads to

υ(t) = υ(t0) + 1

C

t∫
t0

i dt ′. (5.25)

In view of dq = i dt , we recognize that the integral
∫ t

t0
i dt

represents the amount of charge accumulation on the capacitor
at time t . If we are dealing with a capacitor that had no charge
on it until a switch was closed or a signal was injected into
the circuit and if we conveniently set our time reference such
that the signal injection commenced at t0 = 0, then Eq. (5.25)
simplifies to

υ(t) = 1

C

t∫
0

i dt ′

(capacitor uncharged before t = 0).

(5.26)

Charging up a capacitor creates an electric field in the
dielectric medium between the capacitor’s conductors. The
electric field becomes the mechanism for storage of electrical
energy in that medium. The stored energy can be released by
discharging the capacitor. Thus, a capacitor can store energy and
release previously stored energy but cannot dissipate energy.

The instantaneous power p(t) transferring into or out of a
capacitor is given by

p(t) = υi = Cυ
dυ

dt
(W), (5.27)

where i is defined as entering the capacitor at its positive voltage
terminal (Fig. 5-13).

� If the magnitude of p(t) is positive, then by the
passive sign convention, the capacitor is receiving power
(charging up), and ifp(t) is negative, it is delivering power
(discharging). �

Energy is the integral of the product of power and time.
Hence, the amount of energy stored in the capacitor at any
time t is equal to the time integral of p(t) from −∞ (at which
time the capacitor was uncharged) to t and is given by

w(t) =
t∫

−∞
p dt ′ = C

t∫
−∞

(
υ

dυ

dt ′

)
dt ′

= C

t∫
−∞

[
d

dt ′

(
1

2
υ2
)]

dt ′, (5.28)



“book” — 2015/5/4 — 7:14 — page 261 — #14

5-2 CAPACITORS 261

which yields

w(t) = 1

2
C υ2(t) (J). (5.29)

We note that since the capacitor had no charge at t = −∞, then
its voltage also was zero at t = −∞.

Equation (5.29) states that:

� The electrical energy stored in a capacitor at a given
instant in time depends on the voltage across the capacitor
at that instant, without regard to prior history. �

This stored energy is akin to potential energy in a physical
system.

Example 5-3: Capacitor Response to Voltage Waveform

The voltage waveform shown in Fig. 5-14(a) was applied across
a 0.6 μF capacitor. Determine the corresponding waveforms for
(a) the current i(t), (b) the power p(t), and (c) the energy stored
in the capacitor w(t).

Solution: (a) We start by establishing a suitable expression
for the waveform of υ(t), shown in Fig. 5-14(a), in terms of
ramp functions. Noting that the ramp starts at t = 0 and has a
slope of 10/2 = 5 V/s, υ(t) can be written as

υ(t) = 5r(t) − 5r(t − 2) − 5r(t − 4) + 5r(t − 5) V.

Recalling that according to Eq. (5.7),

r(t − T ) = (t − T ) u(t − T ),

the expression for υ(t) corresponds to

υ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ 0,

5t V for 0 ≤ t ≤ 2 s,

10 V for 2 s ≤ t ≤ 4 s,

(−5t + 30) V for 4 s ≤ t ≤ 5 s,

5 V for t ≥ 5 s.

(5.30)

Application of Eq. (5.23), while recalling that the derivative is
the same as the slope of a line or curve, gives:

i(t) = C
dυ

dt
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ 0,

3 μA for 0 ≤ t ≤ 2 s,

0 for 2 s ≤ t ≤ 4 s,

−3 μA for 4 s ≤ t ≤ 5 s,

0 for t ≥ 5 s.

(5.31)

(a)

Voltage

Current

υ (V)

t (s)
1 2 3 4 5 6 7

5
10

0

−3

(b)

i (μA)

t (s)
1 2 3 6 7

3
6

4 50

(d)

Energy

w (μJ)

t (s)
1 2 3

7.5
15

22.5
30

4 5 6 70

−15
−30

(c)

p (μW)

t (s)
1 2 3

15
30

6 7

Power transfer
into capacitor (charging)

Power transfer 
out of capacitor
(discharging)

0 4 5

Figure 5-14: Example 5-3 waveforms for i, υ, p, and w.

A plot of the current waveform is displayed in Fig. 5-14(b). We
note that i(t) > 0 when υ(t) has a positive slope, and i(t) < 0
when υ(t) has a negative slope.

(b) The power p(t), which is equal to the product of
Eqs. (5.30) and (5.31), is shown in Fig. 5-14(c).

(c) We can calculate the stored energy w(t) either by
integrating p(t)—which is graphically equivalent to computing
the area under the curve—or by applying Eq. (5.29). In either
case, we end up with the plot displayed in Fig. 5-14(d).
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We note that after t = 5 s, the current is zero, the voltage is
constant, the power getting transferred into the capacitor is zero
(because i = 0), and the stored energy remains unchanged at
7.5 μJ.

Let us examine the energy transfer process from the
standpoint of the current and voltage. Between t = 0 and 2 s,
a constant positive current flows to the capacitor, causing the
deposition of positive charge on one side of the capacitor and a
net increase of negative charge by the same amount on the other
side of the capacitor. The increase in charge leads to a linear
increase in voltage. By Eq. (5.29), increasing the voltage leads
to a quadratic increase in stored energy, as shown in Fig. 5-14
during the time span between 0 and 2 s.

Between 2 and 4 s, i = 0 and υ is a constant. Hence, the
stored energy remains unchanged. Then, between 4 and 5 s, the
current reverses direction, which entails repatriating some of the
positive charges back to their original location. Consequently,
υ decreases and so does the stored energy, until t = 5 s. Beyond
that time, the remaining charge stays in place, the voltage
remains constant at 5 V, and the corresponding 7.5 μJ of energy
stored in the capacitor remains in that state until some future
action.

Example 5-4: RC Circuit under dc Conditions

Determine voltages υ1 and υ2 across capacitors C1 and C2 in
the circuit of Fig. 5-15(a). Assume that the circuit has been in
its present (charged) condition for a long time.

Solution: “Long time” implies steady state. Under steady-
state dc conditions, no current flows through a capacitor.
Replacing capacitors C1 and C2 with open circuits, as in
Fig. 5-15(b), allows us to apply KCL at node V as

V − 20

20 × 103 + V

(30 + 50) × 103 = 0,

which gives V = 16 V. Hence,

V1 = V = 16 V.

Through voltage division, V2 across the 50 k
 resistor is given
by

V2 = V × 50k

(30 + 50)k
= 16 × 50

80
= 10 V.

Concept Question 5-8: Explain why a capacitor behaves
like an open circuit under dc conditions. (See         )

(a) Original circuit

C1 V1

C2 V220 kΩ

30 kΩ

50 kΩ
40 kΩ20 V

(b) Equivalent circuit

+
_

+
_

+
_

V

+
_

C1 V1

C2 V220 kΩ

30 kΩ

50 kΩ
40 kΩ20 V

+
_

+
_

+
_
+
_

Figure 5-15: Under dc conditions, capacitors behave like open
circuits.

Concept Question 5-9: The voltage across a capacitor 
cannot change instantaneously. Can the current change 
instantaneously, and why? (See         )

Concept Question 5-10: For the capacitor, can p(t) be
negative? Can w(t) be negative? Explain. (See         )

Exercise 5-6: It is desired to build a parallel-plate
capacitor capable of storing 1 mJ of energy when the
voltage across it is 1 V. If the capacitor plates are 2 cm
× 2 cm each and its insulating material is Teflon, what
should the separation d be? Is such a capacitor practical?

Answer: d = 3.72 × 10−12 m. No, it is not practical to 
build a capacitor with such a small d, because it is about 
two orders of magnitude smaller than the typical spacing 
between two adjacent atoms in a solid material. 
(See     C3)
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Exercise 5-7: Instead of specifying A and calculating
the spacing d needed to meet the 1 mJ requirement in
Exercise 5-6, suppose we specify d as 1 μm and then
calculate A. How large would A have to be?

Answer: A = 10.4 m × 10.4 m, equally impractical!
(See    C3 )

Exercise 5-8: Determine the current i in the circuit of
Fig. E5.8, under dc conditions.

i
2 μF

1 μF

20 kΩ
40 kΩ

5 kΩ 15 kΩ

1.5 A

Figure E5.8

Answer: i = 1 A. (See  C)

5-2.2 Series and Parallel Combinations of
Capacitors

In Chapter 2, we established that multiple resistors connected
in series are equivalent to a single resistor whose resistance is
equal to the algebraic sum of the resistances of the individual
resistors. This equivalence relationship does not hold true for
capacitors. In fact, we will shortly determine that:

� The equivalence relationship for capacitors connected
in series is similar in form to the relationship for resistors
connected in parallel, and vice versa. �

Capacitors in series

Consider the three capacitors shown in Fig. 5-16. They share
the same current is, and are therefore in series. Current is related
to their individual voltages by

is = C1
dυ1

dt
= C2

dυ2

dt
= C3

dυ3

dt
. (5.32)

Also,

υs = υ1 + υ2 + υ3. (5.33)

Combining In-Series Capacitors

+_υs

υ1

C1

+ _ υ2

C2

+ _ υ3

C3

+ _

is

is

υs +_
Equivalent

circuit

2

1

2

1

+
_

+
_

+
_ Ceq =

(
1

C1
+ 1

C2
+ 1

C3

)−1

Figure 5-16: Capacitors in series.

We wish to relate Ceq of the equivalent circuit to C1, C2,
and C3, subject to the requirement that the actual circuit and
its equivalent exhibit identical i–υ characteristics at terminals
(1, 2). For the equivalent circuit,

is = Ceq
dυs

dt
= Ceq

(
dυ1

dt
+ dυ2

dt
+ dυ3

dt

)

= Ceq

(
is

C1
+ is

C2
+ is

C3

)
, (5.34)

which leads to

1

Ceq
= 1

C1
+ 1

C2
+ 1

C3
. (5.35)

Generalizing to the case of N capacitors in series,

1

Ceq
=

N∑
i=1

1

Ci

= 1

C1
+ 1

C2
+ · · · + 1

CN

(capacitors in series).

(5.36)

Additionally, if at reference time t0 the capacitors had initial
voltages υ1(t0) to υN(t0), the initial voltage of the equivalent
capacitor is

υeq(t0) =
N∑

i=1

υi(t0). (5.37)
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Ceq = C1 + C2 + C3

i1

C1 C2 C3

i2 i3
+
_

is

υs

is

υs Equivalent circuit
+
_
+
_

+
_

1

2

1

2

Combining In-Parallel Capacitors

Figure 5-17: Capacitors in parallel.

Capacitors in parallel

The three capacitors shown in Fig. 5-17 share the same
voltage υs and are therefore connected in parallel. The source
current is is equal to the sum of their currents,

is = i1 + i2 + i3 = C1
dυs

dt
+ C2

dυs

dt
+ C3

dυs

dt
. (5.38)

For the equivalent circuit with equivalent capacitor Ceq,

is = Ceq
dυs

dt
. (5.39)

Equating the expressions given by Eqs. (5.38) and (5.39) leads
to

Ceq = C1 + C2 + C3, (5.40)

which can be generalized to N capacitors in parallel as

Ceq =
N∑

i=1

Ci (capacitors in parallel). (5.41)

Since the capacitors are connected in parallel, they shared
the same voltage υ(t0) at reference time t0. Hence, for the
equivalent capacitor

υeq(t0) = υ(t0). (5.42)

Example 5-5: Equivalent Circuit

Reduce the circuit of Fig. 5-18(a) into the simplest equivalent
configuration.

Solution: Resistors are combined independently of capaci-
tors. For the resistors, we first combine R2 and R3 in parallel,
and then add the result to R1 in series, noting that interchanging
the locations of two elements connected in series is perfectly
permissible, as such an action has no influence on either the
current flowing through them or the voltages across them. A
similar procedure can be followed for the capacitors, but we
have to keep in mind that the equivalence relationships for
resistors and capacitors are the reciprocal of one another:

R2 ‖ R3 = R2R3

R2 + R3
= 3k × 6k

3k + 6k
= 2 k
.

Req = R1 + 2 k
 = 8 k
 + 2 k
 = 10 k
,

C2 ‖ C3 = C2 + C3 = 1 μF + 5 μF = 6 μF,

Ceq = C1 × 6 × 10−6

C1 + 6 × 10−6 =
(

12 × 6

12 + 6

)
× 10−6 = 4 μF.

The equivalent circuit is shown Fig. 5-18(b).

R2 = 3 kΩ R3 = 6 kΩ

R1 = 8 kΩ C1 = 12 μF

(a) Original circuit

(b) Equivalent circuit

C3 = 5 μFC2 = 1 μF

1

2

Req = 10 kΩ
Ceq = 4 μF

1

2

Figure 5-18: Circuit for Example 5-5.
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Technology Brief 12
Supercapacitors

As shown in Section 5-2.1, the energy (in joules) stored
in a capacitor is given by w = 1

2 CV 2, where C is the
capacitance and V is the voltage across it. Why then do
we not charge capacitors by applying a voltage across
them and then use them instead of batteries in support
of everyday gadgets and systems? To help answer this
question, we refer the reader to Fig. TF12-1, whose
axes represent two critical attributes of storage devices.
It is the combination (intersection) of these attributes that
determines the type of applications best suited for each
of the various energy devices displayed in the figure.

Charge/discharge time

Power density P ’ (W/kg)

En
er

g
y 

d
en

si
ty

 W
 ’ (

W
-h

/k
g

)

FigureTF12-1: Energy and power densities of modern energy-storage technologies. Even though supercapacitors store less
charge than batteries, they can discharge their energy more quickly, making them more suitable for hybrid cars. (Science,
Vol. 313, p. 902.)

Energy density W ′ is a measure of how much energy
a device or material can store per unit weight. That is,
W ′ = w/m, where m is the mass of the capacitor in
kilograms. [Alternatively, energy density can be defined
in terms of volume (instead of weight) for applications
where minimizing the volume of the energy source is more
important than minimizing its weight.] Even though the
formal SI unit for energy density is (J/kg), a more common
unit is the watt-hour/kg (Wh/kg) with 1 Wh = 3600 J. The
second dimension in Fig.TF12-1 is the power density P ′
(W/kg), which is a measure of how fast energy can be
added to or removed from an energy-storage device (also
per unit weight). Power is defined as energy per unit time
as P ′ = dW ′/dt.
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Table TT12-1: Comparison of a conventional capacitor, supercapacitor, and lithium battery size and mass required to hold
∼ 1 megajoule (MJ) of energy (300 watt-hours). 1 MJ of energy will power a laptop with an average consumption of 50 W for 6
hours. Note from the first column that a lithium ion battery might hold 1000 times more energy than a conventional capacitor
for reasonable voltages (< 50 V).

Sample device 

Specific 
Energy 
[Wa� 

hours/ kg] 

Specific 
Energy 

[MJ / kg] 

Energy 
Density 

[MJ / liter] 

Volume 
required to 
hold 1 MJ 

[liter] 

Weight 
required to 
hold 1 MJ 

[kg] 
Conven�onal 

capacitor 0.01 – 0.1 4x10-5-4x10-4 6x10-5-6x10-4 17000-1700 25000 - 2500 

Supercapacitor 1 - 10 0.004 – 0.04 0.006 - 0.06 166 – 16 250 – 25 
Lithium ion ba�ery 100 - 250 0.36 - 0.9 1 - 2 1 – 0.5 2.8 – 1.1 

According to Fig. TF12-1, fuel cells can store large
amounts of energy, but they can deliver that energy only
relatively slowly (several hours). In contrast, conventional
capacitors can store only small amounts of energy—
several orders of magnitude less than fuel cells—but it
is possible to charge or discharge a capacitor in just a
few seconds—or even a fraction of a second. Batteries
occupy the region in-between fuel cells and conventional
capacitors; they can store more energy per unit weight
than the ordinary capacitor by about three orders of
magnitude, and they can release their energy faster than
fuel cells by about a factor of 10. Thus, capacitors are
partly superior to other energy devices because they can
accomodate very fast rates of energy transfer, but the
amount of energy that can be “packed into” a capacitor
is limited by its size and weight. To appreciate what that
means, let us examine the relation

w = 1
2

CV 2.

To increase w, we need to increase either C or V. We
can develop an intuitive feel for this if we compare how
large a storage element would have to be to hold 1 MJ
(∼ 300 watt-hours). From Table TT12-1, we can see that
a conventional capacitor would have to be thousands of
liters in size (and weigh thousands of kilograms), whereas
a supercapacitor or a battery would be considerably
smaller.

For a parallel-plate capacitor, C = εA/d, where ε is the
permittivity of the material between the plates, A is the
area of each of the two plates, and d is the separation
between them. The material between the plates should
be a good insulator, and for most such insulators, the

value of ε is in the range between ε0 (permittivity of
vacuum) and 6ε0 (for mica), so the choice of material
can at best increase C by a factor of 6. Making A
larger increases both the volume and weight of the
capacitor. In fact, since the mass m of the plates is
proportional directly to A, the energy density W ′ = w/m
is independent of A. That leaves d as the only remaining
variable. Reducing d will indeed increase C, but such a
course will run into two serious obstacles: (a) to avoid
voltage breakdown (arcing), V has to be reduced along
with d such that V/d remains lower than the breakdown
value of the insulator; (b) eventually d approaches
subatomic dimensions, making it infeasible to construct
such a capacitor. Increasing V also increases the energy
stored (by V 2) but here, too, we run into problems with
breakdown. Another serious limitation of the capacitor
as an energy storage device is that its voltage does not
remain constant as energy is transferred to and from it.

Supercapacitor Technology

A new generation of capacitor technologies, termed
supercapacitors or ultracapacitors, is narrowing the
gap between capacitors and batteries. These capacitors
can have sufficiently high energy densities to approach
within 10 percent of battery storage densities, and
additional improvements may increase this even more.
Importantly, supercapacitors can absorb or release
energy much faster than a chemical battery of iden-
tical volume. This helps immensely during recharging.
Moreover, most batteries can be recharged only a few
hundred times before they are degraded completely;
supercapacitors can be charged and discharged millions
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(a) (b)

5-10 nm

Solvated ion
and hydration
(water) sheet

Outer
Helmholtz
Plane (OHP)

Activated carbon

Separator
Electrodes

Figure TF12-2: (a) Conceptual illustration of the water double layer at a charged metal surface; (b) conceptual illustration of
an electrochemical capacitor.

of times before they wear out. Supercapacitors also have
a much smaller environmental footprint than conventional
chemical batteries, making them particularly attractive for
green energy solutions.

History and Design

Supercapacitors are a special class of capacitor known
as an electrochemical capacitor. This should not be
confused with the term electrolytic capacitor, which is
a term applied to a specific variety of the conventional
capacitor. Electrochemical capacitors work by making
use of a special property of water solutions (and
some polymers and gels). When a metal electrode is
immersed in water and a potential is applied, the water
molecules (and any dissolved ions) immediately align
themselves to the charges present at the surface of
the metal electrode, as illustrated in Fig. TF12-2(a).
This rearrangement generates a thin layer of organized
water molecules (and ions), called a double layer,
that extends over the entire surface of the metal. The
very high charge density, separated by a tiny distance
on the order of a few nanometers, effectively looks

like a capacitor (and a very large one: capacitive
densities on the order of ∼ 10 μF/cm2 are common
for water solutions). This phenomenon has been known
to physicists and chemists since the work of von
Helmholtz in 1853, and later Guoy, Chapman, and
Stern in the early 20th century. In order to make
capacitors useful for commercial applications, several
technological innovations were required. Principal among
these were various methods for increasing the total
surface area that forms the double layer.The first working
capacitor based on the electrochemical double layer
(patented by General Electric in 1957) used very porous
conductive carbon. Modern electrochemical capacitors
employ carbon aerogels, and more recently carbon
nanotubes have been shown to effectively increase the
total double layer area (Fig. TF12-2(b)).

Supercapacitors are beginning to see commercial
use in applications ranging from transportation to low-
power consumer electronics.Several bus lines around the
world now run with buses powered with supercapacitors;
train systems are also in development. Supercapacitors
intended for small portable electronics (like your MP3
player) are in the pipeline as well!
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Example 5-6: Voltage Division

Figure 5-19(a) contains two resistors R1 and R2 connected in
series to a voltage source υs. In Chapter 2, we demonstrated
that the voltage υs is divided among the two resistors and, for
example, υ1 is given by

υ1 =
(

R1

R1 + R2

)
υs. (5.43)

Derive the equivalent voltage-division equation for the series
capacitors C1 and C2 in Fig. 5-19(b).Assume that the capacitors
had no charge on them before they were connected to υs.

Solution: From the standpoint of the source υs, it “sees” an
equivalent, single capacitor C given by the series combination
of C1 and C2, namely

C = C1C2

C1 + C2
. (5.44)

The voltage across C is υs. The law of conservation of energy
requires that the energy that would be stored in the equivalent
capacitor C be equal to the sum of the energies stored in C1
and C2. Hence, application of Eq. (5.29) gives

1

2
Cυ2

s = 1

2
C1υ

2
1 + 1

2
C2υ

2
2 . (5.45)

Upon replacing C with the expression given by Eq. (5.44) and
replacing the source voltage with υs = υ1 + υ2, we have

1

2

(
C1C2

C1 + C2

)
(υ1 + υ2)

2 = 1

2
C1υ

2
1 + 1

2
C2υ

2
2 , (5.46)

C1
C2

+

+

_
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υs υ2

υ1

q1
q2

−q2

−q1R1

R2
+

+

_

_

υs υ2

υ1
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+
_
+
_
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+
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(a) υ1 =
(

R1

R1 + R2

)
υs

υ2 =
(

R2

R1 + R2

)
υs

(b) υ1 =
(

C2

C1 + C2

)
υs

υ2 =
(

C1

C1 + C2

)
υs

Figure 5-19: Voltage-division rules for (a) in-series resistors
and (b) in-series capacitors.

which reduces to

C1υ1 = C2υ2. (5.47)

Using υ2 = υs − υ1 in Eq. (5.47) leads to

C1υ1 = C2(υs − υ1)

or

υ1 =
(

C2

C1 + C2

)
υs. (5.48)

We note that in the voltage-division equation for resistors, υ1 is
directly proportional to R1, whereas in the capacitor case, υ1 is
directly proportional to C2 (instead of to C1). Additionally, in
view of the relationship given by Eq. (5.47), application of the
basic definition for capacitance, namely C = q/υ, leads to

q1 = q2. (5.49)

This result is exactly what one would expect when viewing the
circuit from the perspective of the voltage source υs.

Concept Question 5-11: Compare the voltage-division 
equation for two capacitors in series with that for two 
resistors in series. Are they identical or different in form?
(See         )

Concept Question 5-12: Two capacitors are connected
in series between terminals (a, b) in a certain circuit
with capacitor 1 next to terminal a and capacitor 2 next
to terminal b. How does the magnitude and polarity of 
charge q1 on the plate (of capacitor 1) near terminal a 
compare with charge q2 on the plate (of capacitor 2) near 
terminal b? (See         )

Exercise 5-9: Determine Ceq and υeq(0) at terminals
(a, b) for the circuit in Fig. E5.9 given that
C1 = 6 μF, C2 = 4 μF, C3 = 8 μF, and the initial
voltages on the three capacitors are υ1(0) = 5 V and
υ2(0) = υ3(0) = 10 V, respectively.

C1
C2

υ1a

b

υ2 C3 υ3
+

+ _

_
+
_

Figure E5.9

Answer: Ceq = 4 μF, υeq(0) = 15 V. (See      C3 )
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Exercise 5-10: Suppose the circuit of Fig. E5.9 is
connected to a dc voltage source V0 = 12 V. Assuming
that the capacitors had no charge before they were
connected to the voltage source, determine υ1 and υ2 
given that C1 = 6 μF, C2 = 4 μF, and C3 = 8 μF.

Answer: υ1 = 8 V,  υ2 = 4 V. (See      C3 )

5-3 Inductors
Any current-carrying conductor, whether straight or coiled,
forms an inductor. A current produces a magnetic field, which
stores energy that can be released later in the form of another
current. Also, since every wire acts like an inductor, we have
small amounts of stray inductance in every circuit. Fortunately,
this can be ignored except at extremely high frequencies
(microwave band).

Inductors exhibit a number of useful properties, including
magnetic coupling and electromagnetic induction. They are
employed in microphones and loudspeakers, magnetic relays
and sensors, theft detection devices, and motors and generators,
and they provide wireless power transmission and data
communication (albeit over relatively short distances).

� Capacitors and inductors constitute a canonical pair
of devices. Whereas a capacitor can store energy through
the electric field induced by the voltage imposed across its
terminals, an inductor can store magnetic energy through
the magnetic field induced by the current flowing through
its wires. �

The i–υ relationship for a capacitor is i = C dυ/dt ; the
converse is true for an inductor with υ = L di/dt . As we will
see in Chapter 7, the capacitor acts like an open circuit to low-
frequency signals and like a short circuit to high-frequency
signals; the exact opposite behavior is exhibited by the inductor.

A typical example of an inductor is the solenoid configuration
shown in Fig. 5-20. The solenoid consists of multiple turns
of wire wound in a helical geometry around a cylindrical
core. The core may be air filled or may contain a magnetic
material (typically iron) with magnetic permeability μ. If the
wire carries a current i(t) and the turns are closely spaced, the
solenoid produces a relatively uniform magnetic field B within
its interior region.

Magnetic-flux linkage � is defined as the total magnetic flux
linking (passing through) a coil or a given circuit. For a solenoid
with N turns carrying a current i,

� =
(

μN2S

	

)
i (Wb), (5.50)

�i

Magnetic-field
lines

Core

Area S

Figure 5-20: The inductance of a solenoid of length 	 and
cross-sectional area S is L = μN2S/	, where N is the number
of turns and μ is the magnetic permeability of the core material.

where 	 is the length of the solenoid and S is its cross-sectional
area. The unit for � is the weber (Wb), named after the German
scientist Wilhelm Weber (1804–1891).

Self-inductance refers to the magnetic-flux linkage of a coil
(or circuit) with itself, in contrast with mutual inductance,
which refers to magnetic-flux linkage in a coil due to the
magnetic field generated by another coil (or circuit). Usually,
when the term inductance is used, the intended reference is to
self-inductance. Mutual inductance is covered in Chapter 11.

The (self) inductance of any conducting system is defined
as the ratio of � to the current i responsible for generating it,
given as

L = �

i
(H), (5.51)

and its unit is the henry (H), so named to honor the American
inventor Joseph Henry (1797–1878). Using the expression for�
given by Eq. (5.50), we have

L = μN2S

	
(solenoid). (5.52)

The inductance L is directly proportional to μ, the magnetic
permeability of the core material. The relative magnetic
permeability μr is defined as

μr = μ

μ0
, (5.53)

where μ0 ≈ 4 π ×  10−7 (H/m) is the magnetic permeability of 
free space.
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Table 5-3: Relative magnetic permeability of materials,
μr = μ/μ0 and μ0 = 4π × 10−7 H/m.

Material Relative Permeability μr

All Dielectrics and
Non-Ferromagnetic
Metals ≈ 1.0

Ferromagnetic Metals
Cobalt 250
Nickel 600
Mild steel 2,000
Iron (pure) 4,000–5,000
Silicon iron 7,000
Mumetal ∼ 100, 000
Purified iron ∼ 200, 000

� Except for ferromagnetic materials, μr ≈ 1 for all
dielectrics and conductors. According to Table 5-3, μr of
ferromagnetic materials (which include iron, nickel, and
cobalt) can be as much as five orders of magnitude larger
than that of other materials. Consequently, L of an iron-
core solenoid is about 5000 times that of an air-core
solenoid of the same size and shape. �

Air-core inductors have relatively low inductances, on the
order of 10 μH or smaller. Consequently, they are used mostly
in high-frequency circuits, such as those designed to support
AM and FM radio, cell phones, TV, and similar types of
transmitters and receivers. Ferrite-core inductors have the
inductance-size advantage over air-core inductors, but they have
the disadvantage that the ferrite material is subject to hysteresis
effects, and they tend to be larger and heavier than their air-core
counterparts. One of the consequences of magnetic hysteresis is
that the inductance L becomes a function of the current flowing
through it. Magnetic hysteresis is outside the scope of this book;
hence, we will always assume that an inductor is an ideal linear
device and its inductance is constant and independent of the
current flowing through it.

In modern circuit design and manufacturing, it is highly
desirable to contain circuit size down to the smallest dimensions
possible. To that end, it is advantageous to use planar integrated-
circuit (IC) devices whenever possible. It is relatively easy to
manufacture resistors and capacitors in a planar IC format and to
do so for a wide range of resistance and capacitance values, but
the same is not true for inductors. even though inductors can be
manufactured in planar form, as illustrated by the coil shown in
Fig. 5-21, their inductance values are too small for most circuit

Planar inductorHigh current inductor

Solenoid

Figure 5-21: Various types of inductors.

applications, necessitating the use of the more bulky, discrete
form instead.

5-3.1 Electrical Properties

According to Faraday’s law, if the magnetic-flux linkage in an
inductor (or circuit) changes with time, it induces a voltage υ

across the inductor’s terminals given by

υ = d�

dt
. (5.54)

In view of Eq. (5.51),

υ = d

dt
(Li) = L

di

dt
. (5.55)

This i–υ relationship adheres to the passive sign convention
introduced earlier for resistors and capacitors. If the direction
of i is into the (+) voltage terminal of the inductor (Fig. 5-22),
then the inductor is receiving power. Also, the same logic that
led us earlier to the conclusion that the voltage across a capacitor
cannot change instantaneously leads us now to the conclusion:

� The current through an inductor cannot change
instantaneously, but the voltage can. �

(Otherwise, the voltage across it would become infinite.) The
implication of this restriction is that when a current source
connected to an inductor is disconnected by a switch, the current
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+

_

i

υ di
υ = L dtL

Figure 5-22: Passive sign convention for an inductor.

continues to flow for a short amount of time through the air
between the switch terminals, manifesting itself in the form of a
spark! In large power systems, current must always be ramped
up and down slowly to avoid this problem.

When we discussed the capacitor’s i–υ relationship given by
Eq. (5.23), we noted that under dc conditions a capacitor acts
like an open circuit. In contrast, Eq. (5.55) asserts that:

� Under dc conditions, an inductor acts like a short
circuit. �

To express i(t) in terms of υ(t), we duplicate the procedure
we followed earlier in connection with the capacitor, which for
the inductor leads to

i(t) = i(t0) + 1

L

t∫
t0

υ dt ′, (5.56)

where t0 is an initial reference point in time.
The power delivered to the inductor is given by

p(t) = υi = Li
di

dt
, (5.57)

and as with the resistor and the capacitor, the sign of p

determines whether the inductor is receiving power (p > 0)
or delivering it (p < 0). The accumulation of power over time
constitutes the storage of energy. The magnetic energy stored
in an inductor is

w(t) =
t∫

−∞
p dt ′ =

t∫
−∞

(
Li

di

dt ′

)
dt ′, (5.58)

which yields

w(t) = 1

2
L i2(t) (J), (5.59)

where it is presumed that at t = −∞ no current was flowing
through the inductor. Note the analogy with the capacitor for
which w(t) = 1

2 C υ2(t).

� The magnetic energy stored in an inductor at a given
instant in time depends on the current flowing through the
inductor at that instant—without regard to prior history. �

Example 5-7: Inductor Response to Current Waveform

Upon closing the switch at t = 0 in the circuit of Fig. 5-23(a),
the voltage source generates a current waveform through the
circuit given by

i(t) = 10e−0.8t sin(πt/2) A, (for t ≥ 0).

(a) Plot the waveform i(t) versus t and determine the
locations of its first maximum, first minimum, and their
corresponding amplitudes.

(b) given that L = 50 mH, obtain an expression for υ(t) across
the inductor and plot its waveform.

(c) Generate a plot of the power p(t) delivered to the inductor.

Solution: (a) The waveform of i(t) is shown in Fig. 5-23(b).
To determine the locations of its maxima and minima, we take
the derivative of i(t) and equate it to zero, which leads to

−0.8 × 10e−0.8t sin(πt/2) +
(π

2

)
× 10e−0.8t cos

(
πt

2

)
= 0,

which in turn simplifies to

tan

(
πt

2

)
= π

1.6
.

Its solution is

πt

2
= 1.1 + nπ (for n = 0, 1, 2, . . . ).

For n = 0, t = 0.7 s, which is the location in time of the first
maximum of i(t). The next solution, corresponding to n = 1,
gives the location of the first minimum of i(t) at 2.7 s. The
amplitudes of i(t) at these locations are

imax = i(t = 0.7 s) = 10e−0.8×0.7 sin(π × 0.7/2) = 5.09 A
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Figure 5-23: Circuit for Example 5-7.

and

imin = i(t = 2.7 s) = 10e−0.8×2.7 sin(π × 2.7/2) = −1.03 A.

(b)

υ(t) = L
di

dt

= L
d

dt
[10e−0.8t sin(πt/2)]

= 50 × 10−3 · [−8e−0.8t sin(πt/2)

+ 5πe−0.8t cos(πt/2)]
= [−0.4 sin(πt/2) + 0.25π cos(πt/2)]e−0.8t V.

The waveform of υ(t) is shown in Fig. 5-23(c).

(c)

p(t) = υ(t) i(t)

= [−0.4 sin(πt/2) + 0.25π cos(πt/2)]e−0.8t

× 10e−0.8t sin(πt/2)

= [−4 sin2(πt/2) + 2.5π cos(πt/2) sin(πt/2)]
× e−1.6t W.

The waveform of p(t) shown in Fig. 5-23(d) includes both
positive and negative values. During periods when p(t) > 0,
magnetic energy is getting stored in the inductor. Conversely,
when p(t) < 0, the inductor is releasing some of its previously
stored energy.

Concept Question 5-13: What type of material exhibits
a magnetic permeability higher than μ0? (See         )
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Concept Question 5-14: Can the voltage across an
inductor change instantaneously? (See         )

Exercise 5-11: Calculate the inductance of a 20-turn air-
core solenoid if its length is 4 cm and the radius of its
circular cross section is 0.5 cm.

Answer: L = 9.87 × 10−7 H = 0.987 μH. (See      C3 )

Exercise 5-12: Determine currents i1 and i2 in the circuit 
of Fig. E5.12, under dc conditions.

Answer: i1 = 0, i2 = 6 A. (See  C)

6 kΩ

4 kΩ6 A

i2i1

L2 L3

L1

Figure E5.12

5-3.2 Series and Parallel Combinations of
Inductors

� The rules for combining multiple inductors in series or
in parallel are the same as those for resistors. �

Inductors in series

For the three inductors in series in Fig. 5-24,

υs = υ1 + υ2 + υ3 = L1
dis

dt
+ L2

dis

dt
+ L3

dis

dt

= (L1 + L2 + L3)
dis

dt
, (5.60)

and for the equivalent circuit,

υs = Leq
dis

dt
. (5.61)

Hence,

Leq = L1 + L2 + L3, (5.62)

and for N inductors in series,

Leq =
N∑

i=1

Li = L1 + L2 + · · · + LN

(inductors in series). (5.63)

1

2

is

υs

is

υs Leq = L1 + L2 + L3

1

2

υ1

L1

+ _ υ2

L2

+ _ υ3

L3

+ _

Combining In-Series Inductors

+
_

+
_

Figure 5-24: Inductors in series.

Combining In-Parallel Inductors
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υs

1
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+
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i1
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i2 i3

is

υs

1

2

+
_

Leq =
(

1

L1
+ 1

L2
+ 1

L3

)−1

Figure 5-25: Inductors in parallel.

Inductors in parallel

A similar analysis for the currents in the parallel circuit of
Fig. 5-25 leads to

1

Leq
= 1

L1
+ 1

L2
+ 1

L3
. (5.64)
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Table 5-4: Basic properties of R, L, and C.

Property R L C

i–υ relation i = υ

R
i = 1

L

t∫
t0

υ dt ′ + i(t0) i = C
dυ

dt

υ-i relation υ = iR υ = L
di

dt
υ = 1

C

t∫
t0

i dt ′ + υ(t0)

p (power transfer in) p = i2R p = Li
di

dt
p = Cυ

dυ

dt

w (stored energy) 0 w = 1

2
Li2 w = 1

2
Cυ2

Series combination Req = R1 + R2 Leq = L1 + L2
1

Ceq
= 1

C1
+ 1

C2

Parallel combination
1

Req
= 1

R1
+ 1

R2

1

Leq
= 1

R1
+ 1

R2
Ceq = C1 + C2

dc behavior no change short circuit open circuit

Can υ change instantaneously? yes yes no

Can i change instantaneously? yes no yes

Generalizing to the case of N inductors,

1

Leq
=

N∑
i=1

1

Li
= 1

L1
+ 1

L2
+ · · · + 1

LN

.

(inductors in parallel)

(5.65)

If i1(t0) through iN (t0) are the initial currents flowing through
the parallel inductors L1 to LN at t0, then the initial
current ieq(t0) that would be flowing through the equivalent
inductor Leq is given by

ieq(t0) =
N∑

j=1

ij (t0). (5.66)

A summary of the electrical properties of resistors, inductors
and capacitors is available in Table 5-4.

Example 5-8: Energy Storage under dc Conditions

The circuit in Fig. 5-26(a) has been in its present state for a long
time. Determine the amount of energy stored in the capacitors
and inductors.

(a) Original circuit

(b) Equivalent circuit under steady state conditions

L1 = 0.2 mH
L2 = 0.5 mH

L3 = 1 mH

C2 = 4 μF

C1 = 10 μF

4 kΩ

6 kΩ2 kΩ

24 V

L1

2 kΩ I1

I2

C1

L3

L2

C2

V

4 kΩ

6 kΩ

24 V
+
_

+
_

Figure 5-26: Under steady-state dc conditions, capacitors act
like open circuits, and inductors act like short circuits.
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Solution: Our first step is to replace components with their
dc equivalents (capacitors with open circuits and inductors with
short circuits). The process leads to the circuit in Fig. 5-26(b),
which can be solved using any of the analysis methods used
previously with resistive circuits. Current I1 then is given by

I1 = 24

(2 + 4)k
= 4 mA,

and node voltage V is

V = 24 − (4 × 10−3 × 4 × 103) = 8 V.

Hence, the amounts of energy stored in C1, C2, L1, L2, and L3
are

C1 : W = 1

2
C1V

2 = 1

2
× 10−5 × 64 = 0.32 mJ,

C2 : W = 1

2
C2V

2 = 1

2
× 4 × 10−6 × 64 = 0.128 mJ,

L1 : W = 1

2
L1I

2
1

= 1

2
× 0.2 × 10−3 × (4 × 10−3)2 = 1.6 nJ,

L2 : W = 1

2
L2I

2
2 = 1

2
× 0.5 × 10−3 × (0) = 0,

and

L3 : W = 1

2
L3I

2
1 = 1

2
× 10−3 × (4 × 10−3)2 = 8 nJ.

Concept Question 5-15: How do the rules for adding 
inductors in series and in parallel compare with those for 
resistors and capacitors? (See         )

2

Concept Question 5-16: An inductor stores energy 
through the magnetic field B, but the equation for the 
energy stored in an inductor is w = 1 Li2. Explain.
(See         )

Exercise 5-13: Determine Leq at terminals (a, b) in the
circuit of Fig. E5.13.

12 mH

a

b
6 mH

2 mH

Figure E5.13

Answer: Leq = 6 mH. (See      )

5-4 Response of the RC Circuit

The preceding sections described the behavior of capacitors
and inductors under dc conditions (i.e., a static circuit with
none of its voltages or currents varying with time). We now
turn our attention to the time-varying (dynamic) conditions of
these circuits.

From the standpoint of analysis and design, circuits
containing capacitors and inductors are divided into three
groups:

• RC Circuits: composed of sources (either constant or
time-varying), capacitors, and resistors.

• RL Circuits: composed of sources (either constant or
time-varying), inductors, and resistors.

• RLC Circuits: composed of any combination and any
number of sources, capacitors, inductors, and resistors.

In this and succeeding sections of this chapter, we examine
the responses of relatively simple RC and RL circuits to
sudden changes, such as closing or opening a switch—or both
sequentially—and we limit the sources to dc voltage and current
sources. The RLC circuit response is addressed in Chapter 6,
also for dc sources with switches. RLC circuits driven by ac
sources are treated in Chapters 7–11, and RLC circuits driven
by other types of sources are the subject of Chapters 12 and 13.

The circuit shown in Fig. 5-27 is called a first-order RC
circuit; it contains a resistor and a capacitor, and its current
and voltage responses are determined by solving a first-order
differential equation. The name also applies to any other circuit
containing sources, resistors, and capacitors—provided it can
be reduced to the form of the generic RC circuit of Fig. 5-27
or its Norton equivalent. This can be realized by combining
elements in series or in parallel, as well as through Y-�
transformations. The voltage source exciting the circuit is a
rectangular pulse of amplitude Vs and duration T0, which
includes both turn-on (charging) and turn-off (discharging)
periods. The objective of the present section is to develop a

υi = υC

iC

C

R

t = 0 t = T0

Vs +
_

+
_

Figure 5-27: Generic first-order RC circuit.



“book” — 2015/5/4 — 7:14 — page 276 — #29

276 CHAPTER 5 RC AND RL FIRST-ORDER CIRCUITS

methodology appropriate for RC circuits, so we may apply
it to evaluate the circuit’s response to the rectangular-pulse
waveform or to other types of nonperiodic waveforms.

5-4.1 Natural Response of a Charged Capacitor

We begin by considering what is called the natural response of
the circuit, which refers to the time variations of the voltages
and currents in reaction to moving a switch that allows a fully
charged capacitor to discharge its accumulated charge. This
occurs at t = T0 in Fig. 5-27. To that end, let us examine the
more realistic circuit in Fig. 5-28(a). Until t = 0, the series RC
circuit had been connected to dc voltage source Vs for a long
time. At t = 0, the switch disconnects the RC circuit from the

(a) RC circuit

(b) At t = 0− (fully charged capacitor)

(c) At t > 0 (capacitor discharging)

iC = 0

υC(0−)
  = Vs

C

1

+
_Vs

RRs

+
_

+
_

υCC

1

2
+
_

+
_

t = 0
Vs

RRs

+
_

iC = C dυC
dt

dυC
dt

υCC2

R

+
_

iC = C

Figure 5-28: RC circuit with an initially charged capacitor that
starts to discharge its energy after t = 0.

source and connects it to terminal 2. We seek to determine the
voltage response of the capacitor υ(t) for t ≥ 0.

Before we start our solution, it is important to consider the
implication of the information we are given about the state of
the capacitor before and after moving the switch. For purposes
of clarity, we define:

(a) t = 0− as the instant just before the switch is moved from
terminal 1 to terminal 2, and

(b) t = 0 as the instant just after it was moved; t = 0 is
synonymous with t = 0+.

At t = 0−, the circuit had been in the condition shown in
Fig. 5-28(a) for a long time. As we noted earlier in Section
5-2.1, when a dc circuit is in a steady state, its capacitors act like
open circuits. Consequently, the open circuit in Fig. 5-28(b),
representing the state of the circuit at t = 0−, allows no current
to flow through the loop, and, therefore, there is no voltage
drop across either of the two resistors. Hence, υC(0−) = Vs,
and since the voltage across the capacitor cannot change
instantaneously, it follows that υC(0), the voltage after moving
the switch, is given by

υC(0) = υC(0−) = Vs. (5.67)

As we see shortly, we will need this piece of information for
when we apply this initial condition to the solution of the
differential equation of υC(t).

For t ≥ 0, application of KVL to the loop in Fig. 5-28(c)
gives

RiC + υC = 0 (for t ≥ 0), (5.68)

where iC is the current through and υC is the voltage across the
capacitor. Since iC = C dυC/dt , Eq. (5.68) becomes

RC
dυC

dt
+ υC = 0. (5.69)

Upon dividing both terms by RC, Eq. (5.69) takes the form

dυC

dt
+ aυC = 0 (source-free), (5.70)

where

a = 1

RC
. (5.71)

When arranging a differential equation in υC(t), it is customary
to place all terms that involve υC(t) on the left-hand side of
the equation and to place terms that do not involve υC(t) on the
right-hand side. The term(s) on the right-hand side is (are) called
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the forcing function. For a circuit, the forcing function is related
directly to the voltage and current sources in the circuit. Because
the RC circuit in Fig. 5-28(c) does not contain any sources,
Eq. (5.70) has a zero on its right-hand side and it is called
(appropriately) a source-free, first-order differential equation.

� The solution of the source-free equation is called the
natural response (discharging condition) of the circuit. �

The standard procedure for solving Eq. (5.70) starts by
replacing t with dummy variable t ′ and multiplying both sides
by eat ′ ,

dυC

dt ′
eat ′ + aυCeat ′ = 0. (5.72)

Next, we recognize that the sum of the two terms on the left-
hand side is equal to the expansion of the differential of (υCeat ′),

d

dt ′
(υCeat ′) = dυC

dt ′
eat ′ + aυCeat ′ . (5.73)

Hence, Eq. (5.72) becomes

d

dt ′
(υCeat ′) = 0. (5.74)

Integrating both sides, we have

t∫
0

d

dt ′
(υCeat ′) dt ′ = 0, (5.75)

where we have chosen the lower limit to be t ′ = 0 (because we
are given specific information on the state of the circuit at that
point in time). Performing the integration gives

υCeat ′
∣∣∣t
0

= 0

or

υC(t) eat − υC(0) = 0. (5.76)

Solving for υC(t), we have

υC(t) = υC(0) e−at = υC(0) e−t/RC (for t ≥ 0), (5.77)

where we used Eq. (5.71) for a and appended the inequality
t ≥ 0 to indicate that the expression given by Eq. (5.77) is valid
only for t ≥ 0.

The coefficient of t in the exponent is a critically important
parameter, because it determines the temporal rate of υC(t). It
is customary to rewrite Eq. (5.77) in the form

υC(t) = υC(0) e−t/τ ,

(natural response discharging),

(5.78)

with

τ = RC (s), (5.79)

where τ is called the time constant of the circuit, and it is
measured in seconds (s).

In view of the initial condition given by Eq. (5.67), namely
υC(0) = Vs, the expression for υC(t) becomes

υC(t) = Vse
−t/τ u(t), (5.80)

where we inserted the unit step function u(t) as a multiplication
factor as a substitute for “for t ≥ 0.” The plot shown in
Fig. 5-29(a) indicates that in response to the switch action,
υC(t) decays exponentially with time from Vs at t = 0 down to
its final value of zero as t → ∞. The decay rate is dictated by
the time constant τ . At t = τ ,

υC(t = τ) = Vse
−1 = 0.37Vs, (5.81)

which means that at τ seconds after activating the switch, the
voltage across the capacitor is down to 37 percent of its initial
value. At t = 2τ , it reaches 14 percent, and at t = 5τ , it is
less than 1 percent of its initial value. Hence, for all practical
purposes, we can treat the circuit as having reached its final
state when the switch has been in its new configuration for a
time equal to or longer than 5τ .

� The magnitude of the time constant τ is a measure of
how fast or how slowly a circuit responds to a sudden
change. �

As we will see later in Section 5-7, the clock speed of a computer
processor is, to first order, proportional to 1/τ . Hence, a slow
circuit with τ = 1 ms would have a clock speed on the order of
1 kHz, whereas a fast circuit with τ = 1 ns can support clock
speeds as high as 1 GHz.

The current iC(t) flowing through the capacitor is given by

iC(t) = C
dυC

dt
= C

d

dt
(Vse

−t/τ )

= −C
Vs

τ
e−t/τ (for t ≥ 0), (5.82)
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(a)

(b)

(c) 

(d)

Voltage dischargingVs

t

υC

υC(t) = Vse−t/τ

τ

0.37Vs

0

Current

τ
t

iC

iC(t) = −      e−t/τVs
RVs

−0.37

R

Vs
R

−

0

Power

τ/2
pC

Vs2

Vs2

R

t

pC(t) = −      e−2t/τVs2

R
−0.37

R−

0

Energy

τ/2
t

wC
CVs2

CVs2

1
2

2

1
2wC(t) =    CVs2e−2t/τ

0.37( )
0

Figure 5-29: Response of the RC circuit in Fig. 5-28(a) to
moving the SPDT switch to terminal 2.

which simplifies to

iC(t) = −Vs

R
e−t/τ u(t),

(natural response discharging)

(5.83)

where, again, u(t) is used to emphasize the fact that the
expression is valid for only t ≥ 0. The plot of iC(t) shown in

Fig. 5-29(b) indicates that after closing the switch at t = 0,
the current changes instantly to (−Vs/R)—as if the capacitor
were a voltage source Vs—and then it decays exponentially
down to zero. The negative sign of i signifies that it flows in
a counterclockwise direction through the loop, consistent with
the behavior of the capacitor as a voltage source.

Given υC(t) and iC(t), we can provide an expression for
pC(t), the instantaneous power getting transferred to the
capacitor, as

pC(t) = iCυC = −Vs

R
e−t/τ × Vse

−t/τ = −V 2
s

R
e−2t/τ u(t).

(5.84)
Note that from the definition of u(t) given by Eq. (5.2),
u(t) · u(t) = u(t).

In general, power transfer is into a device if pC > 0 and out
of it if pC < 0. Prior to t = 0, the capacitor had been connected
to the voltage source for a long time. Hence, power already had
flowed into the capacitor and was stored as electrical energy.
The minus sign in Eq. (5.84) denotes that after t = 0 power
flows out of the capacitor and gets dissipated in the resistor.

� The decay rate for pC(t) is 2/τ , which is twice as fast
as that for υC(t) or iC(t). �

The amount of energy wC(t) contained in the medium
between the capacitor’s oppositely charged conducting plates
can be calculated either by integrating pC(t) over time from 0
to t or by applying Eq. (5.29). The latter approach gives

wC(t) = 1

2
C υ2

C(t) = CV 2
s

2
e−2t/τ u(t). (5.85)

Parts (c) and (d) of Fig. 5-29 display the time waveforms of
pC(t) and wC(t), respectively.

Concept Question 5-17: What specific characteristic
defines a first-order circuit? (See         )

Concept Question 5-18: What does the time constant 
of an RC circuit represent? Would a larger capacitor 
discharge faster or more slowly than a small one?
(See         )

Concept Question 5-19: For the natural response of an 
RC circuit, how does the decay rate for voltage compare 
with that for power? (See         )
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Exercise 5-14: If in the circuit of Fig. E5.14
υC(0−) = 24 V, determine υC(t) for t ≥ 0.

υC
+
_

t = 0
5 μF20 kΩ

Figure E5.14

Answer: υC(t) = 24e−10t V for t ≥ 0. (See      C3 )

5-4.2 General Form of the Step Response of the
RC Circuit

When we use the term circuit response, we mean the reaction
of a certain voltage or current in the circuit to change, such as
the introduction of a new source, the elimination of a source,
or some other change in the circuit configuration. Whenever
possible, we usually designate t = 0 as the instant at which the
change occurred and t ≥ 0 as the time interval over which we
seek the circuit response. In the general case, the capacitor may
start with a voltage υC(0) at t = 0 (immediately after the sudden
change) and may approach a value denoted υC(∞) as t → ∞.
A circuit configuration that can represent such a scenario is
the series RC circuit shown in Fig. 5-30(a). Prior to t = 0, the
RC circuit is connected to a source Vs1 , and after t = 0, it is
connected to a different source Vs2 . The circuit can be reduced
to the following special cases:

• Step response (due to Vs2 ) of an uncharged capacitor (if
Vs1 = 0)

• Step response (due to Vs2 ) of a charged capacitor (if
Vs1 
= 0)

• Natural response (if Vs2 = 0) of a charged capacitor
(Vs1 
= 0)

For obvious reasons, we excluded the trivial case where both
Vs1 and Vs2 are zero, and we will now treat the general case
where neither Vs1 nor Vs2 is zero.

At t = 0− (Fig. 5-30(b)), the capacitor has been in steady
state for a long time. Hence, it acts like an open circuit.
Consequently, iC(0−) = 0, and υC(0−) = Vs1 . Since υC across
the capacitor cannot change in zero time, the (initial condition)
voltage υC(0) after moving the switch to terminal 2 is

υC(0) = υC(0−) = Vs1 . (5.86)

(a) RC circuit

(b) Initial condition at t = 0−

(c) Natural reponse after t = 0

υC

υC

C

1

2
t = 0

Vs1

Vs2

R

+
_ +

_

iC

+
_

C
2

R iC

Vs2

+
_

+
_

Vs1

iC = 0

υC(0−)
 = Vs1

C

1 RRs

+
_

+
_

Figure 5-30: RC circuit switched from source Vs1 to source Vs2

at t = 0.

For t ≥ 0, the (natural response) voltage equation for the loop
in Fig. 5-30(c) is

−Vs2 + iCR + υC = 0. (5.87)

Upon using iC = C dυC/dt and rearranging its terms,
Eq. (5.87) can be written in the differential-equation form

dυC

dt
+ aυC = b, (5.88)

where

a = 1

RC
and b = Vs2

RC
. (5.89)
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We note that Eq. (5.88) is similar to Eq. (5.70), except that now
we have a non-zero term on the right-hand side of the equation.
Nevertheless, the method of solution remains the same. After
replacing t with dummy variable t ′ and multiplying both sides
of Eq. (5.88) by eat ′ , we have

eat ′ dυC

dt ′
+ aυCeat ′ = beat ′ . (5.90a)

In view of Eq. (5.73), Eq. (5.90a) can be rewritten as

d

dt ′
(υCeat ′) = beat ′ . (5.90b)

Integrating both sides from t ′ = 0 to t ′ = t , namely

t∫
0

d

dt ′
(υCeat ′) dt ′ =

t∫
0

beat ′ dt ′ (5.91)

gives

υCeat ′ |t0 = b

a
eat ′

∣∣∣∣
t

0
. (5.92)

Upon evaluating the functions at the two limits, we have

υC(t) eat − υC(0) = b

a
eat − b

a
, (5.93)

and then solving for υC(t), we have

υC(t) = υC(0) e−at + b

a
(1 − e−at ). (5.94)

As t → ∞, e−∞ = 0 and υC(t) reduces to the final condition

υC(∞) = b

a
= Vs2 . (5.95)

By reintroducing the time constant τ = RC = 1/a and
replacing b/a with υC(∞), we can rewrite Eq. (5.94) in the
general form:

υC(t) = {
υC(∞) + [υC(0) − υC(∞)]e−t/τ

}
u(t).

(series RC circuit with switch action at t = 0)
(5.96)

� The voltage response of any RC circuit is determined
by three parameters: the initial voltage υC(0), the final
voltage υC(∞), and the time constant τ . �

For the specific circuit in Fig. 5-30(a), Eqs. (5.86) and (5.95)
give υC(0) = Vs1 and υC(∞) = Vs2 . Hence,

υC(t) = Vs2 + (Vs1 − Vs2)e
−t/τ . (5.97)

If the switch action causing the change in voltage across
the capacitor occurs at time T0 instead of at t = 0, Eq. (5.96)
assumes the form

υC(t) =
{
υC(∞) + [υC(T0) − υC(∞)]e−(t−T0)/τ

}
· u(t − T0), (5.98)

(series RC circuit with switch action at t = T0)

where we have replaced t with (t −T0) on the right-hand side of
Eq. (5.96). Now υC(T0) is the initial voltage at t = T0. For easy
reference, this expression is made available in Table 5-5, along
with expressions for three other types of circuits discussed in
future sections.

Series RC Circuit Solution

1: If switch action is at t = 0, analyze circuit at t = 0−
to determine initial conditions υC(0−) and iC(0−). Use
this information to determine υC(0) and iC(0), at t

immediately after the switch action. Remember that the
voltage across a capacitor cannot change instantaneously
(between t = 0− and t = 0), but the current can.

2: Analyze the circuit to determine υC(∞), the voltage
across the capacitor long after the switch action.

3: Determine the time constant τ = RC.

4: Incorporate the information obtained in the previous
three steps in Eq. (5.96):

υC(t) = {
υC(∞) + [υC(0) − υC(∞)]e−t/τ

}
u(t).

5: If the switch action is at t = T0 instead of t = 0, replace
0 with T0 and use Eq. (5.98):

υC(t) =
{
υC(∞) + [υC(T0) − υC(∞)] · e−(t−T0)/τ

}
· u(t − T0).

5-4.3 Thévenin Approach

For a circuit containing dc sources, resistors, switches and a
single capacitor (or multiple capacitors that can be combined
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into a single equivalent capacitor), the voltage response across
the capacitor, υC(t), can be calculated with relative ease by
taking advantage of the Thévenin theorem. The procedure
involves the following steps:

Thévenin Approach to RC Response

Step 1: If the circuit includes a single switch action (open,
close, or move between two terminals) at t = T0, analyze
the circuit at t = T −

0 (just before the switch action)
to determine υC(T −

0 ). When so doing, the capacitor
should be replaced with an open circuit. Then set
υC(T0) = υC(T −

0 ), where υC(T0) is the voltage across
the capacitor after the switch action.

Step 2: For the circuit configuration at t ≥ T0 (after the
switch action), obtain the Thévenin equivalent circuit as
“seen” by the capacitor. Figure 5-31(a) depicts a general
circuit (composed of possibly two subcircuits) connected
to a capacitor C. After removing (temporarily) the
capacitor and calculating VTh and RTh of the equivalent
Thévenin circuit at terminals (a, b), reinstate the capacitor
as in Fig. 5-31(b).

Step 3: The capacitor’s voltage response is then given by

υC(t) =
{
υC(∞) + [υC(T0) − υC(∞)]e−(t−T0)/τ

}
· u(t − T0),

with υC(∞) = VTh, υC(T0) as obtained in step 1, and
τ = RThC.

Step 4: If the circuit undergoes multiple switch actions,
repeat the procedure for each time segment and use the
property that the voltage across a capacitor cannot change
instantaneously to match the responses at the boundaries
between adjacent time segments.

Example 5-9: Thévenin Approach

The switch in the circuit of Fig. 5-32(a) had been in position 1
for a long time until it was moved to position 2 at t = 0.
Determine υC(t) for t ≥ 0.

Solution:

Step 1: Figure 5-32(b) depicts the state of the circuit at t = 0−
(initial condition), with the capacitor represented by an open
circuit. Because of the open circuit, i = 0 in the left-hand side

Subcircuit 1
+
_υC Subcircuit 2C

b

a

b

a

+
_VTh

RTh

+
_υCC

(a) Original circuit

(b) After replacing circuit with Thévenin equivalent

Figure 5-31: Replacing a resistive circuit with its Thévenin
equivalent as seen by capacitor C.

of the circuit. Hence, no voltage drop occurs across the 3 k


resistor. Consequently, the voltage at node V1, relative to the
designated ground node, is

V1 = 24 V.

On the right-hand side of the circuit, the current source flows
entirely through the 4 k
 resistor, generating a node voltage

V2 = 4.5 × 10−3 × 4 × 103 = 18 V.

Hence, the initial voltage is

υC(0−) = V1 − V2 = 24 − 18 = 6 V.

Since the voltage across the capacitor cannot change
instantaneously, it follows that

υC(0) = υC(0−) = 6 V.

Step 2: Figure 5-32(c) represents the state of the circuit after
moving the switch to position 2 and removing the capacitor so
as to calculate the elements of the Thévenin circuit at terminals
(a, b). In step (d), conversion of the current source and 4 k
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Table 5-5: Response forms of basic first-order circuits.

Circuit Diagram Response

RC C υC

R
Input: dc 
circuit
with switch
action 
@ t = T0

υC(t) =
{
υC(∞) + [υC(T0) − υC(∞)]e−(t−T0)/τ

}
u(t − T0)

(τ = RC)

RL

iL

R
L

Input: dc 
circuit
with switch
action 
@ t = T0

iL(t) =
{
iL(∞) + [iL(T0) − iL(∞)]e−(t−T0)/τ

}
u(t − T0)

(τ = L/R)

Ideal integrator

RL

υout

R

C

υi
+
_

−

+
υout(t) = − 1

RC

t∫
t0

υi dt ′ + υout(t0)

Ideal differentiator
RL

υout

R
C

υi
+
_

−

+ υout(t) = −RC
dυi

dt

resistor into a voltage source in series with a resistor leads to

RTh = 4 k
 + 1 k
 = 5 k
,

VTh = −4.5 × 10−3 × 4 × 103 = −18 V.

� Note that the polarity of the Thévenin voltage source
has to be assigned to match that of υC, the voltage across
the capacitor. In the present case, the current to voltage
transformation led to a voltage source with the opposite
polarity to that defined for VTh. Hence, VTh = −18 V, not
18 V. �

Step 3: The capacitor is reinserted in part (e). With υC(0) = 6V,
υC(∞) = VTh = −18 V, and

τ = RThC = 5 × 103 × 100 × 10−6 = 0.5 s,

we have

υC(t) = {
υC(∞) + [υC(0) − υC(∞)]e−t/τ

}
u(t)

= [−18 + 24e−2t ] u(t) V.

This solution indicates that at t = 0, the initial voltage across
the capacitor is υC(0) = −18 + 24 = 6 V, which is consistent
with the result obtained in step 1. After a long time t such
that e−2t approaches zero, υC(t) approaches −18 V, which
is υC(∞). In between, the capacitor discharges to zero and
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(a) Circuit with switch (b) Initial condition at t = 0−

C = 100 μF

4 kΩ
1 kΩ

3 kΩ

4.5 mA
24 V

+
_

t = 01

2

+ _υC

C = 100 μF

4 kΩ
1 kΩ

3 kΩ

4.5 mA24 V
+
_

V1

1
2

+ _υC(0−)

i = 0

V2

a b

(f ) Plot  

υC (V)

t (s)
0 0.5 1 1.5 2

0

5
66

−18

−5

−10

−15

−20

υC(t) = (−18 + 24e−2t ) u(t)

+ _VTh

a b

4 kΩ

1 kΩ

4.5 mA
2

(c) At t > 0 without the capacitor (e) At t > 0, after reinserting C in
the Thévenin equivalent circuit

(d) After current to voltage
source transformation

+ _VTh

a b

4 kΩ1 kΩ

18 V2
+
_ C = 100 μF5 kΩ

+ _υC

VTh = 18 V

RTh

+
_

Figure 5-32: Circuit for Example 5-9.

then builds up charge again, but of opposite polarity. The time
variation of υC(t) is displayed in Fig. 5-32(f).

Example 5-10: Switching between Two Sources

In the circuit of Fig. 5-33(a), the SPDT switch is moved from
position 1 to position 2 after it had been in position 1 for a

long time. Determine the voltage υC(t) for t ≥ 0 if the switch
is moved at (a) t = 0 or (b) t = 3 s.

Solution: (a) For T0 = 0 and t ≥ 0, the complete solution
of υC(t) is given by Eq. (5.96) as

υC(t) = {
υC(∞) + [υC(0) − υC(∞)]e−t/τ

}
u(t). (5.99)

We need to determine three quantities: the initial volt-
age υC(0), the final voltage υC(∞), and the time constant τ .
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(a) Original circuit

(b) At t = 0−

(initial condition)

8 kΩ

4 kΩ 2 kΩ 24 kΩ

20 μF

1 2

12 kΩ45 V 60 V+
_

+
_

+
_

i2i1

υC

+
_

+
_

t = 0

2 kΩ 24 kΩ2 i2

Circuit

υC20 μF
12 kΩ 60 V+

_

+
_
+
_

10 kΩ2 i2

Thevenin
equivalent

υC20 μF
20 V+

_

+
_
+
_

(c) At t ≥ 0
(steady state)

4 kΩ 1i1 = 0

+
_C

8 kΩ45 V
+
_

Circuit

υC(0
_
)

+
_ +

_C

2.67 kΩ 1

30 V
+
_

i1 = 0

Thevenin
equivalent

υC(0
_

)
    = 30 V

+
_

'

'

Figure 5-33: Circuit for Example 5-10 [part (a)].

The initial voltage is the voltage that existed across the capacitor
before moving the switch. Since the switch had been in
that position for a long time, we presume that the circuit in
Fig. 5-33(b) had reached its steady-state condition long before
the switch was moved. Hence, at t = 0− (just before moving
the switch), the capacitor behaves like an open circuit. The
voltage υC(0−) across the capacitor is the same as that across
the 8 k
 resistor, and since i1 = 0 at t = 0−, application of
voltage division yields

υC(0−) =
(

8k

4k + 8k

)
× 45 = 30 V.

Incidentally, we could have obtained the same result by
transforming the circuit in Fig. 5-33(b) into its Thévenin
equivalent.

Incorporating the constraint that the voltage across the
capacitor cannot change instantaneously, it follows that

υC(0) = υC(0−) = 30 V.

Now we turn our attention to finding υC(∞). After moving
the switch to position 2 (Fig. 5-33(c)) and allowing the circuit
sufficient time to reach its final state, the capacitor again will
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behave like on open circuit, which means that i2 = 0 at t = ∞.
Voltage division gives

υC(∞) =
(

12k

12k + 24k

)
× 60 = 20 V.

The time constant of the circuit to the right of terminal 2 is
given by τ = RC, with R being the Thévenin resistance of that
circuit. After suppressing (short-circuiting) the 60 V source, we
get

R = RTh = 2 k
 + 12 k
 ‖ 24 k


= 2 k
 + 12k × 24k

12k + 24k
= 10 k
.

Hence,

τ = RC = 10 × 103 × 20 × 10−6 = 0.2 s.

Substituting the values we obtained for υC(0), υC(∞), and τ

in Eq. (5.99) leads to

υC(t) = [(20 + 10e−5t ) u(t)] V.

(b) This is a repetition of the previous case except that now the
switch action takes place at T0 = 3 s. The applicable expression
is given by Eq. (5.98),

υC(t) =
{
υC(∞) + [υC(3) − υC(∞)]e−(t−3)/τ

}
u(t − 3).

Of course, υC(t) = 30V before t = 3 s. Hence, for the specified
time duration t ≥ 0,

υC(t) =
{

30 V for 0 ≤ t ≤ 3 s,

[20 + 10e−5(t−3)] V for t ≥ 3 s.

Example 5-11: Charge/Discharge Action

Given that the switch in Fig. 5-34 was moved to position 2
at t = 0 (after it had been in position 1 for a long time)
and then returned to position 1 at t = 10 s, determine the
voltage response υC(t) for t ≥ 0 and evaluate it for V1 = 20 V,
R1 = 80 k
, R2 = 20 k
, and C = 0.25 mF.

(a) Actual circuit

(b) Circuit during 0 ≤ t ≤ 10 s

(c)

(d)

Charging Discharging

Circuit after t = 10 s

Voltage response

υ2C1
+
_

R2

υCC1

2

+
_

+
_

t = 10 s

t = 0

V1

R2R1

+
_

υ1C

2

+
_

+
_V1

R2R1

+
_

0 5 10 15 20 25 30
0

1

2

3

4

5

6
6.59

7
υ1(t) = 20(1 − e−0.04t ) V

   (for 0 ≤ t ≤ 10 s)

υ1(t) υ2(t)

υ2(t) = 6.59e−0.2(t − 10) V
   (for t ≥ 10 s)

t (s)

υC (V)

Figure 5-34: After having been in position 1 for a long time,
the switch is moved to position 2 at t = 0 and then returned to
position 1 at t = 10 s (Example 5-11).

Solution: We will divide our solution into two time
segments: υC = υ1(t) for 0 ≤ t ≤ 10 s and υC = υ2(t) for
t ≥ 10 s.
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Time Segment 1: 0 ≤ t ≤ 10 s

When the switch is in position 2 (Fig. 5-34(b)), the resistance
of the circuit is R = R1 + R2. Hence, the time constant during
this first time segment is

τ1 = (R1 + R2)C = (80 + 20) × 103 × 0.25 × 10−3 = 25 s.

Application of Eq. (5.96) with υ1(0) = 0 (the capacitor had
no charge prior to t = 0), υ1(∞) = V1 = 20 V, and τ1 = 25 s
leads to

υ1(t) = υ1(∞) + [υ1(0) − υ1(∞)]e−t/τ1

= 20(1 − e−0.04t ) V (for 0 ≤ t ≤ 10 s).

Time Segment 2: t ≥ 10 s

Voltage υ2(t), corresponding to the second time segment
(Fig. 5-34(c)), is given by Eq. (5.98) with a new time constant τ2
as

υ2(t) = υ2(∞) + [υ2(10) − υ2(∞)]e−(t−10)/τ2 .

The new time constant is associated with the capacitor circuit
after returning the switch to position 1,

τ2 = R2C = 20 × 103 × 0.25 × 10−3 = 5 s.

The initial voltage υ2(10) is equal to the capacitor voltage υ1
at the end of time segment 1, namely

υ2(10) = υ1(10) = 20(1 − e−0.04×10) = 6.59 V.

With no voltage source present in the R2C circuit, the charged
capacitor will dissipate its energy into R2, exhibiting a natural
response with a final voltage of υ2(∞) = 0. Consequently,

υ2(t) = υ2(10) e−(t−10)/τ2

= 6.59e−0.2(t−10) V (for t ≥ 10 s).

The complete time response of υ(t) is displayed in Fig. 5-34(d).

Example 5-12: RC-Circuit Response to Rectangular

Pulse

Determine the voltage response of a previously uncharged
RC circuit to a rectangular pulse υi(t) of amplitude Vs and
duration T0, as depicted in Fig. 5-35(a). Evaluate and plot
the response for R = 25 k
, C = 0.2 mF, Vs = 10 V, and
T0 = 4 s.

(a)
Pulse excitation

(d)

Vs
+
_υ1

υ2

i

C

R

+
_

During 0 ≤ t ≤ 4 s

(b)

+
_C

Ri

After t = 4 s

(c)

+
_

υi = υC

i

C

R

t = 0 t = 4 s

Vs = 10 V +
_

+
_
+
_

υC (V)

t (s)
0 4 10 20

0

2

4

6Forced
response

Natural response

Figure 5-35: RC-circuit response to a 4 s long rectangular
pulse.

Solution: According to Example 5-2, a rectangular pulse is
equivalent to the sum of two step functions. Thus

υi(t) = Vs[u(t − T1) − u(t − T2)],
where u(t − T1) accounts for the rise in level from 0 to 1 at
t = T1 and the second term (with negative amplitude) serves to
counteract (cancel) the first term after t = T2. For the present
problem, T1 = 0, and T2 = 4 s. Hence, the input pulse can be
written as

υi(t) = Vs u(t) − Vs u(t − 4).
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Since the circuit is linear, we can apply the superposition
theorem to determine the capacitor response υC(t). Thus,

υC(t) = υ1(t) + υ2(t),

where υ1(t) is the response to Vs u(t) acting alone and,
similarly, υ2(t) is the response to −Vs u(t−4) also acting alone.

Response to Vs u(t) alone

The response υ1(t) is given by Eq. (5.96) with υ1(0) = 0,
υ1(∞) = Vs, and τ = RC. Hence,

υ1(t) = υ1(∞) + [υ1(0) − υ1(∞)]e−t/τ

= Vs(1 − e−t/τ ) (for t ≥ 0).

For Vs = 10 V and τ = RC = 25 × 103 × 0.2 × 10−3 = 5 s,

υ1(t) = 10(1 − e−0.2t ) V (for t ≥ 0).

Response to −Vs u(t − 4) alone

The second step function has an amplitude of−Vs and is delayed
in time by 4 s. Upon reversing the polarity of Vs and replacing
t with (t − 4), we have

υ2(t) = −10[1 − e−0.2(t−4)] V (for t ≥ 4 s).

Total response

The total response for t ≥ 0 therefore is given by

υC(t) = υ1(t) + υ2(t)

= 10[1 − e−0.2t ] − 10[1 − e−0.2(t−4)] u(t − 4) V,

(5.100)

where we introduced the time-shifted step function u(t − 4)

to assert that the second term is zero for t ≤ 4 s. The plot of
υC(t) displayed in Fig. 5-35(d) shows that υC(t) builds up to a
maximum of 5.5 V by the end of the pulse (at t = 4 s) and then
decays exponentially back to zero thereafter. The build-up part
is due to the external excitation and often is called the forced
response. In contrast, during the time period after t = 4 s, υC(t)

exhibits a natural decay response as the capacitor discharges
its energy into the resistor. During this latter time segment, i(t)
flows in a counterclockwise direction.

Concept Question 5-20: What are the three quantities
needed to establish υC(t) across a capacitor in an RC 
circuit? (See         )

Concept Question 5-21: If Vs2 < Vs1 in the circuit of 
Fig. 5-30, what would you expect the direction of the 
current to be after the switch is moved from position 1 
to 2?Analyze the process in terms of charge accumulation 
on the capacitor. (See         )

Exercise 5-15:Determine υ1(t) and υ2(t) for t ≥ 0, given
that in the circuit of Fig. E5.15 C1 = 6 μF, C2 = 3 μF,
R = 100 k
, and neither capacitor had any charge prior
to t = 0.

υ1C1

R

+
_
+
_12 V

υ2C2

t = 0

Figure E5.15

Answer: υ1(t) = 4(1 − e−5t ) V, for t ≥ 0,
υ2(t) = 8(1 − e−5t ) V, for t ≥ 0. (See    )

5-5 Response of the RL Circuit

With series RC circuits, we developed a first-order differential
equation for υC(t), the voltage across the capacitor, and then
we solved it (subject to initial and final conditions) to obtain
a complete expression for υC(t). By applying iC = C dυC/dt ,
pC = iCυC, and wC = 1

2 Cυ2
C, we were able to determine the

corresponding current passing through the capacitor, the power
getting transferred to it, and the net energy stored in it. We now
follow an analogous procedure for the parallel RL circuit, but
our analysis will focus on the current i(t) through the inductor,
instead of on the voltage across it.

5-5.1 Natural Response of the RL Circuit

After having been in the closed position for a long time,
the switch in the RL circuit of Fig. 5-36(a) was moved to
position 2 at t = 0, thereby disconnecting the RL circuit from
the current source Is. What happens to the current i flowing
through the inductor after the sudden change caused by moving
the switch? That is, what is the waveform of iL(t) for t ≥ 0?
To answer this question, we first note that at t = 0− (just
before moving the switch), the RL circuit can be represented
by the circuit in Fig. 5-36(b), in which the inductor has been
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(a) Switch is moved at t = 0

(b) Initial condition at t = 0−

(c) Circuit at t ≥ 0 (natural response)

1

+
_ R LI0

+
_
υL(0−) = 0

iL(0−) = Is

2

R0

1

2+
_ R

R0
LI0

iL

+
_

t = 0
υL = L diL

dt

R L

iL

+
_I0 R0 υL = L diL

dt

Figure 5-36: RL circuit disconnected from a current source at
t = 0.

replaced with a short circuit. This is because under steady-
state conditions iL no longer changes with time, which leads to
υL = L diL/dt = 0. We also know that the current will take
the path of least resistance through the short circuit. A current
source entering a node connected to another node via a parallel
combination of a resistor R and a short circuit will flow entirely
through the short circuit. Hence, iL(0−) = Is. Moreover, since
the current through an inductor cannot change instantaneously,
the initial current at t = 0 (after moving the switch) has to be

iL(0) = iL(0−) = Is.

For the time period t ≥ 0, the loop equation for the RL circuit
in Fig. 5-36(c) is given by

RiL + L
diL

dt
= 0,

which can be cast in the form

diL

dt
+ aiL = 0, (5.101)

where a is a temporary constant given by

a = R

L
. (5.102)

The form of Eq. (5.101) is identical to that of Eq. (5.70) for
the source-free RC circuit, except that now the variable is iL(t),
whereas then it was υL(t). By analogy with the solution given
by Eq. (5.78), our solution for iL(t) is given by

iL(t) = iL(0) e−t/τ u(t),

(natural response discharging)

(5.103)

where for the RL circuit, the time constant is given by

τ = 1

a
= L

R
. (5.104)

5-5.2 General Form of the Step Response of the
RL Circuit

To generalize our solution to the case where the RL circuit
may contain sources both before and after the sudden change
in the circuit configuration, we adopt the basic circuit shown in
Fig. 5-37(a) in which two switches are moved simultaneously
at t = 0 so as to switch the RL circuit from current source Is1

to current source Is2 . The initial state of the circuit at t = 0−
(Fig. 5-37(b)) leads to the conclusion that

iL(0) = iL(0−) = Is1 .

The circuit in Fig. 5-37(c) represents the arrangement at t ≥ 0.
Application of KCL at the common node gives

−Is2 + iR + iL = 0.

Since υ is common to R and L, iR = υ/R, and by applying
υL = L diL/dt , the KCL equation becomes

diL

dt
+ aiL = b, (5.105)

where a is as given previously by Eq. (5.102) and

b = aIs2 = R

L
Is2 . (5.106)

Not surprisingly, Eq. (5.105) has the same form as Eq. (5.88)
for the RC circuit and therefore exhibits a solution analogous
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(a)

(b) Initial condition at t = 0−

(c) At t ≥ 0 (natural response)

Is1 R L
Is2 R0

+

_

1

2

1

2
t = 0

t = 0

S1

S2

i

R0

υL(0−)=0
+

_

iL(0−) = Is1

Is1 R
Is2 R0

1

2

1

2

S1

S2

R0

iR

υLIs1 R L
Is2 R0

+

_

1

2

1

2

S1

S2

iL

R0

υL= L
diL
dt

Figure 5-37: RL circuit switched between two current sources
at t = 0.

to the expression given by Eq. (5.96). Thus, the general form
for the current through an inductor in an RL circuit is given by

iL(t) = [
iL(∞) + [iL(0) − iL(∞)]e−t/τ

]
u(t),

(5.107)

(switch action at t = 0)

with time constant τ = L/R. For the specific circuit in
Fig. 5-37(a), iL(0) = Is1 and iL(∞) = Is2 .

If the sudden change in the circuit configuration happens
at t = T0 instead of at t = 0, the general expression for iL(t)

becomes

iL(t) =
{
iL(∞) + [iL(T0) − iL(∞)]e−(t−T0)/τ

}
· u(t − T0),

(switch action at t = T0) (5.108)

where iL(T0) is the current at T0. This expression is the analogue
of Eq. (5.98) for the voltage across the capacitor.

Parallel RL Circuit Solution

1: If switch action is at t = 0, analyze circuit at t = 0−
(by replacing L with a short circuit) to determine initial 
conditions iL(0−) and υL(0−). Use this information to 
determine iL(0) and iL(0), at t immediately after the 
switch action. Remember that the current through an 
inductor cannot change instantaneously (between t = 0−
and t = 0), but the voltage can.

2: Analyze the circuit to determine iL(∞), the current 
through the inductor long after the switch action.

3: Determine the time constant τ = L/R.

4: Incorporate the information obtained in the previous 
three steps in Eq. (5.107):

iL(t) = [
iL(∞) + [iL(0) − iL(∞)]e−t/τ

]
u(t).

5: If the switch action is at t = T0 instead of t = 0, replace
0 with T0 everywhere and use Eq. (5.108):

iL(t) =
{
iL(∞) + [iL(T0) − iL(∞)]e−(t−T0)/τ

}
u(t−T0).

Example 5-13: Circuit with Two RL Branches

After having been in position 1 for a long time, the SPDT switch
in Fig. 5-38(a) was moved to position 2 at t = 0. Determine
i1, i2, and i3 for t ≥ 0, given that Vs = 9.6 V, Rs = 4 k
,
R1 = 6 k
, R2 = 12 k
, L1 = 1.2 H, and L2 = 0.36 H.

Solution: We start by examining the initial state of the circuit
before moving the switch. At t = 0−, the inductors behave
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Circuit with 2 inductors(a) Initial condition at t = 0−(b)

Circuit after t = 0(c) (d)

R1

i1 i2

i3

L1

R2

L2

2

R1 Rs

Vs

i1 i2

i3

L1

R2

L2

1 2

t = 0

Currents i1, i2, and i3

i3(t)

i2(t)

i1(t)

i(t)

1.2 mA

1.0 mA

0.8 mA
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0
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L2
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L1
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i1(0 
−) i2(0 

−)

1

+
_

+
_

Figure 5-38: Circuit for Example 5-13.

like short circuits, resulting in the equivalent circuit shown in
Fig. 5-38(b). Application of KCL to node V gives

V

R1
+ V − Vs

Rs
+ V

R2
= 0,

whose solution is

V = R1R2Vs

R1R2 + R1Rs + R2Rs

= 6 × 12 × 9.6

6 × 12 + 6 × 4 + 12 × 4
= 4.8 V.

Hence, the initial currents i1(0) and i2(0) are given by

i1(0) = i1(0
−) = V

R1
= 4.8

6 × 103 = 0.8 mA

and

i2(0) = i2(0
−) = V

R2
= 4.8

12 × 103 = 0.4 mA.

The circuit in Fig. 5-38(c) represents the natural response
circuit condition after t = 0. Even though we have two resistors
and two inductors in the overall circuit, it can be treated
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as two independent RL circuits because each RL branch is
connected across a short circuit. In both cases, the inductors
will dissipate their magnetic energy (that they had stored prior
to moving the switch) through their respective resistors. Hence,
i1(∞) = i2(∞) = 0. The complete expressions for i1(t) and
i2(t) for t ≥ 0 then are given by

i1(t) = [i1(∞) + [i1(0) − i1(∞)]e−t/τ1 ] = 0.8e−t/τ1 u(t) mA

and

i2(t) = [i2(∞) + [i2(0) − i2(∞)]e−t/τ2 ] = 0.4e−t/τ2 u(t) mA,

where τ1 and τ2 are the time constants of the two RL circuits,
namely

τ1 = L1

R1
= 1.2

6 × 103 = 2 × 10−4 s

and

τ2 = L2

R2
= 0.36

12 × 103 = 3 × 10−5 s.

The current flowing through the short circuit is simply

i3 = i1 + i2 = (0.8e−t/τ1 + 0.4e−t/τ2) u(t) mA.

Example 5-14: Response to a Triangle Excitation

The source voltage in the circuit of Fig. 5-39(a) generates
a triangular ramp function that starts at t = 0, rises linearly
to 12 V at t = 3 ms, and then drops abruptly down to zero.
Additionally, R = 250 
, / L = 0.5 H, and no current was
flowing through L prior to t = 0.

(a) Synthesize υs(t) in terms of unit step functions and plot it.

(b) Develop the differential equation for iL(t) for t ≥ 0.

(c) solve the equation and plot iL(t) for t ≥ 0.

Solution: (a) The waveform of υs(t) shown in Fig. 5-39(b)
can be synthesized as the sum of two ramp functions:

υs(t) = 4r(t) − 4r(t) u(t − 3 ms)

= 4t u(t) − 4t u(t) u(t − 3 ms)

= 4t u(t) − 4t u(t − 3 ms) V. (5.109)

(c) iL(t) = i1(t) + i2(t)

(b) υs(t) = 4r(t) − 4r(t) u(t − 3 ms) 

(a) RL circuit

R

Lυs

iL
+
_
+
_

υs

1 2 3 4
t (ms)

12 V

−12 V

4r(t)

−4r(t) u(t − 3 ms)

0

t (ms)

iL ( μA)

2 4 531 6

−100

0

100

i1(t)

i2(t)

iL(t) = i1 + i2

Figure 5-39: Circuit and associated plot for Example 5-14.

(b) For t ≥ 0, the KVL loop equation is given by

−υs + RiL + L
diL

dt
= 0,

which can be rearranged into the form

diL

dt
+ aiL = υs

L
, (5.110)
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where a = R/L. Since υs(t) is composed of two components,
we will write iL(t) as the sum of two components,

iL(t) = i1(t) + i2(t), (5.111)

where i1(t) is the solution of Eq. (5.110) with υs = 4t u(t)

acting alone and i2(t) is the solution of Eq. (5.110) with
υs = −4t u(t − 3 ms) acting alone. That is,

di1

dt
+ ai1 = 4t

L
= bt for t ≥ 0 (5.112a)

and

di2

dt
+ ai2 = −4t

L
= −bt for t ≥ 3 ms (5.112b)

with b = 4/L.

Current i1(t) alone

We start by multiplying both sides of Eq. (5.112a) by eat ′ and
then integrating from 0 to t :

t∫
0

(
eat ′ di1

dt ′
+ ai1e

at ′
)

dt ′ =
t∫

0

bt ′eat ′ dt ′. (5.113)

For the left-hand side,

t∫
0

[
eat ′ di1

dt ′
+ ai1e

at ′
]

dt ′ =
t∫

0

[
d

dt ′
(i1e

at ′)

]
dt ′

= i1e
at ′
∣∣∣t
0
, (5.114)

and for the right-hand side,

t∫
0

bt ′eat ′ dt ′ = b

a2 eat ′(at ′ − 1)

∣∣∣∣
t

0
. (5.115)

In view of Eqs. (5.114) and (5.115), Eq. (5.113) becomes

i1e
at ′
∣∣∣t
0

= b

a2 eat ′(at ′ − 1)

∣∣∣∣
t

0
, (5.116)

which leads to

i1(t) eat − i1(0) = b

a2
[eat (at − 1) + 1]. (5.117)

given that i1(0) = 0, the expression for i1(t) becomes

i1(t) = b

a2 [(at − 1) + e−at ] (for t ≥ 0). (5.118)

Current i2(t) alone

Equations (5.112a) and (5.112b) are identical in form, except
for two important differences:

(1) The forcing function for i1(t) is bt whereas the forcing
function for i2(t) is −bt .

(2) The temporal domain of applicability for i2(t) starts at
t = 3 ms, instead of at t = 0.

Hence, Eq. (5.116) can be adapted to i2 by replacing b with −b

and changing the lower limit of integration to 3 ms, which gives

i2e
at ′
∣∣∣t
3 ms

= −b

a2 eat ′(at ′ − 1)

∣∣∣t
3 ms

, (5.119)

which leads to

i2(t) eat − i2(3 ms) e0.003a

= − b

a2 [eat (at − 1) − e0.003a(0.003a − 1)]. (5.120)

When we apply superposition, we apply the same initial
condition to both RL circuits (corresponding to the two
components of υs(t)). Thus, i1(0) = i2(3 ms) = 0, and
Eq. (5.120) simplifies to

i2(t) = − b

a2 [(at − 1) − (0.003a − 1)e−a(t−0.003)]
(for t ≥ 3 ms). (5.121)

Total solution for iL(t)

For R = 250 
 and L = 0.5 H, a = R/L = 500,
b = 4/L = 8, and

iL(t) =
{

i1(t) for 0 ≤ t ≤ 3 ms,

i1(t) + i2(t) for t ≥ 3 ms,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

32[(500t − 1) + e−500t ] μA

for 0 ≤ t < 3 ms,

103.7e−500t μA

for t ≥ 3 ms.

(5.122)

Figure 5-39(c) displays a plot of iL(t) versus t .

Concept Question 5-22: Compare Eq. (5.96) with
Eq. (5.107) to draw an analogy between RC and RL
circuits. υC, R, and C of the RC circuit correspond to 
which parameters of the RL circuit? (See         )
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Technology Brief 13
Hard Disk Drives (HDD)

Although invented in 1956, the hard disk drive (HDD)
arguably is still the most commonly used data-storage
device among nonvolatile storage media available today. It
is the availability of vast amounts of relatively inexpensive
hard-drive space that has made search engines, webmail,
and online games possible. Over the past 40 years,
improvements in HDD technology have led to huge
increases in storage density, which are simultaneous with
the significant reduction in physical size. The term hard
disk or hard drive evolved from common usage as a
means to distinguish these devices from flexible (floppy)
disk drives.

HDD Operation

Hard drives make use of magnetic material to read and
write data. A nonmagnetic disc ranging in diameter from
36 to 146 mm is coated with a thin film of magnetic
material, such as an iron or cobalt alloy. When a strong
magnetic field is applied across a small area of the disc, it
causes the atoms in that area to align along the orientation
of the field, providing the mechanism for writing bits of
data onto the disc (Fig.TF13-1). Conversely, by detecting
the aligned field, data can be read back from the disc.The
hard drive is equipped with an arm that can be moved
across the surface of the disc (Fig. TF13-2), and the disc
itself is spun around to make all of the magnetic surface
accessible to the writing or reading heads. The reading

Standard Magnetic Recording

Perpendicular Magnetic Recording

Figure TF13-1: Longitudinal and perpendicular writing
techniques.

and writing elements are physically moved along the
radius of the disk by using a magnet with a coil wrapped
around it. When current is driven into the coil, it produces
a magnetic force that moves the actuator.Because writing
onto or reading from the magnetized surface can be
performed very rapidly (fraction of a microsecond), hard
drives are spun at very high speeds (5,000 to 15,000
rpm) when directed to record or retrieve information.
Amazingly, hard-drive heads usually hover at a height of
about 25 nm above the surface of the magnetic disc while
the disc is spinning at such high speeds! The extremely
small gap between the head and the disc is maintained
by having the head “ride” on a thin cushion of air trapped
between the head and the surface of the spinning disc.
To prevent accidental scratches, the disc is coated with
carbon- or Teflon-like materials.

Hard drives are packaged carefully to prevent dust and
other airborne particles from interfering with the drive’s
operation. In combination with the air motion caused by
the spinning disc, a very fine air filter is used to keep
dust out while maintaining the air pressure necessary
to cushion the spinning discs. Hard drives intended for
operation at high altitudes (or low air pressure) are sealed
hermetically so as to make them airtight.

Modern Drive Technology

Early hard drives performed read and write operations
by using an inductor coil placed at the tip of the head.
When electric current is made to flow through the coil,
the coil induces a magnetic field which in turn aligns the

Spindle

Heads

Actuator arm

Figure TF13-2: Close-up of a disassembled hard drive
showing the magnetic discs mounted on a spindle and an
actuator arm. The head sits at the end of the arm and
performs the read/write operations as the disc spins.



“book” — 2015/5/4 — 7:14 — page 294 — #47

294 TECHNOLOGY BRIEF 13: HARD DISK DRIVES (HDD)

atoms of the magnetic material (i.e., a write operation).
The same coil also is used to detect the presence of
aligned atoms, thereby providing the read operation. The
many major developments that shaped the evolution of
read/write heads over the past 50 years have introduced
two major differences between the modern hard-drive
heads and the original models. Instead of using the same
head for both reading and writing, separate heads are
now used for the two operations. Furthermore, the writing
operation is now carried out with a lithographically defined
thin-film head, thereby reducing the feature size of the
head by several orders of magnitude. The feature size
is the area occupied by a single bit on the disc surface,
which is determined in part by the size of the write head.
Decreasing feature size leads to increased recording
density. The read operation—housed separately next
to the write head—uses a magnetoresistive material
whose resistance changes when exposed to a magnetic
field—even when the field intensity is exceedingly
small. In modern hard drives, high magnetoresistive
sensitivities are realized through the application of either
the giant magnetoresistance (GMR) phenomena or the
tunneling magnetoresistance (TMR) effect exhibited
by certain materials. The 2007 Nobel prize in physics
was awarded to Albert Fert and Peter Grünberg for their
discovery of GMR. A consequence of the extremely small
size of the magnetic bits (each bit in a 100-Gb/in2 disc is
about 40 nm long) is that temperature variations can lead
to loss of information over time. One method developed to
combat this issue is to use two magnetic layers separated
by a thin (∼ 1 nm) insulator, which increases the stability of
the stored bit. Another recent innovation that is already in
production involves the use of perpendicular magnetic
recording (PMR) as illustrated in Fig. TF13-1. PMR
makes it possible to align bits more compactly next to
each other.

Recent Developments

A new wave of developments is pushing hard drives into
the tens of terabytes. Already in commercial use is shin-
gled magnetic recording (SMR). Conventional drives
write bits in parallel rows Fig. TF13-3(a)), usually with
a slight gap between them. Making the individual track
width smaller is extremely difficult because, as mentioned
above, very small magentic grains are not stable (or,
conversely, to make very small grains stable makes them
very hard to read/write with a magnetic head). The SMR
solution (Fig. TF13-3(b)) is to lay bits down in overlapping
tracks, exactly like roof shingles (where each shingle row

(a) Schematic of conventional magnetic recording

Track n

Track n + 1

Track n + 2

Track pitch

C
ro

ss
 tr

ac
k

Writer and reader
gap widths

Down track
(direction of rotation)

(b) Schematic of shingled magnetic recording

Track n
Track n + 1
Track n + 2 B

an
d 

A
B

an
d 

B

Track n + 4
Track n + 3

Track n + 5

FigureTF13-3: Schematics of (a) conventional magnetic
recording and (b) shingled magnetic recording with two
3-track bands.

sits slightly on top of one adjacent row and slightly below
the other). The advantage is that the size of the track
(and hence, the grain), does not change but the overall
density increases. This works because a magnetic head
can still read the state of the magentic grain even if it
slightly overlapped with a nearby grain. The difficulty of
this method is that the writing process slows down since
every time we write to one of the overlapped rows, we
must also rewrite the neighboring rows. The tracks are
organized into bands (Fig. TF13-3(b)) and each band is
thus rewritten as needed. Coordinating this write activity
can be handled in firmware on the drive itself or in the
computer’s operating system (if it has the appropriate
driver to handle such drives).

A variety of other techniques (including the GMR heads
discussed above) are being explored to increase areal
density; in general, these focus on allowing smaller grains
by making them harder to write magnetically (which
makes them consequently more temperature stable).
Among these are heat-assisted, microwave-assisted and
patterning single-grain (or close to single-grain) isolated
magnetic islands (instead of a continuous magnetic thin
film); this is known as bit-patterned media (BPM). It
is estimated that techniques such as these will enable
densities on the order of 1–10 Tb/in2 in the next decade.
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Concept Question 5-23:Suppose the switch in the circuit
of Fig. 5-36(a) had been open for a long time, and then
it was closed suddenly. Will Is initially flow through R 
or L? (See         )

Exercise 5-16: Determine i1(t) and i2(t) for t ≥ 0
given that, in the circuit of Fig. E5.16, L1 = 6 mH,
L2 = 12 mH, and R = 2 
. Assume

i1(0
−) = i2(0

−) = 0.

L1R1.8 A L2

i1 i2t = 0

Figure E5.16

Answer: i1(t) = 1.2(1 − e−500t ) u(t) A, 
i2(t) = 0.6(1 − e−500t ) u(t) A. (See        C3)

5-6 RC Op-Amp Circuits

Adding capacitors and inductors to resistive circuits vastly
expands their utility and versatility. In this section, we
consider a few examples of circuits in which capacitors are
used in conjunction with op amps to perform integration,
differentiation, and related operations. Even though these
specific functions also can be realized through the use of
inductors, capacitors are usually the preferred option (whenever
such a choice is possible) because of their smaller physical size
and availability in planar form.

5-6.1 Ideal Op-Amp Integrator

The circuit shown in Fig. 5-40 resembles the standard inverting-
amplifier circuit of Section 4-4, except that its feedback
resistor Rf has been replaced with a capacitor C, converting
it into an op-amp integrator. As we show shortly:

� The output voltage υout of the RC integrator circuit
is directly proportional to the time integral of the input
signal υi. �

iC

RL

R C

υi
υp

υn υout

in = 0

υC = υout

iR _

+
+
_
+
_

+_

RC Integrator

Figure 5-40: Integrator circuit.

The ideal op-amp model has two constraints. The voltage
constraint states that υp = υn, and since υp = 0 in the circuit of
Fig. 5-40, it follows that υn = 0. Hence, the current iR flowing
through R is given by

iR = υi

R
. (5.123)

Given that υn = 0, the voltage υC across C is simply υout, and
the current flowing through it is

iC = C
dυout

dt
. (5.124)

At node υn,

iR + iC − in = 0. (5.125)

In view of the second op-amp constraint, namely in = ip = 0,
it follows that

iC = −iR (5.126)

or
dυout

dt
= − 1

RC
υi. (5.127)

Upon integrating both sides of Eq. (5.127) from an initial
reference time t0 to time t , we have

t∫
t0

(
dυout

dt ′

)
dt ′ = − 1

RC

t∫
t0

υi dt ′, (5.128)

which leads to

υout(t) = − 1

RC

t∫
t0

υi(t
′) dt ′ + υout(t0). (5.129)
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Time t0 is the time at which the integration process begins, and
υout(t0) is the initial voltage across the capacitor at that instant
in time. Thus, according to Eq. (5.129), the output voltage
(which is also the voltage across the capacitor) is equal to
whatever voltage existed across the capacitor at the start of the
integration process, υout(t0), incremented by an amount equal
to the integrated value of the input voltage (from t0 to present
time t) and multiplied by a (negative) scaling factor (−1/RC).

�Since the magnitude of the output voltage, |υout|, cannot
exceed the supply voltage Vcc, the values of R and C have
to be chosen carefully so as to avoid saturating the op
amp. �

If the time scale can be conveniently chosen such that the
initial reference time t0 = 0 and the capacitor was uncharged at
that point in time (i.e., υout(0) = 0), then Eq. (5.129) simplifies
to

υout(t) = − 1

RC

t∫
0

υi(t
′) dt ′ (if υout(0) = 0). (5.130)

Example 5-15: Square-Wave Input Signal

The square-wave signal shown in Fig. 5-41(a) is applied at
the input of an ideal integrator circuit with an initial capacitor
voltage of zero at t = 0. If R = 200 k
 and C = 2.5 μF,
determine the waveform of the corresponding output voltage
for an amp with (a) Vcc = 14 V and (b) Vcc = 9 V.

Solution: (a) The scaling factor is given by

− 1

RC
= − 1

2 × 105 × 2.5 × 10−6
= −2 s−1.

For the time period 0 ≤ t ≤ 2 s (first half of the first cycle),

υout(t) = −2

t∫
0

υi dt ′ = −2

t∫
0

3 dt ′ = −6t V

(0 ≤ t ≤ 2 s),

which is represented by the first ramp function shown in
Fig. 5-41(b). The polarity reversal of υi during the second half

(a)

Input

Output when Vcc = 14 V

Output when Vcc = 9 V

Clipped output

(b)

(c)

υout (V)

1 2 3 4 5 6
t (s)

12

−12

6

−6

υi (V)

1 3 5 6
t (s)

3

−3
2 4

υout (V)

1 2 3 4 5 6
t (s)

12

−12

6

−6
−9

0

0

0

Figure 5-41: Example 5-15 (a) input signal, (b) output signal
with no op-amp saturation, and (c) output signal with op-amp
saturation at −9 V.

of the first cycle causes the energy that had been stored in the
capacitor to be discharged, concluding the cycle with no net
voltage across the capacitor. The process then is repeated during
succeeding cycles.

We note that because |υout| never exceeds |Vcc| = 14 V, no
saturation occurs in the op amp.

(b) For the op amp with Vcc = 9 V, the waveform shown in
Fig. 5-41(c) is the same as that in Fig. 5-41(b), except that it is
clipped at −9 V.
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iR

RL

R

C

υi
υp

υn  υout

in = 0iC
_

+
+
_
+
_

RC Differentiator

Figure 5-42: Differentiator circuit.

5-6.2 Ideal Op Amp Differentiator

The integrator circuit of Fig. 5-40 can be converted into the
differentiator circuit of Fig. 5-42 by simply interchanging the
locations of R and C. For the differentiator circuit, application
of the voltage and current constraints leads to

iC = C
dυi

dt
, iR = υout

R
, and iC = −iR.

Consequently,

υout = −RC
dυi

dt
, (5.131)

which states that:

� The output voltage of the differentiator circuit is
proportional directly to the time derivative of its input
voltage υi, and the proportionality factor is (−RC). The
differentiator circuit performs the inverse function of that
performed by the integrator circuit. �

5-6.3 Other Op-Amp Circuits

The relative ease with which we were able to develop input–
output relationships for the ideal integrator and differentiator
circuits is attributed (at least in part) to the relative simplicity of
those circuits. Aside from the load resistor RL (which exercised
no influence on the solutions), the circuits in Figs. 5-40 and
5-42 consisted each of one resistor and one capacitor. Now,
through two examples, we demonstrate ways to approach the
analysis of RC op-amp circuits that may have more complicated
architectures.

Example 5-16: Pulse Response of an Op-Amp Circuit

The op-amp circuit shown in Fig. 5-43(a) is subjected to an
input pulse of amplitude Vs = 2.4 V and duration T0 = 0.3 s.
Determine and plot the output voltage υout(t) for t ≥ 0,
assuming that the capacitor was uncharged before t = 0.

Solution: One possible approach to solving the problem is
to analyze the circuit twice—once for the duration of the pulse
(0 to 0.3 s) and a second time for t > 0.3 s. An alternative
approach is to synthesize the rectangular pulse as the sum of
two step functions, to seek an independent solution for each
step function, and then to add up the solutions (superposition).
We will illustrate both methods.

(a) Method 1: Two Time Segments

Time Segment 1: 0 ≤ t ≤ 0.3 s, and υi = Vs = 2.4 V.

At node υn,

i1 + i2 + i3 = 0,

or, using the node voltage method,

υn − Vs

R1
+ C

d

dt
(υn − υout1) + υn − υout1

R2
= 0,

where υout1 is the output voltage during time segment 1.
Since υp = 0, injection of the ideal op-amp voltage constraint
υp = υn leads to

C
dυout1

dt
+ υout1

R2
= − Vs

R1
,

which can be cast in the standard first-order differential-
equation form given by

dυout1

dt
+ aυout1 = b, (5.132)

where

a = 1

R2C
, and b = − Vs

R1C
.

Equation (5.132) is analogous to Eq. (5.88), so its solution is
analogous to that given by Eq. (5.94), namely

υout1(t) = υout1(0) e−at + b

a
(1 − e−at )

= υout1(0) e−t/τ − VsR2

R1
(1 − e−t/τ ), (5.133)
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(a) Op-amp circuit

Capacitor building up charge

(b) υout(t)

υi(t) =

t = 0 t = 0.3 s

υp

υn
υout

υC

Vs

in = 0R1 = 2 kΩ

R2 = 10 kΩ

C = 25 μF

_

+
+
_

i3 i2

i1

+ _

+
_

0 0.0.3 5 1 1.5 2

−10

−8

−6

−4

−2

0

υout (V)

t (s)

Capacitor discharging

Figure 5-43: Op-amp circuit of Example 5-16.

where

τ = 1

a
= R2C = 0.25 s.

Given that υn = 0, it is evident from the circuit in Fig. 5-43(a)
that

υout1 = −υC1 ,

where υC1 is the voltage across the capacitor during the first
time segment. According to the problem statement, the initial
condition υC1(0

−) = 0, and since the voltage across a capacitor
cannot change instantaneously, it follows that

υout1(0) = −υC1(0) = −υC1(0
−) = 0.

Upon incorporating this piece of information into our solution,
we have the natural response

υout1(t) = −VsR2

R1
(1 − e−t/τ )

= −12(1 − e−4t ) V (for 0 ≤ t ≤ 0.3 s). (5.134)

Time Segment 2: t > 0.3 s, and υi = 0.

The form of the solution for this time segment is the same as
that given by Eq. (5.133) for the preceding time segment, except
for three modifications:

(a) The input voltage is now zero, so we should set Vs = 0.
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(b) The time variable t should be replaced with (t − 0.3 s) to
reflect the fact that our starting (reference) time is t = 0.3 s,
not t = 0.

(c) The initial voltage υout2(0.3 s) is not zero (because the
capacitor had been building up charge during the previous
time segment).

Hence, for time segment 2, υout2 is given by

υout2(t) = υout2(0.3) e−4(t−0.3) (for t > 0.3 s).

The initial voltage υout2(0.3) is equal to the voltage that existed
during the previous time segment at t = 0.3 s. Hence,

υout2(0.3) = υout1(0.3) = −12(1 − e−4×0.3) = −8.4 V.

Hence,

υout2(t) = −8.4e−4(t−0.3 s) V (for t > 0.3 s). (5.135)

The combined output response to the input pulse is displayed
in Fig. 5-43(b).

(b) Method 2: Two Step Functions

By modeling the rectangular pulse as

υi(t) = Vs[u(t) − u(t − 0.3 s)], (5.136)

we can develop a generic solution to a step-function input and
then use it to find

υout(t) = υouta (t) + υoutb (t).

We will treat the two step functions as two independent sources,
and we will apply the same initial-condition information to both
cases; that is, when treating the case of the second step function,
we do so as if the first step function had never existed.

To that end, the response of the first step function is given by
Eq. (5.134) as

υouta (t) = −12(1 − e−4t ) u(t) V (for t ≥ 0). (5.137)

Similarly, after reversing the polarity of Vs and incorporating a
time delay of 0.3 s,

υoutb (t) = 12(1−e−4(t−0.3)) u(t−0.3) V (for t ≥ 0.3 s).
(5.138)

In view of the definition of the step function, the complete
solution is given by

υout(t) = υouta (t) + υoutb (t)

=
{

υouta (t) for 0 ≤ t ≤ 0.3 s

υouta (t) + υoutb (t) for t > 0.3 s.
(5.139)

It is a relatively straightforward exercise to demonstrate that the
two methods do indeed provide the same solution.

Example 5-17: Op-Amp Circuit with Output Capacitor

Determine υC(t), the voltage across the capacitor in
Fig. 5-44(a), given that υi(t) = 3u(t) V, the capacitor
had no charge on it prior to t = 0, R1 = 1 k
, R2 = 15 k
,
R3 = 30 k
, R4 = 12 k
, R5 = 24 k
, and C = 50 μF.

Solution: The capacitor is on the output (load) side of the
op amp, so one possible approach to solving the problem is to

(a) temporarily replace the capacitor with an open circuit;

(b) determine the Thévenin equivalent circuit at terminals
(a, b); and

(c) reinsert the capacitor as in Fig. 5-44(c) and analyze the
circuit.

To that end, we start by relating υout to υi. Given that for the
ideal op amp υn = υp and ip = 0, it follows that

υn = υp = υi.

Moreover, since in = 0, υn and υout are related by a voltage
divider between nodes c and d:

υout =
(

R2 + R3

R2

)
υn =

(
R2 + R3

R2

)
υi.

With the capacitor removed, the Thévenin voltage across
terminals (a, b) in Fig. 5-44(a) is equal to the voltage across R5,
which is related to υout by the voltage-division rule

υTh =
(

R5

R4 + R5

)
υout

=
(

R5

R4 + R5

)(
R2 + R3

R2

)
υi

=
(

24

12 + 24

)(
15 + 30

15

)
× 3 = 6u(t) V (for t ≥ 0).
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υi = 3 u(t)

υp

υn

υout

υC

ip = 0R1

_

+

in = 0

+
_

c

b
d

a

(a) Op-amp circuit R3

R4

R5 C

R2

+
_

(c) Equivalent circuit

(b) Relevant circuit for finding RTh , with op amp
replaced with its output resistance Ro

c

b
d

aR4

R5Ro
RTh

R3

R2

+
_

υCυTh = 6u(t)

υp = υn

b

a

C
+
_

RTh

+
_

Figure 5-44: Circuit for Example 5-17.

Our next task is to determine the value of RTh. To that end,
we set υi = 0. Consequently, υp − υn = 0, in which case the
op-amp’s equivalent circuit at terminals (c, d) consists of only
its output resistance R0. Figure 5-44(b) contains the relevant
part of the overall circuit seen by terminals (a, b). For the real
op amp, R0 is on the order of 10 to 100 
, which is at least two
orders of magnitude smaller than any of the other resistors in the
circuit, lending justification to the ideal op-amp model which
sets R0 = 0 (thereby shorting out (R2 + R3)). Consequently,

RTh = R4 ‖ R5 = R4R5

R4 + R5
= 12 × 24

12 + 24
= 8 k
.

With υTh and RTh known, we now have a circuit (Fig. 5-44(c))
that resembles the step-function circuit of Fig. 5-30(a). Its
solution is given by Eq. (5.97) using Vs1 = 0 and Vs2 = Vs,
namely

υC(t) = Vs(1 − e−t/τ ).

In the present case, Vs = υTh = 6 V, and

τ = RThC = 8 × 103 × 50 × 10−6 = 0.4 s.

The capacitor response is therefore given by

υC(t) = 6(1 − e−2.5t ) u(t) V.

Example 5-18: Differential Equation Solver

Design an op-amp circuit whose output is the solution of the
differential equation

d2υ

dt2 + 8
dυ

dt
+ 2υ = 4υs(t), (5.140)

where υs(t) is a sinusoidal source given by

υs(t) = 3 sin(200t) u(t).
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Technology Brief 14
Capacitive Sensors

Capacitive sensors are used to convert information from
the real world to a change in capacitance that can be
detected by an electric circuit. Even though capacitors
can assume many different shapes, the basic concepts
can be easily explained using the shape and properties
of the parallel plate capacitor, for which the capacitance
C is given by

C = εA

d
,

where ε is the permittivity of the material between the
plates, A is the area of each plate, and d is the spacing
between the plates. So, most capacitive sensors operate
by measuring the change in one or more of these three
basic parameters, in response to external physical stimuli.
Let us examine each one of these three parameters sepa-
rately and how it can be used to measure external stimuli.

Applications Based on Change in Permittivity ε

The electrical permittivity ε of a given material is an
inherent property of that material; its value is dictated

Table TT14-1: Relative permittivity εr of common
materials.a

ε = εrε0 and ε0 = 8.854 × 10−12 F/m

Relative
Material Permittivity, εr

Vacuum 1
Air (at sea level) 1.0006

Low Permittivity Materials
Styrofoam 1.03
Teflon 2.1
Petroleum oil 2.1
Wood (dry) 1.5–4
Paraffin 2.2
Polyethylene 2.25
Polystyrene 2.6
Paper 2–4
Rubber 2.2–4.1
Plexiglass 3.4
Glass 4.5–10
Quartz 3.8–5

Water 72–80
Biological Materials 40–70
aThese are at room temperature (20 ◦C).

by the polarization behavior of that material’s molecular
structure, relative to the absence of polarizability (as
in free space or vacuum). In free space, ε = ε0 =
8.854×10−12 F/m, and for all other media, it is convenient
to express the permittivity of a material relative to that
for free space through the relative permittivity εr = ε/ε0.
TableTT14-1 provides a list for various types of materials.
We note that for plastic, glass, and most ceramics, εr is in
the range between 2 and 4, which makes them different
(electrically) from air (εr = 1 for air), but not markedly so.
In contrast, water-based materials—such as biological
materials or parts of the body—have an εr in the range of
60–80, making them electrically very different from both
air and dry materials. This means that their presence
can be easily detected by a capacitive sensor, which is
the basis of capacitive touchscreens, fluid and moisture
meters, and some proximity meters.

Capacitive Touch Buttons

An example of a capacitive touch sensor is shown in
Fig. TF14-1. The capacitor has two conducting surfaces
labeled sensor pad and ground hatch. In general,
the two conductors are separated either vertically or
horizontally, and covered with a layer of glass or plastic.
By applying a voltage source (supplied by the printed
circuit board) between the conducting surfaces, electric
field lines get established between them. When no finger
(or a capacitive stylus) is present near the sensor pad, the
electric field lines flow through the glass or plastic cover,
but when in the proximity of a finger, the electric field lines
pass partially through the finger, and since the finger
has a relative permittivity comparable to that of water, its

Ground hatch
Overlay

PC board

Ground hatchSensor pad

Figure TF14-1: A capacitive touch sensor uses the high
permittivity of the finger to change the capacitance. The
finger does not need to come in direct contact with the
sensor in order to be detected.
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Sensing film

Alumina substrate
Interdigitated electrode

Contact pad

Figure TF14-2: Interdigitated humidity sensor. (Credit:
Hygrometrix.)

proximity changes the overall capacitance of the circuit.
The electric field starts on one of the conductors and
ends on the other, basically making an arc between them.
When the finger comes near either one or both of the two
conductors, it changes this field (note the electric field
arrow pointing straight up at the finger, which would not
be there without the finger), and this in turn changes the
capacitance. Another way to think about the process is in
terms of the electric charge stored at the two conductors.
The presence of the finger changes the effective
permittivity of the medium through which the electric field
lines flow, thereby changing the effective capacitance C.
Since for any capacitor, C = Q/V —where Q is the
charge on the conductor connected to the positive
terminal of the voltage source and V is the voltage of
the source—it follows that increasing C leads to an
increase in Q (with V remaining constant). Hence, when
the finger approaches the sensor pad, additional charge
accumulates at the two conductors (with more +Q at the
sensor pad and a corresponding −Q at the ground hatch).

Humidity Sensor

Another example of a capacitive sensor that also relies
on measuring the change in permittivity is the humidity
sensor featured in Fig. TF14-2. A sensing film absorbs
moisture from the air, thereby changing the capacitance
of the interdigitated line in proportion to the humidity in
the air surrounding the sensor.

“Seeing” through Walls

The capacitive sensing technique also is used to “see”
inside boxes, through walls, or through basically any
low-conductivity low-permittivity material (paper, plastic,
glass, etc.). An example is illustrated in Fig. TF14-3, in
which a capacitive sensor on an assembly line is used
to determine if a metal object is placed inside a box. The

Figure TF14-3: Capacitive proximity sensors can
“see” through low permittivity materials such as paper,
cardboard, plastic, and glass and detect objects composed
of a wide variety of materials including metals, fluids, etc.
Here, a capacitive sensor detects the contents of a box.
(Graphic courtesy of Balluff.)

object does not have to be metal, but its permittivity has to
be significantly different from that of the paper or plastic
enclosure. A similar application of capacitive sensors is
to locate wooden studs through plaster walls.

Fluid Gauge

Capacitive sensors can serve as fluid gauges by
measuring the height of a fluid in a tank or reservoir.
Examples include gasoline and oil level gauges used in
cars. If the tank is made of plastic or glass, metal strips
on the outside of the tank can determine the height of the
fluid without having to make contact with the fluid. This
is very useful when the fluid is caustic or sterile. If the
tank is metal, the strips must be placed inside. In either
case, the sensor consists of two capacitors, one (C2 in
Fig. TF14-4) with metal plates separated by a reference
fluid, and another (C1) in which the fluid level is a variable.
If the permittivity of the fluid is ε and the height of the fluid
in the upper container in Fig. TF14-4 is h, the ratio of the
two capacitances is given by

C1

C2
= ah + b,

where a and b are known constants related to ε and the
dimensions of the two capacitors. Hence, by measuring
the two capacitances with an external circuit, the sensor
provides a direct measurement of the fluid height h.
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C1

Variable

Air

Reference

C1

C2

C2

ε h

ε

h0

Figure TF14-4: Fluid height can be measured from the
outside of a plastic or glass tank using a pair of parallel
plate capacitors on the outside of the tank.

C = ε0 
εr

a × b
d

Pressure

Transducer Data

Figure TF14-5: Capactive transducer responding to
pressure from a sound wave.

Applications Based on Change in
Inter-Conductor Distance d

As noted earlier, the capacitance C is inversely
proportional to the distance d between the two
conductors. This dependence can be used to measure
pressure, as illustrated by the diagram in Fig. TF14-5.
We call such a sensor an electrical transducer because
it converts one type of energy (mechanical) into another
(electrical). The capacitor has one stationary conducting
plate on the back side and a flexible conducting
membrane on the side exposed to the incident pressure
carried by an acoustic wave. The sound wave causes the
membrane to vibrate, thereby changing the capacitance,
which is measured and processed by an external circuit.
This type of capacitive transducer is used in numerous
industrial applications.

W

L
x

d

L

x

Figure TF14-6: Capacitance is proportional to overlap
area A = W(L − x), so when plates slide past each other
the capacitance decreases in proportion to the shifted
distance x.

Applications Based on Change in Area A

The change in the effective area common to the two
conducting surfaces can also change the capacitance C.
If one plate is slid past the other in Fig. TF14-6, the
effective area A changes as a function of the shifted
distance x. The capacitance is maximum when they are
perfectly lined up, corresponding to x = 0, and changes
approximately linearly as (L − x). This can be used to
align two objects, or to determine any other manual
displacement in either one or two directions. The MEMS
capacitive vibration sensor shown in Fig.TF14-7 uses two
interdigital electrodes, one static and another moveable.
When mounted in a car, for example, car acceleration or
deceleration causes the moveable electrode to respond
accordingly, which changes the capacitance between the
two electrodes, thereby providing the means to measure
acceleration. Such a sensor is called an accelerometer.

FigureTF14-7: Microelectromechanical system (MEMS)
vibration sensor using interdigitated static and movable
electrodes. (Credit: STMicroelectronics.)
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The step function u(t) denotes that the source is connected to
the circuit at t = 0. In your circuit, you may use a sinusoidal
source of any amplitude and angular frequency.

Solution: Using op amps, multiple circuit configurations can
be constructed to solve the given differential equation. One such
configuration is shown in Fig. 5-45. If in Eq. (5.140) we denote
dυ/dt = υ ′ and d2υ/dt2 = υ ′′ and then solve for υ, we have

υ = −1

2
υ ′′ − 4υ ′ + 2υs(t)

= −1

2
υ ′′ − 4υ ′ + 6 sin(200t) u(t). (5.141)

One approach for designing this circuit is to realize that the
output must be υ, and somehow within the circuit we will also
need υ ′ and υ ′′. We can design a differentiator with a gain of
1 and feed in the υ (output), and then feed that into a second
differentiator to get υ ′′. The values of υ ′, υ ′′, and υs can be

_
Op 
Amp 2
+

_
Op 
Amp 4
+

−υ′

υ′

υ

υ = −   υ′′ − 4υ′ + 6 sin(200t)

υ ≤ Vcc

′′

_
Op 
Amp 3
+

υ
_
Op 
Amp 1
+

R

R

sin(200t)
t = 0

RC = 1
Gain = −1

Differentiator
Differentiator

Gain = −1
Summer

Inverter
Gain = −1

Summing
point

C
C

υ

12R

6R

1.5R

R

R
R

1
2

Figure 5-45: Op-amp circuit whose output υ(t) is a solution to υ ′′ + 8υ′ + 2υ = 12 sin(200t) u(t).

combined by a weighted op-amp summer in which the gains
can be adjusted to obtain the desired output υ.

In Fig. 5-45, υ is the output of op amp 4, as well as the
input to op amp 1, which is a differentiator with a gain factor of
−RC = −1 (the values of R and C are selected such that their
product is 1). The output of op amp 1 is simply −υ ′. When fol-
lowed by a second differentiator (op amp 2), we obtain υ ′′. Op
amp 3 serves as an inverter with gain of −1. Finally, op amp 4 is
a summing amplifier that performs the sum of all three terms in
Eq. (5.141). The values of the resistors preceding the summing
point at the input to op amp 4 are selected to provide the correct
weights, namely (6R/12R) = 1/2 for υ ′′, (6R/1.5R) = 4
for υ ′, and (6R/R) = 6 for the sinusoidal source. The switch
serves to initiate the process at t = 0. Prior to that, υ = 0. To
avoid saturation, the supply voltage Vcc of each op amp should
exceed the maximum possible voltage at its output.

If one were to construct the circuit and close the switch, the
voltage υ(t) observed at the output of op amp 4 would be the
same solution we would obtain were we to solve the differential
equation analytically.
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Concept Question 5-24: What causes clipping of the 
waveform at the output of an op-amp integrator circuit?
Can clipping occur at the output of a differentiator circuit?
(See         )

Concept Question 5-25: If υs(t) is the input signal to
a two-stage op-amp circuit with the first stage being
an integrator with R1C1 = 0.01 and the second stage
being a differentiator with R2C2 = 0.01, under what 
circumstances will the output waveform υout(t) be the 
same or different from υs(t)? (See         )

Exercise 5-17: The input signal to an ideal integrator
circuit with RC = 2 × 10−3 s and Vcc = 15 V is given
by υs(t) = 2 sin 100t V. What is υout(t)?

Answer: υout(t) = 10[cos(100t)  − 1] V. (See       C3)

Exercise 5-18: Repeat Exercise 5-17 for a differentiator
instead of an integrator.

Answer: υout(t) = −0.4 cos 100t V. (See        C)

5-7 Application Note: Parasitic
Capacitance and Computer
Processor Speed

As was noted in Section 4-11 and in Technology Brief 10, the
primary computational element in modern computer processors
is the CMOS transistor. How quickly a single logic gate is able
to switch its output between logic states 0 and 1 determines
how fast the entire processor can perform complex calculations.
Figure 5-46(a) displays a sample of a digital sequence, perhaps
at the output of a digital inverter. The individual pulses, each
denoting a logic state of 0 or 1, are each of duration T . If it were
possible to switch between states instantaneously, the maximum
number of pulses that can be sequenced per 1 second is 1/T .
We refer to this rate by several names, including the pulse
repetition frequency, switching frequency, and clock speed.
In the present case, we shall call it the switching frequency and
assign it the symbol fs. That is,

fs = 1

T
(Hz). (5.142)

So if T = 1 ns, fs = 1/10−9 = 1 GHz, and if we can make
the pulse duration narrower, we can increase fs accordingly.

T
t

VDD

Vout

0

1 0 1

Logic state 0

Logic state 1

t

VDD

Vout

trise tfall
0 State 0

State 1

T

(a) Pulses

(b) Expanded view

Figure 5-46: Pulse sequence.
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Such a conclusion would be true if we can indeed arrange to
have the logic circuit switch between states instantaneously,
but it cannot. In Fig. 5-46(b), we show an expanded view of
three pulses representing the sequence 101. We observe that the
switching process is represented by ramp functions (rather than
step functions) and it takes a finite amount of time for the voltage
to change between a 0 state and a 1 state, which we shall call
the rise time trise. Similarly, the fall time between states 1 and 0
is tfall. [The linear rise and fall responses are actually artifacts
of certain simplifying assumptions. In general, the responses
involve exponentials, in which case it is more appropriate to
define trise and tfall as the durations between the 10 percent
level and 90 percent level of the change in voltage.] The total
time associated with a pulse is

Ttotal = T + trise + tfall = T + 2trise (if trise = tfall),

and the associated switching frequency is

fs = 1

Ttotal
= 1

T + 2trise
.

Even if T can be reduced to zero, the maximum possible
switching speed (without overlap between adjacent pulses)
would be

fs(max) = 1

2trise
. (5.143)

As we shall see shortly, the switching times (trise and tfall)
are governed in part by the capacitances in the circuit.
Consequently, capacitances play a major role in determining
the ultimate switching speed of a digital circuit. In fact,
capacitances also govern the switching speeds of the wires—
often referred to as the bus—that connect the processor to the
various other devices on a computer motherboard.

� Whereas the processor speed of a modern computer is
in the GHz range, the bus speed usually is slower by a
factor of 3 to 10. �

This is (in part) why a computer appears to slow down when the
processor needs to access data through the bus. The following
section will examine why this is so.

2a

Wire capacitor

d

l

C = πε	

ln[(d/2a) +
√

(d/2a)2 − 1]
≈ πε	

ln(d/a)
if d � a

Figure 5-47: Capacitance of a two-wire configuration where ε

is the permittivity of the material separating the wires.

5-7.1 Parasitic Capacitance

Functionally, any two conducting bodies separated by an
insulating material (including air, plastic, and all non-
conductors) form a capacitor. The capacitors we have
considered thus far are the type designed and fabricated
intentionally for use as components in circuits. In some
situations, however, unintentional capacitance may exist in the
circuit, in which case it usually is called parasitic capacitance.
(Parasitic inductance also is present, but it is usually very small,
so we will ignore it.) Consider, for example, the capacitance
formed by two parallel wires running side by side on a circuit
board. The capacitance of such a two-wire transmission line
(Fig. 5-47) is proportional directly to the length of the wires 	

and inversely proportional to a logarithmic function involving
d, the spacing between the wires. Thus, C increases with 	

and decreases with d. If the wires are sufficiently long, or
sufficiently close to one another, or some combination of the two
[as to result in a capacitance of significant magnitude relative
to the other capacitances in the circuit] such a wire capacitor
(the conductor traces between the different components in the
circuit) can slow down the response time of the circuit. In a
digital circuit, slower response time means slower switching
speed. To explore this subject further, we now examine the
impact of parasitic capacitance on the operation of a MOSFET.

5-7.2 CMOS Switching Speed

Recall from Section 4-11 that the gate node in a MOSFET
is composed of a metal and a semiconductor separated by
a thin layer of silicon dioxide that serves as a dielectric
insulator. This geometry is somewhat similar to that of the
parallel-plate capacitor of Fig. 5-11. Hence, during normal
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(a) NMOS

(b) Equivalent circuit
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Figure 5-48: n-channel MOSFET (NMOS): (a) circuit symbol
with added parasitic capacitances and (b) equivalent circuit. [In
a PMOS, parasitic capacitances C

p
D and C

p
S should be shown

connected to VDD instead of to ground.]

operation, the gate (G) and the source (S) nodes form a capacitor
between them, as do the gate and the drain (D) nodes. Other
parasitic capacitances also exist in a MOSFET, mainly due
to charges separated between the source and the large silicon
chip and between the drain and the chip. For simplicity, the
various parasitic capacitances can be lumped together into an
equivalent model containing three capacitances (all connected
to ground) from G, S, and D. As shown in Fig. 5-48, these
capacitances are designated Cn

G, Cn
S, and Cn

D, respectively,
with the superscript “n” denoting that the circuit configuration
applies to the n-channel MOSFET (or NMOS for short) whose
body node usually is connected to ground. In a p-channel
MOSFET, the body node is connected to VDD. Hence, the
model for PMOS would show parasitic capacitances C

p
D and C

p
S

connected to VDD, instead of to ground.
Now we are ready to analyze the operation of a CMOS

inverter in the presence of parasitic capacitances. The circuit in
Fig. 5-49(a) is essentially the same CMOS circuit of Fig. 4-30,
except with added parasitic capacitances. The capacitances

(a) Original circuit

(b) Simplified circuit
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NMOS
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Gp
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Dp
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Dn
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p

CD

VDD

υout

p

CD
n

CS
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CS
nCG
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+

_

υin

+

_

Sp

G D

Sn

CD

VDD

υout

p

CD
nCIN

+

_

υin

+

_

Figure 5-49: Common drain inverter circuit with parasitic
capacitances. Superscripts “n” and “p” refer to the NMOS and
PMOS transistors, respectively.

associated with the n-channel MOSFET are shown connected
from terminals Gn, Dn, and Sn to ground. For the p-channel
MOSFET, capacitance C

p
G is also connected to ground, but for

the other two terminals, the capacitances are shown connected
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(a) Equivalent circuit for CMOS inverter

(b) υin(t) and υout(t)
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Figure 5-50: (a) Equivalent circuit for the CMOS inverter; (b)
the response of υout(t) to υin changing states from 0 to VDD at
t = 0.

to VDD. The two MOSFETs share a common gate terminal at
the input side and a common drain terminal at the output side.
Terminal Sn of the NMOS is connected directly to ground,
which renders capacitance Cn

S irrelevant. Terminal Sp of the
PMOS is connected directly to VDD, which similarly renders
C

p
S irrelevant. Capacitances Cn

G and C
p
G both are connected

from the common gate terminal to ground and therefore can be
combined into an equivalent capacitance CIN. Incorporating
these simplifications leads to the circuit shown in Fig. 5-49(b).

Our next step is to determine the output response υout(t) to a
sudden change of state at the input from υin = 0 to υin = VDD.
Let us assume that the change happens at t = 0 and that the
circuit was already in a steady-state condition by then.

(a) Initial condition at t = 0−:

The capacitances in Fig. 5-50(a) act like open circuits. Also,
υin = 0, which means that V n

GS = 0 for the NMOS and
V

p
SG = VDD for the PMOS. Under such circumstances,

in
DS = gV n

GS = 0, and i
p
DS = gV

p
SG = gVDD,

(5.144)
where g is the MOSFET gain constant. Furthermore, the PMOS
behavior is such that, if V

p
SG approaches VDD, the voltage V

p
DS

across the dependent current source goes to zero. With in
DS not

conducting and i
p
DS acting like a short circuit, it follows that the

voltage across capacitor Cn
D is

υout(0
−) = VDD. (5.145)

Since the voltage across a capacitor cannot change instanta-
neously,

υout(0) = VDD. (5.146)

(b) At t ≥ 0:

If υin is a step function that changes from 0 to VDD at t = 0,
the following pair of responses will take place:

(a) At the input side in the circuit of Fig. 5-50(a), we have
an isolated loop comprising υin, Rs, and CIN. In response
to the change in υin, capacitor CIN will charge up to a
final voltage VDD at a rate governed by the time constant
τ = RsCIN. Through proper choice of Rs (very small), CIN
can charge up to VDD so quickly (in comparison with the
response time of the output) that it can be assumed that
V n

GS = VDD immediately after t = 0.

(b) At the output side, with V n
GS = VDD, it follows that

V
p
SG = 0. Hence,

in
DS = gVDD, and i

p
DS = gV

p
SG = 0. (5.147)

At node D′,
i1 + i2 + i3 = 0, (5.148)

and at node D,

i3 = in
DS + i

p
DS = gVDD. (5.149)

Also,

i1 = C
p
D

d

dt
(υout − VDD) = C

p
D

d

dt
υout, (5.150)

and

i2 = Cn
D

d

dt
υout. (5.151)
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Upon inserting the expressions given by Eqs. (5.149)
through (5.151) into Eq. (5.148) and then rearranging
terms, we have

dυout

dt
= −gVDD

Cn
D + C

p
D

. (5.152)

Integrating both sides from 0 to t gives

υout|t0 = −gVDD

Cn
D + C

p
D

t∫
0

dt, (5.153)

which leads to

υout(t) = υout(0) −
(

gVDD

Cn
D + C

p
D

)
t. (5.154)

In view of Eq. (5.146), the expression for υout(t) becomes

υout(t) = VDD

[
1 −

(
g

Cn
D + C

p
D

)
t

]
. (5.155)

Plots of υin(t) changing states from 0 to VDD at t = 0
and of the corresponding response υout(t) are displayed in
Fig. 5-50(b). We observe that tfall is the time it takes for
υout to change states from VDD to zero. From Eq. (5.155),
we deduce that

tfall = Cn
D + C

p
D

g
. (5.156)

Example 5-19: Processor Speed

The input to a CMOS inverter consists of a sequence of bits, each
25 picoseconds in duration. Determine the maximum switching
frequency at which the CMOS inverter can be operated without
causing overlap between adjacent bits (pulses) under each
of the following conditions: (a) parasitic capacitances totally
ignored and (b) parasitic capacitances included. In both cases,
g = 10−5 A/V, and Cn

D = C
p
D = 0.5 fF.

Solution: (a) With T = 25 ps = 25 × 10−12 s and no
capacitances to slow down the switching process, the maximum
switching frequency is

fs = 1

T
= 1

25 × 10−12 = 40 GHz.

(b) From Eq. (5.156),

tfall = Cn
D + C

p
D

g
= (0.5 + 0.5) × 10−15

10−5
= 10−10 s.

To determine trise, we have to repeat the solution that led to
Eq. (5.156) but with υin starting in state 1 (i.e., υin = VDD) and
switching to state 0 at t = 0. Such a process would lead to

υout(t) = VDD

(
g

Cn
D + C

p
D

)
t.

The time duration that it takes υout(t) to reach VDD is

trise = Cn
D + C

p
D

g
= tfall.

Hence, in the presence of parasitic capacitances, Eq. (5.143) is
applicable. Namely,

fs = 1

T + 2trise
= 1

25 × 10−12 + 2 × 10−10 = 4.44 GHz.

In this example, the parasitic capacitances are responsible for
slowing down the switching speed of the CMOS processor by
about one order of magnitude.

In the preceding example, we essentially ignored the input
capacitances of the CMOS. Since logic gates are strung along in
series such that one gate’s output is the next gate’s input, input
capacitances usually are lumped together with the previous
gate’s output capacitances. To properly incorporate the roles of
both input and output parasitic capacitances, a more thorough
treatment is needed than the first-order approximation we
carried out in this section. Nevertheless, the approximation did
succeed in making the point that at high switching rates parasitic
capacitances are important and should not be ignored.

Concept Question 5-26: What is the rationale for adding
parasitic capacitances to nodes G, D, and S in Fig. 5-48?
(See         )

Concept Question 5-27: What determines the maximum
switching frequency for a CMOS inverter? (See         )

Exercise 5-19:A CMOS inverter with Cn
D + C

p
D = 20 fF

has a fall time of 1 ps. What is the value of its gain
constant?

Answer: g = 2 × 10−2 A/V. (See        C)
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i
+
_

t = 0

2.5 V 5 f F Vout

V(3)

C1 R1

R2

+
_ 10 kΩ

1 kΩ
+

_

Figure 5-51: RC circuit with an SPST switch.

5-8 Analyzing Circuit Response with
Multisim

5-8.1 Modeling Switches in Multisim

Determining the time-dependent behavior of large, complex
circuits often is difficult to do and extremely time-consuming.
Accordingly, designs of commercial circuits rely heavily on
SPICE simulators for evaluating the response of a candidate
circuit design before constructing the real version. In this
section, we demonstrate how Multisim can be used to analyze
the transient response of a circuit driven by a time-dependent
source.

Because the first-order RC circuit is straightforward to
analyze by hand, it makes for a useful example with which we
can compare Multisim simulation results to hand calculations.
Consider the circuit shown in Fig. 5-51, in which the switch
is opened at t = 0 after it had been in the closed position for
a long time. Hence, prior to t = 0, the circuit was in a steady
state and the capacitor was fully charged with no current flowing
through it (behaving like an open circuit). The voltage across
the capacitor is designated V(3) (so as to match the Multisim
circuit that we will be constructing soon) and is given by

V(3) = 2.5 × 10 k

1 k + 10 k
= 2.27 V (@ t = 0−).

Upon opening the switch, the capacitor will discharge through
the 10 k
 resistor with a time constant given by

τdischarge = R1C1 = 104 × 5 × 10−15 = 50 ps.

Likewise, if the switch were to close at a later time after the
circuit had fully discharged, the capacitor would again charge
up to 2.27 V, but in this case, the time constant would be

τcharge = (R1 ‖ R2)C2 = 1 k × 10 k

11 k
× 5 × 10−15 = 4.54 ps.

Figure 5-52: Multisim equivalent of the RC circuit in Fig. 5-51.

Thus, the charge-up response of the circuit is much faster (by
about one order of magnitude) than its discharge response.

To demonstrate the transient behavior of the circuit with
Multisim, we construct the circuit model shown in Fig. 5-52
using the component list given in Table 5-6. The only oddity
in the circuit is the use of a Voltage-Controlled Switch and a
Pulse Generator source to drive it. Multisim does not provide
the user the option to use time-programmable switches, so
in order to observe the circuit response to multiple opening
and closing events of the switch, we use a voltage-controlled
switch in combination with an appropriately configured pulse
generator. The exact voltage amplitude of the pulse (V2 in
Fig. 5-52) is not important (so long as it is larger than the
1 mV threshold of the switch), but the timing of the pulse is
critically important, as we want to allow enough time between
opening and closing events to observe the complete transient
responses of the circuit. Since the longest time constant is 50 ps,
double-click on the Pulse Generator and set the Pulse width
at 250 ps and the Period at 500 ps so as to provide an adequate
time window. Also set the Rise Time and Fall Time to 1 ps.

To analyze the behavior, we select Simulate → Analyses
→Transient Analysis. Make sure to select an End Time equal
to a few periods; 3 ns should suffice. (If you forget this, you may
need to abort the simulation to prevent it from running for a long
time since the default value is 0.001 s! To abort the simulation
or any general Analyses which may be taking too long, go
to Simulate → Analyses → Stop Analysis.) In the Output
tab, select the non-ground node of the capacitor V(3) and the
pulse voltage V(1) for time references. Figure 5-53 shows the
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Table 5-6: Multisim component list for the circuit in Fig. 5-52.

Component Group Family Quantity Description

1 k Basic Resistor 1 1 k
 resistor

10 k Basic Resistor 1 10 k
 resistor

5 f Basic Capacitor 1 5 fF capacitor

VOLTAGE CONTROLLED SPST Basic Switch 1 Switch

DC POWER Sources Power Sources 1 2.5 V dc source

PULSE VOLTAGE Sources Signal Voltage Source 1 Pulse-generating
voltage source

output of the transient analysis. Enabling the Cursor tool in the
Grapher window allows the user to read out the exact voltage
and time values for any trace.

5-8.2 Modeling Time-Dependent Sources in
Multisim

In the previous subsection, we examined how to create switches
that toggle with time. What if we wanted to simulate the circuit
shown in Fig. 5-54(a) and plot υC over a certain time duration?

The circuit has three time-dependent sources, which would
make adding switches and pulse generators rather complicated.
Multisim allows us to create the time-dependent sources found
in this circuit by using the ABM Voltage and Current sources.

In Multisim’s ABM syntax, the step function u(t) is
represented by the stp(TIME) function. Also, to guard against
Multisim calculating incorrect initial conditions prior to the step
function, it is advisable to shift the step-function transition to
occur 10 ms after the start of the simulation. Hence, we use the

V(1)

V(3)

Figure 5-53: Transient response of the circuit in Fig. 5-52.
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(a) Circuit with three time-dependent sources

(b) Multisim circuit

(c) Trace of υC(t)

50 Ω
300 Ω

R1

R2
υC

C1

100 μF+
_

+
_

+
_

V2 = 3u(t − 0.01) V
V1 = 5u(−(t − 0.01)) V I1 = 0.1u(t − 0.02) A

Figure 5-54: Multisim analysis of a circuit containing time-dependent sources.

following ABM expressions:

For V1 = 5u(−(t − 0.01)) V: 5*stp(-TIME+0.01)

For V2 = 3u(t − 0.01) V: 3*stp(TIME-0.01)

For I1 = 0.1u(t − 0.02) A: 0.1*stp(TIME-0.02)

Once these expressions have been entered, go to Simulate →
Analyses → Transient Analysis. Leave the Start Time at
0 s, and set the End Time to 0.04 s. Under the Output tab,
select the voltages V(1), V(2), and V(3) and press Simulate.
This generates the plots shown in Fig. 5-54(c).
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Summary

Concepts

• The step, ramp, rectangle, and exponential functions
can be used to characterize a variety of nonperiodic
waveforms.

• A capacitor stores electrical energy when a voltage
exists across it.

• An inductor stores magnetic energy when a current
passes through it.

• Under dc conditions, a capacitor acts like an open circuit
and an inductor acts like a short circuit.

• A series RC circuit excited by a dc source exhibits a
voltage response (across the capacitor) characterized
by an exponential function containing a time constant
τ = RC.

• A parallel RL circuit exhibits a current response
(through the inductor) that has the same form as the
voltage response of the series RC circuit, but for the RL
circuit, τ = L/R.

• The output voltage of the ideal op-amp RC integrator
circuit is directly proportional to the time integral of the
input signal.

• An integrator circuit becomes a differentiator circuit
upon interchanging the locations of R and C.

• Parasitic capacitance is often the factor that ultimately
limits the processor speed of a computer.

• Multisim allows us to evaluate the switching response
of a circuit.

Mathematical and Physical Models

Unit step function Time-shifted step function

u(t) =
{

0 for t < 0

1 for t > 0
u(t − T ) =

{
0 for t < T

1 for t > T

Unit ramp function Time-shifted ramp function

r(t) =
{

0 for t ≤ 0

t for t ≥ 0
r(t − T ) =

{
0 for t ≤ T

(t − T ) for t ≥ T

Unit rectangular function
(pulse center at t = T ; pulse length = τ )

rect

[
(t − T )

τ

]
=

⎧⎪⎨
⎪⎩

0 for t < (T − τ/2),

1 for (T − τ/2) ≤ t ≤ (T + τ/2),

0 for t > (T + τ/2).

Capacitor

i = C
dυ

dt

υ(t) = υ(t0) + 1

C

t∫
t0

i dt ′

w = 1
2 Cυ2 (stored electrical energy)

Parallel plate C = εA

d

Inductor

υ = L
di

dt

i(t) = i(t0) + 1

L

t∫
t0

υ dt ′

w = 1
2 Li2 (stored magnetic energy)

Solenoid L = μN2S

	

Series RC circuit response (sudden change at t = 0)
υC(t) = υC(∞) + [υ(0) − υ(∞)]e−t/τ

τ = RC

Parallel RL circuit response (sudden change at t = 0)
iL(t) = iL(∞) + [iL(0) − iL(∞)]e−t/τ

τ = L/R

Op-amp integrator

υout(t) = − 1

RC

t∫
t0

υi dt ′ + υout(t0)

Op-amp differentiator

υout(t) = −RC
dυi

dt
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Important Terms Provide definitions or explain the meaning of the following terms:

air-core solenoid
bus
bus speed
capacitance
capacitor
charge/discharge
charged capacitor
circuit response
clip
clock speed
coaxial capacitor
dc condition
duration of the pulse
dynamic circuit
early time response
electric field
electrical permittivity
electrical susceptibility
equivalent capacitance
exponential function
ferrite-core inductor

final condition
final value
first-order circuit
first-order RC circuit
forced response
forcing function
inductance
initial value
iron-core solenoid
magnetic field
magnetic flux linkage
magnetic permeability
mica capacitor
motherboard
mutual inductance
nanocapacitor
natural decay response
natural response
negative exponential

function
nonperiodic waveform

op-amp differentiator
op-amp integrator
parallel-plate capacitor
parasitic capacitance
periodic waveform
permeability
permittivity
plastic-foil capacitor
pulse repetition frequency
pulse waveform
ramp function
RC circuit
rectangle function
rectangular pulse
relative permittivity
rise time
RL circuit
scaling factor
self-inductance
solenoid
source-free

source-free, first-order
differential equation

static
steady-state component
steady-state response
step function
step function response
supercapacitor
switching frequency (speed)
time constant
time-shifted ramp function
time-shifted step function
transient component
transient response
transmission line
uncharged capacitor
unit rectangular function
unit step function

PROBLEMS

Section 5-1: Nonperiodic Waveforms

5.1 Generate plots for each of the following step-function
waveforms over the time span from −5 to +5 s.

(a) υ1(t) = −6u(t + 3)

(b) υ2(t) = 10u(t − 4)

(c) υ3(t) = 4u(t + 2) − 4u(t − 2)

(d) υ4(t) = 8u(t − 2) + 2u(t − 4)

(e) υ5(t) = 8u(t − 2) − 2u(t − 4)

5.2 Provide expressions in terms of step functions for the
waveforms displayed in Fig. P5.2.

*5.3 A 10 V rectangular pulse with a duration of 5 μs starts at
t = 2 μs. Provide an expression for the pulse in terms of step
functions.

5.4 Generate plots for each of the following functions over
the time span from −4 to +4 s.

(a) υ1(t) = 5r(t + 2) − 5r(t)

∗
Answer(s) available in Appendix G.

(b) υ2(t) = 5r(t + 2) − 5r(t) − 10u(t)

(c) υ3(t) = 10 − 5r(t + 2) + 5r(t)

(d) υ4(t) = 10 rect

(
t + 1

2

)
− 10 rect

(
t − 3

2

)

(e) υ5(t) = 5 rect

(
t − 1

2

)
− 5 rect

(
t − 3

2

)

5.5 Provide expressions for the waveforms displayed in
Fig. P5.5 in terms of ramp and step functions.

5.6 Provide plots for the following functions (over a time span
and with a time scale that will appropriately display the shape
of the associated waveform):

(a) υ1(t) = 100e−2t u(t)

(b) υ2(t) = −10e−0.1t u(t)

(c) υ3(t) = −10e−0.1t u(t − 5)

(d) υ4(t) = 10(1 − e−103t ) u(t)

(e) υ5(t) = 10e−0.2(t−4) u(t)

(f) υ6(t) = 10e−0.2(t−4) u(t − 4)
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(a) Step

υ1(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

υ4(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

υ5(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

υ3(t)

t (s)
−1−2 1 3 4

6

2

−2
2

4

(d) Staircase down

(b) Bowl (c) Staircase up

υ6(t)

t (s)
−1−2 3 4

6

2

−2

4

(f) Square wave(e) Hat

υ2(t)

t (s)
−1 1 3 4

6

2
4

−2
−2

2

1 2

0 0 0

0 0 0

Figure P5.2: Waveforms for Problem 5.2.

(a) “Vee” (b) Mesa

υ1(t)

t (s)
−2 4 6

−4

2

−2

4

2

(c) Sawtooth

υ2(t)

t (s)
−2 4 6

2
4

2

υ3(t)

t (s)
−2 4 6

−4

2

−2

4

2

0 0

0

Figure P5.5: Waveforms for Problem 5.5.
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*5.7 After opening a certain switch at t = 0 in a circuit
containing a capacitor, the voltage across the capacitor started
decaying exponentially with time. Measurements indicate that
the voltage was 7.28V at t = 1 s and 0.6V at t = 6 s. Determine
the initial voltage at t = 0 and the time constant of the voltage
waveform.

Section 5-2: Capacitors

5.8 After plotting the voltage waveform, obtain expressions
and generate plots for i(t), p(t), and w(t) for a 0.2 mF capacitor.
The voltage waveforms are given by

(a) υ1(t) = 5r(t) − 5r(t − 2) V

(b) υ2(t) = 10u(−t) + 10u(t) − 5r(t − 2) + 5r(t − 4) V

(c) υ3(t) = 15u(−t) + 15e−0.5t u(t) V

(d) υ4(t) = 15[1 − e−0.5t ] u(t) V

*5.9 In response to a change introduced by a switch at t = 0,
the current flowing through a 100 μF capacitor, defined in
accordance with the passive sign convention, was observed to
be

i(t) = −0.4e−0.5t mA (for t > 0).

If the final energy stored in the capacitor (at t = ∞) is 0.2 mJ,
determine υ(t) for t ≥ 0.

5.10 The voltage υ(t) across a 20 μF capacitor is given by
the waveform shown in Fig. P5.10.

−4

υ (V)

−2 2 4
t (s)

100

0

Figure P5.10: Waveform for Problems 5.10 and 5.11.

(a) Determine and plot the corresponding current i(t).

(b) Specify the time interval(s) during which power transfers
into the capacitor and that (those) during which it transfers
out of the capacitor.

(c) At what instant in time is the power transfer into the
capacitor a maximum? And at what instant is the power
transfer out of the capacitor a maximum?

(d) What is the maximum amount of energy stored in the
capacitor, and when does it occur?

5.11 Suppose the waveform shown in Fig. P5.10 is the current
i(t) through a 0.2 mF capacitor (rather than the voltage) and
its peak value is 100 μA. given that the initial voltage on the
capacitor was zero at t = −4 s, determine and plot υ(t).

5.12 The current through a 40 μF capacitor is given by a
rectangular pulse as

i(t) = 40 rect

(
t − 1

2

)
mA.

If the capacitor was initially uncharged, determine υ(t), p(t),
and w(t).

5.13 The voltage across a 0.2 mF capacitor was 20 V until a
switch in the circuit was opened at t = 0, causing the voltage
to vary with time as

υ(t) = (60 − 40e−5t ) V (for t > 0).

(a) Did the switch action result in an instantaneous change in
υ(t)?

(b) Did the switch action result in an instantaneous change in
the current i(t)?

(c) How much initial energy was stored in the capacitor at
t = 0?

(d) How much final energy will be stored in the capacitor (at
t = ∞)?

5.14 Determine voltages υ1 to υ4 in the circuit of Fig. P5.14
under dc conditions.

C1

C2

υ1

υ2

υ4

υ3

+
_+

_

+

+

_

_

20 kΩ

30 kΩ
10 kΩ

5 kΩ
15 kΩ

C4

C3

+
_ 15 V

Figure P5.14: Circuit for Problem 5.14.
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*5.15 Determine voltages υ1 to υ3 in the circuit of Fig. P5.15
under dc conditions.

3 Ω
20 μF10 Ω 18 Ω

4 Ω

6 Ω

+
_

υ2
+ _

υ1
+ _

60 μF

10 μF

υ3
+ _

40 V

Figure P5.15: Circuit for Problem 5.15.

5.16 Determine the voltages across the two capacitors in the
circuit of Fig. P5.16 under dc conditions.

40 kΩ

40 kΩ

3 kΩ

20 kΩ

20 μF

10 kΩ 3 kΩ

+
_

υ2
υ1

+
_+

_

10 V

2 V
40 μF

+_

Figure P5.16: Circuit for Problem 5.16.

*5.17 Reduce the circuit in Fig. P5.17 into a single equivalent
capacitor at terminals (a, b). Assume that all initial voltages are
zero at t = 0.

12 μF3 μF

10 μF

6 μF

6 μF8 μF
a

b

Figure P5.17: Circuit for Problems 5.17 and 5.21.

5.18 Reduce the circuit in Fig. P5.18 into a single equivalent
capacitor at terminals (a, b). Assume that all initial voltages are
zero at t = 0.

C C

C C

C C C
a b

C C

Figure P5.18: Circuit for Problem 5.18.

*5.19 For the circuit in Fig. P5.19, find Ceq at terminals (a, b).
Assume all initial voltages to be zero.

a

b

c

d

5 F 3 F 5 F

5 F3 F

6 F 6 F

Figure P5.19: Circuit for Problems 5.19 and 5.20.

5.20 Find Ceq at terminals (c, d) in the circuit of Fig. P5.19.

*5.21 Assume that a 120 V dc source is connected at terminals
(a, b) to the circuit in Fig. P5.17. Determine the voltages across
all capacitors.

5.22 Determine (a) the amount of energy stored in each of
the three capacitors shown in Fig. P5.22, (b) the equivalent
capacitance at terminals (a, b), and (c) the amount of energy
stored in the equivalent capacitor.
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5 μF6 μF
10 kΩ

20 μFa

b
15 V

+
_

Figure P5.22: Circuit for Problem 5.22.

Section 5-3: Inductors

5.23 After plotting the current waveform, obtain expressions
and generate plots for υ(t), p(t), and w(t) for a 0.5 mH inductor.
The current waveforms are given by

(a) i1(t) = 0.2r(t − 2) − 0.2r(t − 4) − 0.2r(t − 8)

+ 0.2r(t − 10) A

(b) i2(t) = 2u(−t) + 2e−0.4t u(t) A

(c) i3(t) = −4(1 − e−0.4t ) u(t) A

5.24 The current i(t) passing through a 0.1 mH inductor is
given by the waveform shown in Fig. P5.24.

(a) Determine and plot the corresponding voltage υ(t) across
the inductor.

(b) Specify the time interval(s) during which power is
transferred into the inductor and that (those) during which
power transfers out of the inductor. Also specify the
amount of energy transferred in each case.

i (A)

t (s)
−2−4 4

3

20

Figure P5.24: Current waveform for Problem 5.24.

*5.25 Activation of a switch at t = 0 in a certain circuit caused
the voltage across a 20 mH inductor to exhibit the voltage
response

υ(t) = 4e−0.2tmV (for t ≥ 0).

Determine i(t) for t ≥ 0 given that the energy stored in the
inductor at t = ∞ is 0.64 mJ.

5.26 The waveform shown in Fig. P5.26 represents the
voltage across a 0.2 H inductor for t ≥ 0. If the current flowing
through the inductor is −20 mA at t = 0, determine the current
i(t) for t ≥ 0.

υ (mV)

t (s)
3

20
10

2
0

0

Figure P5.26: Voltage waveform for Problem 5.26.

5.27 The waveform shown in Fig. P5.27 represents the
voltage across a 50 mH inductor. Determine the corresponding
current waveform. Assume i(0) = 0.

υ

10 cos (πt/4)  (mV)

t (s)
4

−10 mV

10 mV

20

Figure P5.27: Voltage waveform for Problem 5.27.

5.28 For the circuit in Fig. P5.28, determine the voltage across
C and the currents through L1 and L2 under dc conditions.

5 Ω
15 Ω

10 Ω

2 A

L1 = 2 mH

L2 = 4 mH
C = 20 μF

Figure P5.28: Circuit for Problem 5.28.
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*5.29 For the circuit in Fig. P5.29, determine the voltages
across C1 and C2 and the currents through L1 and L2 under
dc conditions.

5 Ω
4 Ω

6 Ω

10 Ω

30 V
+
_

L1 = 2 H
L2 = 6 H

C1 = 1 μF

C2 = 2 μF

Figure P5.29: Circuit for Problem 5.29.

5.30 All elements in Fig. P5.30 are 10 mH inductors.
Determine Leq.

L

L

L L L

L

L

Leq

Figure P5.30: Circuit for Problem 5.30.

*5.31 The values of all inductors in the circuit of Fig. P5.31
are in millihenrys. Determine Leq.

3 5 8

66
8

4
12 12

Leq

b

a

Figure P5.31: Circuit for Problem 5.31.

5.32 Determine Leq at terminals (a, b) in the circuit of
Fig. P5.32. All inductor values are in millihenrys.

Leq

b

a

3 3 3

33

3

3

1

1

4

4

Figure P5.32: Circuit for Problem 5.32.

Section 5-4: Response of the RC Circuit

5.33 After having been in position 1 for a long time, the
switch in the circuit of Fig. P5.33 was moved to position 2
at t = 0. Given that V0 = 12 V, R1 = 30 k
, R2 = 120 k
,
R3 = 60 k
, and C = 100 μF, determine:

(a) iC(0−) and υC(0−)

(b) iC(0) and υC(0)

(c) c iC(∞) and υC(∞)

(d) υC(t) for t ≥ 0

(e) iC(t) for t ≥ 0

R1

R2

υC

iC

C

i1

V0 R3
1

2

+
_

Figure P5.33: Circuit for Problems 5.33 and 5.34.

5.34 Repeat Problem 5.33, but with the switch having been
in position 2 for a long time, and then moved to position 1 at
t = 0.

5.35 The circuit in Fig. P5.35 contains two switches, both
of which had been open for a long time before t = 0.
Switch 1 closes at t = 0, and switch 2 follows suit at t = 5 s.
Determine and plot υC(t) for t ≥ 0 given that V0 = 24 V,
R1 = R2 = 16 k
, and C = 250 μF. Assume υC(0) = 0.
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R1

R2V0
+
_ C υC

Switch 1

t = 0

Switch 2

t = 5 s

Figure P5.35: Circuit for Problem 5.35.

*5.36 The circuit in Fig. P5.36 was in steady state until the
switch was moved from terminal 1 to terminal 2 at t = 0.
Determine υ(t) for t ≥ 0 given that I0 = 21 mA, R1 = 2 k
,
R2 = 3 k
, R3 = 4 k
, and C = 50 μF.

R2
R3I0 R1

C1

2

υ

t = 0

Figure P5.36: Circuit for Problem 5.36.

5.37 Prior to t = 0, capacitor C1 in the circuit of Fig. P5.37
was uncharged. For I0 = 5 mA, R1 = 2 k
, R2 = 50 k
,
C1 = 3 μ F, and C2 = 6 μ F, determine:

(a) The equivalent circuit involving the capacitors for t ≥ 0.
Specify υ1(0) and υ2(0).

(b) i(t) for t ≥ 0.

(c) υ1(t) and υ2(t) for t ≥ 0.

R2

I0 R1
C1 υ1

i

t = 0

1

2 C2 υ2

Figure P5.37: Circuit for Problem 5.37.

5.38 The switch in the circuit of Fig. P5.38 had been closed for
a long time before it was opened at t = 0. Given that Vs = 10 V,
R1 = 20 k
, R2 = 100 k
, C1 = 6 μF, and C2 = 12 μF,
determine i(t) for t ≥ 0.

R2

Vs

R1

C1

i

t = 0

C2
+
_

Figure P5.38: Circuit for Problem 5.38.

*5.39 The switch in the circuit of Fig. P5.39 had been in
position 1 for a long time until it was moved to position 2
at t = 0. Determine υ(t) for t ≥ 0, given that I0 = 6 mA,
V0 = 18 V, R1 = R2 = 4 k
, and C = 200 μF.

R1
R2

C V0I0

1

2 +
_

υ

Figure P5.39: Circuit for Problems 5.39 and 5.40.

5.40 Repeat Problem 5.39, but reverse the switching
sequence. [Switch starts in position 2 and is moved to position 1
at t = 0.]

5.41 Determine i(t) for t ≥ 0 where i is the current passing
through R3 in the circuit of Fig. P5.41. The element values are
υs = 16 V, R1 = R2 = 2 k
, R3 = 4 k
, and C = 25 μF.
Assume that the switch had been open for a long time prior to
t = 0.

υs R3C

R1

R2
υ

i
+
_

t = 0

Figure P5.41: Circuit for Problems 5.41 to 5.43.

5.42 Repeat Problem 5.41, but start with the switch being
closed prior to t = 0 and then opened at t = 0.

*5.43 Consider the circuit in Fig. P5.41, but without the switch.
If the source υs represents a 12 V, 100 ms long rectangular
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pulse that starts at t = 0 and the element values are R1 = 6 k
,
R2 = 2 k
, R3 = 4 k
, andC = 15 μF, determine the voltage
response υ(t) for t ≥ 0.

5.44 Given that in Fig. P5.44, I1 = 4 mA, I2 = 6 mA,
R1 = 3 k
, R2 = 6 k
, and C = 0.2 mF, determine υ(t).
Assume the switch was connected to terminal 1 for a long time
before it was moved to terminal 2.

I1 R1
C

R2
υ

1 2

t = 0
I2

Figure P5.44: Circuit for Problem 5.44.

*5.45 Determine υC(t) in the circuit of Fig. P5.45 for t ≥ 0,
given that the switch had been closed for a long time prior to
t = 0.

20 V

10 μF

υC+
_

+ _

2 kΩ

1 kΩ

1 kΩ

2 kΩ

1 kΩ

t = 0

Figure P5.45: Circuit for Problem 5.45.

Section 5-5: Response of the RL Circuit

5.46 After having been in position 1 for a long time, the switch
in the circuit of Fig. P5.46 was moved to position 2 at t = 0.
Given that V0 = 12 V, R1 = 30 
, R2 = 120 
, R3 = 60 
,
and L = 0.2 H, determine:

(a) iL(0−) and υL(0−)

(b) iL(0) and υL(0)

(c) iL(∞) and υL(∞)

(d) iL(t) for t ≥ 0

(e) υL(t) for t ≥ 0

R3
R2

R1

L υL

iL

V0
1

2

+
_

Figure P5.46: Circuit for Problems 5.46 and 5.47.

5.47 Repeat Problem 5.46, but with the switch having been
in position 2 for a long time and then moved to position 1 at
t = 0.

*5.48 Determine i(t) for t ≥ 0 given that the circuit in
Fig. P5.48 had been in steady state for a long time prior to
t = 0. Also, I0 = 5 A, R1 = 2 
, R2 = 10 
, R3 = 3 
,
R4 = 7 
, and L = 0.15 H.

R2

R3I0 R1
R4

L1

2

i

t = 0

Figure P5.48: Circuit for Problem 5.48.

5.49 For the circuit in Fig. P5.49, determine iL(t) and plot it
as a function of t for t ≥ 0. The element values are I0 = 4 A,
R1 = 6
, R2 = 12 
, andL = 2 H.Assume that iL = 0 before
t = 0.

R1 L R2I0
t = 0 t = 0.5 s

Figure P5.49: Circuit for Problem 5.49.

*5.50 After having been in position 1 for a long time, the
switch in the circuit of Fig. P5.50 was moved to position 2 at
t = 0. Determine i1(t) and i2(t) for t ≥ 0, given that
I0 = 6 mA, R0 = 12 
, R1 = 10 
, R2 = 40 
, L1 = 1 H,
and L2 = 2 H.
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R2

R0

R1

I0
L1

t = 0

1

2
i1 i2

L2

Figure P5.50: Circuit for Problem 5.50.

5.51 Derive an expression for i2(t) in the circuit of Fig. P5.51
in terms of the circuit variables, given that Is is a dc current
source and the switch was closed at t = 0 after it had been
open for a long time.

R1

t = 0

Rs LIs R2

i2

Figure P5.51: Circuit for Problem 5.51.

5.52 Determine iL(t) in the circuit of Fig. P5.52 for t ≥ 0.

iLt = 0

0.4 Vx

5 Ω

10 Ω Vx 5 H25 Ω1 A

+ _

+

_

Figure P5.52: Circuit for Problem 5.52.

*5.53 In the circuit of Fig. P5.53(a), R1 = R2 = 20 
,
R3 = 10 
, and L = 2.5 H. Determine i(t) for t ≥ 0 given
that υs(t) is the step function described in Fig. P5.53(b).

(a) Circuit

(b) υs(t) for Problem 5.53

R1 R3

R2 L
+
_υs(t)

i

(c) υs(t) for Problem 5.54

(d) υs(t) for Problem 5.55

υs(t)

t

12 V

0

υs(t)

t (s)
3

12 V

0

υs(t)

t (s)
π/6 π/3 π/2

12 V

0

Figure P5.53: Circuit and excitation voltages for Problems
5.53 to 5.55.

5.54 Repeat Problem 5.53 for the triangular-source excitation
given in Fig. P5.53(c).

Hint :
∫

xeax dx = eax

a2 (ax − 1).
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5.55 Repeat Problem 5.53 for the sinusoidal-source excitation
υs(t) = 12 sin 6t V displayed in Fig. P5.53(d).

Hint :
∫

eax sin bx dx = eax [a sin bx − b cos(bx)]
a2 + b2 .

*5.56 The switch in the circuit of Fig. P5.56 was moved from
position 1 to position 2 at t = 0, after it had been in position 1
for a long time. If L = 80 mH, determine i(t) for t ≥ 0.

L

i

1 2

t = 0

20 Ω 40 Ω10 mA 20 mA

Figure P5.56: Circuit for Problems 5.56 and 5.57.

5.57 Repeat Problem 5.56, but with the switch having been
in position 2 and then moved to position 1 at t = 0.

5.58 Determine i(t) for t ≥ 0 due to the rectangular-pulse
excitation in the circuit of Fig. P5.58.

12 Ω

6 Ω

8 mH
16 V

4 ms0

i
+
_

Figure P5.58: Circuit for Problem 5.58.

Section 5-6: RC Op-Amp Circuits

5.59 The input-voltage waveform shown in Fig. P5.59(a) is 
applied to the circuit in Fig. P5.59(b). Determine and plot the 
corresponding υout(t).

(a) Waveform of υi(t)

(b) Op-amp circuit

12 V

υi

t (s)
6 1084 12

-12 V

2

υout

Vcc = 6 V

υi

50 kΩ
2 μF

+
_

0

Figure P5.59: Waveform and circuit for Problem 5.59.

*5.60 Relate υout to υi in the circuit of Fig. P5.60.

υout
C

R

υi +
_

Figure P5.60: Circuit for Problem 5.60.

5.61 Develop the relationship between the output voltage υout
and the input voltage υi for the circuit in Fig. P5.61.

υoutC

R
R

υi

+

_

Figure P5.61: Circuit for Problem 5.61.

5.62 Relate υout to υi in the circuit of Fig. P5.62. Assume
υC = 0 at t = 0.
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υout

C

υi
R1

R2

+

_

Figure P5.62: Circuit for Problem 5.62.

*5.63 Relate iout(t) to υi(t) in the circuit of Fig. P5.63.
Evaluate it for υC(0) = 3 V, R = 10 k
, C = 50 μF, and
υi(t) = 9 u(t) V.

Cυi

υC

R

Vcc = 12 V

+
_ iout

Figure P5.63: Circuit for Problem 5.63.

5.64 Determine υout(t) in the circuit of Fig. P5.64 for t ≥ 0.

1 mF

1 kΩ

2 kΩ

5 kΩ12u(t) V
+
_

+
_

υout

Figure P5.64: Circuit for Problem 5.64.

5.65 In the circuit of Fig. P5.65:

(a) Derive an expression for υout(t) for t ≥ 0 in terms of R1,
R2, R3, C, and A.

*(b) Evaluate the expression for R1 = 1 k
, R2 = 5 k
,
R3 = 2 k
, C = 0.25 mF, and A = 12 V.

R1 R2

+
_

C

υs(t) = Au(t)

υout

R3

Figure P5.65: Circuit for Problem 5.65.

5.66 Design a single op-amp circuit with a 40 μF capacitor
to generate a circuit output given by

υout(t) =
t∫

0

[6 − 2υs(t
′)] dt ′ = 6t − 2

t∫
0

υs(t
′) dt ′ (V),

where υs(t) is any input voltage source that starts at t = 0.

5.67 Design a circuit that can perform the following
relationship between its output and input voltages:

υout = −100

t∫
0

υi dt,

with υout(0) = 0 at t = 0. You are limited to one op-amp, one
capacitor that does not exceed 0.1 F, and any resistor(s) of your
choice.

5.68 The two-stage op-amp circuit in Fig. P5.68 is driven
by an input step voltage given by υi(t) = 10 u(t) mV. If
Vcc = 10 V for both op amps and the two capacitors had no
charge prior to t = 0, determine and plot:

*(a) υout1(t) for t ≥ 0;

(b) υout2(t) for t ≥ 0.

υi
υout1 υout2

+

_
+

_

Vcc = 10 V
Vcc = 10 V

5 kΩ

4 μF
5 μF

1 MΩ

Figure P5.68: Op-amp circuit for Problem 5.68.



“book” — 2015/5/4 — 7:14 — page 325 — #78

PROBLEMS 325

υ1
υ2 υ3+

_
+

_ R

R

RR
R

υs

υ4+

_

2R
R

υ

+

_

R
C

Figure P5.71: Circuit for Problem 5.71.

5.69 Design a single op-amp circuit that can perform the
operation

υout = −
t∫

0

(5υ1 + 2υ2 + υ3) dt.

5.70 Design a single op-amp circuit that can perform the
operation

iout = −
t∫

0

( υ1

100
+ υ2

200
+ υ3

400

)
dt.

5.71 Show that the op-amp circuit in Fig. P5.71 (in which
R = 10 k
 and C = 20 μF) simulates the differential equation

dυ

dt
+ 5υ = 10υs.

5.72 Design an op-amp circuit that can solve the differential
equation

dυ

dt
+ 0.2υ = 4 sin 10t

with υ(0) = 0. Hint: See Problem 5.71.

Sections 5-7 and 5-8: Parasitic Capacitance and Multisim
Analysis

*5.73 In real transistors, both the MOSFET gain g and parasitic
capacitances Cn

D and C
p
D depend on the size of the transistor.

Assuming the functional relationships

g = 106W and Cn
D = C

p
D = (2.5 × 103)W 2,

where W is the transistor width in meters, how small should W

be in order for the CMOS inverter to have a fall time of 1 ns?
[The width of modern digital MOSFETs varies between 40 nm
and 4 μm.]

5.74 Draw and simulate in Multisim the circuit in Fig. 5-43(a)
of Example 5-15. Using the Grapher tool, plot υout(t) for t ≥ 0.

5.75 Consider the circuit in Fig. P5.75. Switch S1 begins in
the closed position and opens at t = 0. Switch S2 begins in the
open position and toggles between the open and closed positions
every 250 ps. Model this circuit in Multisim and plot υ0 and υ1
as a function of time until all nodes are discharged below 1 mV.

+
_ υ0 υ1

t = 0

2.5 V 5 fF 20 fF

S2

S1
10 kΩ

5.5 kΩ1 kΩ

Figure P5.75: Circuit for Problem 5.75.
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C1

R1
+

_
C1

R1

C1

R1

C1

R1

C1

R1

+
_

υout1

C2

R2
+

_
C2

R2

C2

R2

C2

R2

C2

R2

υout2υs(t)

Figure P5.76: Circuit for Problem 5.76 with R1 = R2 = 10 
, C1 = 7 pF, and C2 = 5 pF.

5.76 A step voltage source υs(t) sends a signal down two
transmission lines simultaneously (Fig. P5.76). In Multisim,
the step voltage may be modeled as a 1 V square wave with a
period of 10 ns. Model the circuit in Multisim and answer the
following questions:

(a) If a detector registers a signal when the output voltage
reaches 0.75 V, which signal arrives first?

(b) By how much?

Hint: When using cursors in the Grapher View, select a trace,
then right-click on a cursor and select Set Y Value, and enter
750 m. This will give you the exact time point at which that
trace equals 0.75 V.

5.77 Consider the delta topology in Fig. P5.77. Use Multisim
to generate response curves for υa , υb, and υc. Apply Transient
Analysis with TSTOP = 3 × 10−10 s.

5.78 Use Multisim to generate a plot for current i(t) in the
circuit in Fig. P5.78 from 0 to 15 ms.

5.79 Construct the integrator circuit shown in Fig. P5.79, us-
ing a 3-terminal virtual op amp. Print the output corresponding
to each of the following input signals:

1 M
Ω 3.5 kΩ

10 kΩ

1 V

5 fF

2 fF

1 fF

+
_ υa

υb

υc
t = 0

+

_

+_

Figure P5.77: Circuit for Problem 5.77.

(a) υin(t) is a 0-to-1 V square wave with a period of 1 ms and
a 50 percent duty cycle. Plot the output from 0 to 10 ms.

(b) υin(t) = −0.2t V. Plot the output from 0 to 50 ms.

220 Ω
90 Ω 500 mH

R1

i

L1

R2
+
_υs(t) = [−5u(-t) + 5u(0.003 − t)] V 0.1u(t − 0.003) A

Figure P5.78: Circuit for Problem 5.78.
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υout
υin

R1

C1

+

_
100 Ω

100 μF

Figure P5.79: Circuit for Problem 5.79.

Potpourri Questions

5.80 Calculate the plate area required to store 1 MJ of energy 
in a traditional air-filled parallel plate capacitor at a voltage of 
10 V. Assume the plate separation to be 1 cm.

5.81 What are the advantages and disadvantages of superca-
pacitors relative to a lithium-ion battery?

5.82 Is the memory stored on a hard disk drive volatile or 
nonvolatile? What is the advantage of perpendicular magnetic 
recording over the standard recording method?

5.83 How does the proximity of a finger change the 
capacitance of a pixel in a touchscreen? How does the MEMS 
capacitor measure the acceleration of a moving vehicle?

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest
via your computer. [myDAQ tutorials and videos are available
on        .]

m5.1 Capacitors: The voltage υ(t) across a 10 μF capacitor 
is given by the waveform shown in Fig. m5.1.

(a) Determine the equation for the capacitor current i(t) and
plot it over the time period from 0 to 50 ms.

(b) Calculate the values of the capacitor current at times 0, 25,
and 30 ms.

m5.2 Inductors: The voltage υ(t) across a 33 mH inductor
is given by the sinusoidal pulse waveform shown in Fig. m5.2.

(a) Determine the equation for the inductor current i(t) and
plot it over the time period from 0 to 0.4 ms. Assume zero
initial inductor current.

υ(t)

t (ms)
10 30 40 50

8e−(t − 0.02)/0.008 V 
for t > 0.02 s

8 V

0 20

Figure m5.1 Voltage waveform for Problem m5.1.

(b) Determine the time at which the inductor current reaches
its maximum value.

(c) Calculate the total peak-to-peak range of inductor current;
i.e., the maximum value minus the minimum value.

υ(t)

t (ms)
0.1

0
0.3 0.4

−9 V

9 V

0.2

Figure m5.2 Voltage waveform for Problem m5.2.

m5.3 Response of the RC Circuit: Figure m5.3(a) shows
a resistor-capacitor circuit with a pair of switches and
Fig. m5.3(b) shows the switch opening-closing behavior
as a function of time. The initial capacitor voltage is
−9 V. Component values are R1 = 10 k
, R2 = 3.3 k
,
R3 = 2.2 k
, C = 1.0 μF, V1 = 9 V, and V2 = −15 V.

(a) Determine the equation that describes υ(t) over the time
range 0 to 50 ms.

(b) Plot υ(t) over the time range 0 to 50 ms.

(c) Determine the values of υ(t) at the times 5, 15, 25, 35, and
45 ms.
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(a) Circuit

(b)

Sw1

t (ms)
302010 40 50

Closed

Open

Sw2

t (ms)
302010 40 50

Closed

Open

R2C

R3R1

V2V1

Sw1 Sw2

+
_

+
_υ(t)

+

_

Figure m5.3 Voltage waveform for Problem m5.3.

m5.4 Response of the RL Circuit: The circuit of Fig. m5.4
demonstrates how an inductor can produce a high-voltage pulse
across a load resistor Rload that is considerably higher than
the circuit’s power supply Vbatt, a 1.5 V “AA” battery. High-
voltage pulses drive photo flash bulbs, strobe lights, and cardiac
defibrillators, as examples.

+
_

Rs

Rw

υ(t)

L

Vbatt Rload

+

_

Figure m5.4 Circuit for Problem m5.4.

Resistor Rs models the finite resistance of an electronic
analog switch and Rw models the finite winding resistance of
the inductor. Component values are: Rs = 16 
, Rw = 90 
,
Rload = 680 
, L = 33 mH, and Vbatt = 1.5 V.

(a) Determine the load voltage υ after the switch had been
closed for a long time.

(b) Determine the equation that describes υ(t) after the switch
opens at time t = 0.

(c) Determine the magnitude of the peak value of υ(t). How
many times larger is this value compared to the battery
voltage Vbatt?

(d) State the value of the circuit time constant τ with the switch
open. Plot υ(t) over the time range −τ ≤ t ≤ 5τ .

m5.5 RC Differentiator: The circuit in Fig. m5.5 is a
differentiator. Find υout(t), given that υs(t) is a 300 Hz sinusoid
with an amplitude of 3 V. You will need to use the myDAQ’s
Function Generator and Oscilloscope for this problem.

m5.6 RC Integrator: The circuit in Fig. m5.6 is an RC
integrator circuit. Find υout(t), given that υs(t) is a 100 Hz
sinusoid with an amplitude of 5 V. You will need to use
the myDAQ’s Function Generator and Oscilloscope for this
problem.

R1

C1

10 kΩ

1 kΩ

1 μF +

_

υs(t) = 3 cos(600πt) V υout(t)
+
−~ +

_

Figure m5.5 A differentiator circuit.
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R2

R1

C1

1 kΩ
100 kΩ

1 μF

+

_

υs(t) = 5 cos(200πt) V υout(t)
+
−~ +

_

Figure m5.6 Circuit for Problem m5.6.
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Objectives

Learn to:

� Analyze series and parallel RLC circuits contain-
ing dc sources and switches.

� Analyze RC op-amp circuits.

� Understand RFID circuits.

RFID transceiver RFID tag

CpLpLs

R
T

υout(t)
υs RpυC

+
−~

Magnetic field

To receiver circuits

CHAPTER 6
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Overview

In this chapter we evaluate the operation of second-order
RLC circuits—those with any combination of two inductors
and/or capacitors—in response to dc sources (the response
of RLC circuits to ac sources is covered in Chapter 7).
These circuits are particularly interesting because they allow
us to design oscillators and resonators for communication
and wireless power transmission systems, or to create
sensors that use the oscillation or resonance to detect
capacitive (usually) or inductive (rarely) changes caused by
environmental parameters (moisture, pressure, proximity, etc.).
One particularly interesting example is wireless power transfer
for radiofrequency ID (RFID) systems, as described in Section
6-9 and Technology Brief 16. Using two inductors and a
capacitor, the current in one loop is converted into voltage in
the capacitor, that can then be used to power the RFID circuit.

The currents and voltages of the first-order RC and
RL circuits we examined in the preceding chapter were
characterized by first-order differential equations. A key
provision of a first-order circuit is that it is reducible to a
single series or parallel circuit containing a single capacitor
or a single inductor, in addition to sources and resistors. If a
circuit contains two capacitors, as in Fig. 6-1(a), and if the
circuit architecture is such that it is not possible to combine the
two capacitors into a single in-series or in-parallel equivalent,
then the circuit does not qualify as a first-order circuit. The
two-capacitor circuit is a second-order circuit characterized by
a second-order differential equation. The same is true for the
two-inductor circuit in part (b) and for the series and parallel
RLC circuits shown in parts (c) and (d) of the same figure.

�A second-order circuit may contain any combination of
two energy-storage elements (2 capacitors, 2 inductors, or
one of each), provided like-elements cannot be replaced
with a single-element equivalent. �

In general, the order of a circuit, and hence the order
of the differential equation describing any of its currents or
voltages, is governed by the number of irreducible storage
elements (capacitors and inductors) contained in the circuit.
The complexity of the solution depends on the order of the
differential equation and the character of the excitation source.
In this chapter we examine the response of series and parallel
RLC circuits to dc excitations, and we do so by solving
their differential equations in the time domain. Time-domain
solutions are reasonably tractable, so long as the forcing
function is a dc source or a rectangular pulse, and the differential
equation describing the voltages and currents in the circuit is

not higher than second order. For more complicated circuits, a
more robust method of solution is called for, such as the Laplace
transform analysis technique introduced in Chapter 12, which is
perfectly suited to deal with a wide range of circuits and any type
of realistic forcing function, including pulses and sinusoids.

6-1 Initial and Final Conditions

The general form of the solution of the differential equation
associated with a second-order circuit always includes a number
of unknown constants. To determine the values of these
constants, we usually match the solution to known values of
the voltage or current under consideration. For a circuit where
the solution we seek is for the time period following a sudden
change (such as when a SPST switch is closed or opened, or
when a SPDT switch is moved from one terminal to another)

2 capacitors

2 inductors

Series RLC

Parallel RLC

(a)

(b)

(c)

(d)

R2

C2

R1

C1υs
+
_
+
_

R2

L2

R1

L1υs
+
_

LR

υs
+
_ C
+
_

LRis C

t = 0

t = 0

t = 0

t = 0

Figure 6-1: Examples of second-order circuits.
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we can analyze the circuit conditions at the beginning and at
the end of that time period and then use the results to match
the solution of the differential equation. We call the process
invoking initial and final conditions.

Analyzing a circuit in its initial and final states relies on the
following fundamental properties:

�
• The voltage υC across a capacitor cannot change
instantaneously, and neither can the current iL through
an inductor.

• In circuits containing dc sources, the steady state
condition of the circuit (after all transients have died out)
is such that no currents flow through capacitors and no
voltages exist across inductors, allowing us to represent
capacitors as open circuits and inductors as short circuits
under steady state conditions. �

Example 6-1: Initial and Final Values

The circuit in Fig. 6-2(a) contains dc source Vs and a switch that
had been in position 1 for a long time prior to t = 0. Determine:
(a) initial values υC(0) and iL(0), (b) iC(0) and υL(0), and (c)
final values υC(∞) and iL(∞).

Solution: (a) To determine υC(0) and iL(0), we analyze
the circuit configuration at t = 0− (before moving the switch),
whereas to determine iC(0) and υL(0), we analyze the circuit
configuration at t = 0 (after moving the switch). At t = 0−, the
circuit is equivalent to the arrangement shown in Fig. 6-2(b),
in which C has been replaced with an open circuit and L with
a short circuit. Because the circuit contains no closed loops,
no current flows anywhere in the circuit. With no voltage drop
across R1, it follows that

υC(0−) = Vs.

Also,

iL(0−) = 0.

Time-continuity of υC and iL mandates that after moving the
switch to terminal 2:

υC(0) = υC(0−) = Vs,

iL(0) = iL(0−) = 0.

(a) Circuit

(b) At t = 0−,  C acts like an open circuit
      and L like a short circuit

(c) At t = 0,  C acts like a voltage source and
 L like a current source with zero current

R2

L

R1

C
Vs

Vs

1 2

+
_

iL

iL

t = 0

υC+
_

Vs

R2

L

R1

C

1 2

+
_

υC(0−) = Vs

iL(0−) = 0

+
_

R2

LC

2

iL(0) = 0

iC

+
_

+
_

+
_ υL

+

_

Figure 6-2: Circuit of Example 6-1.

(b) The circuit in Fig. 6-2(c) depicts the state of the circuit
at t = 0 (after moving the switch). The capacitor behaves like
a dc voltage source of magnitude Vs, and the inductor behaves
like a dc current source with zero current, which is equivalent to
an open circuit. Even though in general there is no requirement
disallowing a sudden change in iC, in this case iC = iL and
iL(0) = 0.

Consequently,

iC(0) = 0.
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+
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(b) At t = 0−

(c) At t = 0
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_

+
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_
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_
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υC(0) = 12 V

iC(0)

iR3
(0)

υL(0)

i1(0)
1 2

+
_

Figure 6-3: Circuit for Example 6-2.

With no voltage drop across R2, the voltage across the inductor
is

υL(0) = υC(0) = Vs.

(c) The analysis for υC and iL as t → ∞ is totally
straightforward; with no active sources remaining in the part
of the circuit that contains L and C, all of the energy that may
have been stored in L and C will have dissipated completely
by t = ∞, rendering the circuit inactive. Hence,

υC(∞) = 0, iL(∞) = 0.

Example 6-2: Initial and Final Conditions

The circuit in Fig. 6-3(a) contains a dc voltage source and a
step-function current source. The element values are V0 = 24V,
I0 = 4 A, R1 = 2 �, R2 = 4 �, R3 = 6 �, L = 0.2 H, and

C = 8 mF. Determine: (a) υC(0) and iL(0), (b) iC(0) and υL(0),
and (c) υC(∞) and iL(∞).

Solution: (a) To find initial values of υC and iL at t = 0, we
have to determine their values at t = 0−, and then invoke the
requirement that neither the voltage across a capacitor nor the
current through an inductor can change in zero time. The state
of the circuit at t = 0− is shown in Fig. 6-3(b), wherein the
inductor has been replaced with a short circuit, the capacitor
replaced with an open circuit, and the current source is absent
altogether. Since iC(0−) = 0,

iL(0−) = V0

R1 + R2 + R3
= 2 A,

and

υC(0−) = iL(0−) R3 = 12 V.

Hence,

iL(0) = iL(0−) = 2 A,
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and

υC(0) = υC(0−) = 12 V.

(b) At t = 0, the state of the circuit is as shown in Fig. 6-3(c).
Since

υR3(0) = υC(0) = 12 V,

it follows that

iR3(0) = 12

6
= 2 A.

We did this because we need iC(0). Application of KCL at
node 2 leads to

iC(0) = I0 + iL(0) − iR3(0) = 4 + 2 − 2 = 4 A.

Next, we need to determine υL(0). At node 1,

i1(0) = I0 + iL(0) = 4 + 2 = 6 A.

By applying KVL around the lower left loop, we find that

υL(0) = −8 V.

(c) The state of the circuit at t = ∞ shown in Fig. 6-3(d)
resembles that at t = 0−, except that now we also have the
current source I0. The mesh equation for loop 1 is

−V0 + R1i1 + R2(i1 − i2) + R3i1 = 0,

and for loop 2,

i2 = I0 = 4 A.

Solving for i1 gives

i1 = 3.33 A,

which leads to

iL(∞) = i1 − I0 = 3.33 − 4 = −0.67 A

and

υC(∞) = i1R3 = 3.33 × 6 = 20 V.

Concept Question 6-1: Determination of initial circuit
conditions after a sudden change relies on two
fundamental properties of capacitors and inductors. What 
are they? (See         )

Concept Question 6-2: Under dc steady state conditions,
does a capacitor resemble an open circuit or a short 
circuit? What does an inductor resemble? (See         )

Concept Question 6-3: What role do initial and final
values play in the solution of a circuit? (See         )

Exercise 6-1: For the circuit in Fig. E6.1, determine
υC(0), iL(0), υL(0), iC(0), υC(∞), and iL(∞).

iL

υC

υL4 Ω

6 Ω10 V t = 0 C
L+

_

iC

Figure E6.1

Answer: υC(0) = 6 V,  iL(0) = 1 A,  υL(0) = −6 V, 
iC(0) = 0,  υC(∞) = 0,  iL(∞) = 0. (See      C3 )

Exercise 6-2: For the circuit in Fig. E6.2, determine
υC(0), iL(0), υL(0), iC(0), υC(∞), and iL(∞).

iL

υC

υL 4 Ω

2 Ω 12 V

t = 0L
+
_C

iC

Figure E6.2

Answer:   υC(0) = 0,   iL(0) = 0,   υL(0) = −12 V,   
iC(0) = 0, υC(∞) = 4 V,  iL(∞) = −2 A.  (See )

6-2 Introducing the Series RLC
Circuit

6-2.1 Charging-Up Mode

The circuit in part (a) of Fig. 6-4 depicts a scenario in which
a series RLC circuit with no stored energy is connected to a
dc voltage source Vs at t = 0. After closing the switch, charge
supplied by the source starts to flow to the (+) voltage terminal
of the capacitor, and continues to do so until the capacitor
reaches the maximum voltage possible, namely Vs. Hence, our
expectation is that υC(t) will start at zero at t = 0 and then
build up to reach Vs as t → ∞. The specific path it takes,
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(a) Charging up C

24 V

(b) Responses

(c) Discharging C (d) Responses

υCVs

LR

C

1

2+
_

t = 0

Underdamped (α < ω0)
υC(t)

t (s)
0 0.05 0.1 0.15 0.2

−10

0

10

20
24 Critically damped (α = ω0)

Overdamped (α > ω0)

Vs

iCLR

υC

υC(0−) = 0

υC(0−) = 24 V

C
+
_

t = 0

υC(t)

t (s)
0 0.05 0.1 0.15 0.2

Vs = 24

Underdamped (α < ω0)

Critically damped (α = ω0)

Overdamped
(α > ω0)

Figure 6-4: Illustrating the charge-up and discharge responses of a series RLC circuit with Vs = 24V. In all cases R = 12 � and L = 0.3 H,
which specifies α = R/2L = 20 Np/s. When C = 0.01 F, the response is overdamped, when C = 8.33 mF, the response is critically damped,
and when C = 0.72 mF, the response is underdamped.

however, depends on the relative magnitudes of two important
parameters. These are:

damping coefficient α = R

2L
(Np/s), (6.1a)

resonant frequency ω0 = 1√
LC

(rad/s). (6.1b)

(series RLC)

The parameter α is measured in nepers/second (Np/s) and ω0 is
an angular frequency, measured in radians per second (rad/s).
The magnitudes of the two parameters are specified by the
values chosen for R, L, and C.

Figure 6-4(b) displays three different response curves for
υC(t), labeled as follows:

Overdamped response α > ω0,
Critically damped response α = ω0,
Underdamped response α < ω0.

The critically damped response represents the fastest smooth
path forυC(t)between its initial and final values. In comparison,
the overdamped response is slower than the underdamped
response, which starts out faster but exhibits an oscillatory
(ringing) behavior. The mathematical solutions for all three
cases are presented in detail in forthcoming sections. The intent
is to provide an overview of how υC(t) varies with time under
these various scenarios.
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(a) At t = 0−

24 V

LR

C
+
_

t = 0
υC(0−) 
= 12 V

(b) After t = 0

υC increases
from 12 V to
reach 24 V 
after a long
time

i

24 V
L

R

C

+
_

(c) Long after closing the switch

υC(∞) = 24 V

i = 0

24 V

LR

C
+
_

Figure 6-5: Connecting a series RLC circuit with a charged-up
capacitor to a source with higher voltage.

6-2.2 Discharging Mode

If instead of starting out with an uncharged RLC circuit, we
were to start with a fully charged capacitor, as depicted by the
circuit in Fig. 6-4(c), and then discharge it by moving the SPDT
switch from terminal 1 to terminal 2, the voltageυC(t) across the
capacitor will decay from its initial value, Vs, to a final value of
zero volts. The specific path between Vs and zero again depends
on the value of α relative to that of ω0, as shown in Fig. 6-4(d).
In fact, the three responses of the discharging RLC circuit are
essentially mirror images of those for the charging-up circuit;
the initial and final conditions of the circuit in Fig. 6-4(a) are
the converse of those for the circuit in Fig. 6-4(c). The capacitor
voltage of the changing-up circuit starts at zero and concludes
at 24 V, in contrast to the discharging circuit that starts at 24 V
and concludes at zero.

Now let us consider an RLC circuit in which the capacitor
has 12 V across it (due to some previous charging-up action),
and then a switch is closed to connect the RLC segment to a

(a) At t = 0−

24 V

LR

C
+
_

t = 0
υC(0−) 
= 36 V

(b) After t = 0

υC decreases
from 36 V to
reach 24 V 
after a long
time

i

24 V

L
R

C

+
_

(c) Long after closing the switch

υC(∞) = 24 V

i = 0

24 V

LR

C
+
_

Figure 6-6: Connecting a series RLC circuit with a charged-up
capacitor to a source with lower voltage.

source with Vs = 24V, as shown in Fig. 6-5(a).After closing the
switch (Fig. 6-5(b)), the situation is such thatVs = 24V exceeds
the initial voltage of 12 V across the capacitor. Consequently,
charge will flow to the capacitor to build up its voltage, and
will continue to do so until the capacitor reaches the maximum
possible voltage, namely Vs = 24 V. When it reaches that state,
the current goes to zero (Fig. 6-5(c)).

The scenario in Fig. 6-6 depicts a similar circuit, but one that
starts with a capacitor whose initial voltage υC(0−) is 36 V,
which is higher than that of Vs = 24V. In this case, the capacitor
will start to discharge after closing the switch and then continue
to discharge until it reaches 24V. Thus, in both circuit scenarios,
the capacitor will charge up or discharge down so as to equalize
its voltage to that of the source, Vs. Recall that a short circuit is
equivalent to a voltage source with Vs = 0. Hence, if we connect
an RLC circuit with a charged-up capacitor to a short circuit,
the capacitor will discharge down until it reaches a final voltage
of zero, the same as the scenario depicted in Fig. 6-4(c).
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Technology Brief 15
Micromechanical Sensors and
Actuators

Energy is stored in many different forms in the world
around us. The conversion of energy from one form
to another is called transduction. Each of our five
senses, for example, transduces a specific form of
energy into electrochemical signals: tactile transducers
on the skin convert mechanical and thermal energy; the
eye converts electromagnetic energy; smell and taste
receptors convert chemical energy; and our ears convert
the mechanical energy of pressure waves. Any device,
whether natural or man-made, that converts energy
signals from one form to another is a transducer.

Most modern man-made systems are designed to ma-
nipulate signals (i.e., information) using electrical energy.
Computation, communication, and storage of information
are examples of functions performed mostly with electrical
circuits. Most systems also perform a fourth class of
signal manipulation: the transduction of energy from the
environment into electrical signals that circuits can use
in support of their intended application. If a transducer
converts external signals into electrical signals, it is called
a sensor.The charge-coupled device (CCD) chip on your
camera is a sensor that converts electromagnetic energy
(light) into electrical signals that can be processed, stored,
and communicated by your camera circuits. Some trans-
ducers perform the reverse function, namely to convert a
circuit’s electrical signal into an environmental excitation.
Such a transducer then is called an actuator. The com-
ponents that deploy the airbag in your car are actuators:
given the right signal from the car’s microcontroller,
the actuators convert electrical energy into mechanical
energy and the airbag is released and inflated.

Microelectromechanical Systems (MEMS)

Micro- and nanofabrication technology have begun to
revolutionize many aspects of sensor and actuator design.
Humans increasingly are able to embed transducers
at very fine scales into their environment. This is
leading to big changes, as our computational elements
are becoming increasingly aware of their environment.
Shipping containers that track their own acceleration
profiles, laptops that scan fingerprints for routine login,
cars that detect collisions, and even office suites that
modulate energy consumption based on human activity
are all examples of this transduction revolution. In this

technology brief, we will focus on a specific type of
microscale transducers that lend themselves to direct
integration with silicon ICs. Collectively, devices of
this type are called microelectromechanical systems
(MEMS) or microsystems technologies (MST); the two
names are used interchangeably.

A Capacitive Sensor: The MEMS
Accelerometer

According to Eq. (5.21), the capacitance C of a parallel
plate capacitor varies directly with A, the effective area of
overlap between its two conducting plates, and inversely
with d, the spacing between the plates. By capitalizing on
these two attributes, capacitors can be made into motion
sensors that can measure velocity and acceleration along
x, y, and z.

Figure TF15-1 illustrates two mechanisms for trans-
lating motion into a change of capacitance. The first
generally is called the gap-closing mode, while the
second one is called the overlap mode. In the gap-closing
mode, A remains constant, but if a vertical force is applied
onto the upper plate, causing it to be displaced from its
nominal position at height d above the lower plate to a
new position (d − z), then the value of capacitance Cz
will change in accordance with the expression given
in Fig. TF15-1(a). The sensitivity of Cz to the vertical
displacement is given by dCz/dz.

The overlap mode (Fig. TF15-1(b)) is used to measure
horizontal motion. If a horizontal force causes one of
the plates to shift by a distance y from its nominal
position (where nominal position corresponds to a 100
percent overlap), the decrease in effective overlap area
will lead to a corresponding change in the magnitude of
capacitance Cy. In this case, d remains constant, but
the width of the overlapped areas changes from w to
(w − y). The expression for Cy given in Fig. TF15-1(b)
is reasonably accurate (even though it ignores the effects
of the fringing electric field between the edges of the
two plates) so long as y � w. To measure and amplify
changes in capacitance, the capacitor can be integrated
into an appropriate op-amp circuit whose output voltage is
proportional to C. As we shall see shortly, a combination
of three capacitors, one to sense vertical motion and
two to measure horizontal motion along orthogonal axes,
can provide complete information on both the velocity
and acceleration vectors associated with the applied
force. The capacitor configurations shown in Fig. TF15-1
illustrate the basic concept of how a capacitor is used
to measure motion, although more complex capacitor



“book” — 2015/5/4 — 7:16 — page 338 — #9

338 TECHNOLOGY BRIEF 15: MICROMECHANICAL SENSORS AND ACTUATORS

Gap-Closing Mode
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F
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Figure TF15-1: Basic capacitive measurement modes. For (b), the expressions hold only for small displacements such that
y � w.

geometries also are possible, particularly for sensing
angular motion.

To convert the capacitor-accelerometer concept into a
practical sensor—such as the automobile accelerometer
that controls the release of the airbag—let us consider the
arrangement shown in Fig. TF15-2(b). The lower plate
is fixed to the body of the vehicle, and the upper plate
sits on a plane at a height d above it. The upper plate is
attached to the body of the vehicle through a spring with
a spring constant k. When no horizontal force is acting
on the upper plate, its position is such that it provides a
100 percent overlap with the lower plate, in which case
the capacitance will be a maximum at Cy = εW�/d. If the
vehicle accelerates in the y-direction with acceleration ay,
the acceleration force Facc will generate an opposing
spring force Fsp of equal magnitude.

Equating the two forces leads to an expression
relating the displacement y to the acceleration ay, as
shown in the figure. Furthermore, the capacitance Cy
is directly proportional to the overlap area �(w − y) and
therefore is proportional to the acceleration ay. Thus, by
measuring Cy, the accelerometer determines the value
of ay. A similar overlap-mode capacitor attached to the
vehicle along the x-direction can be used to measure ax.
Through a similar analysis for the gap-closing mode
capacitor shown in Fig. TF15-2(a), we can arrive at a
functional relationship that can be used to determine the
vertical acceleration az by measuring capacitance Cz.

For example, if we designate the time when the ignition
starts the engine as t = 0, we then can set the initial

conditions on both the velocity u of the vehicle and its
acceleration a as zero at t = 0. That is, u(0) = a(0) = 0.
The capacitor accelerometers measure continuous-time
waveforms ax(t), ay(t), and az(t).Each waveform then can
be used by an op-amp integrator circuit to calculate the
corresponding velocity waveform. For ux, for example,

ux(t) =
t∫

0

ax(t) dt,

and similar expressions apply to uy and uz.

Commercial MEMS Accelerometers

Figure TF15-3 shows the Analog Devices ADXL202
accelerometer which uses the gap-closing mode to
detect accelerations on a tiny micromechanical capacitor
structure that works on the same principle described
above, although slightly more complicated geometrically.
Commercial accelerometers, such as this one, make use
of negative feedback to prevent the plates from physically
moving. When an acceleration force attempts to move
the plate, an electric negative-feedback circuit applies a
voltage across the plates to generate an electrical force
between the plates that counteracts the acceleration force
exactly, thereby preventing any motion by the plate. The
magnitude of the applied voltage becomes a measure of
the acceleration force that the capacitor plate is subjected
to. Because of their small size and low power consump-
tion, chip-based microfabricated silicon accelerometers
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(a) The ADXL202 accelerometer employs many
gap-closing capacitor sensors to detect acceleration.
(Courtesy Analog Devices.)

(b) A silicon sensor that uses overlap mode fingers.  The
white arrow shows the direction of motion of the moving
mass and its fingers in relation to the fixed anchors.  Note
that the moving fingers move into and out of the fixed
fingers on either side of the mass during motion.
(Courtesy of the Adriatic Research Institute.)

Spring constant k

Mass m z
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d

Figure TF15-2: Adding a spring to a movable plate capacitor makes an accelerometer.

are used in most modern cars to activate the release
mechanism of airbags.They also are used heavily in many
toy applications to detect position, velocity and accelera-
tion.The Nintendo Wii, for example, uses accelerometers
in each remote to detect orientation and acceleration.
Incidentally, a condenser microphone operates much like
the device shown in Fig.TF15-2(a): as air pressure waves

(sound) hit the spring-mounted plate, it moves and the
change in capacitance can be read and recorded.

A Capacitive Actuator: MEMS Electrostatic
Resonators

Not surprisingly, we can drive the devices discussed
previously in reverse to obtain actuators. Consider again
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FigureTF15-3: The complete ADXL202 accelerometer chip.The center region holds the micromechanical sensor; the majority
of the chip space is used for the electronic circuits that measure the capacitance change, provide feedback, convert the
measurement into a digital signal, and perform self-tests. (Courtesy of Analog Devices.)

the configuration in Fig. TF15-2(a). If the device is not
experiencing any external forces and we apply a voltage V
across the two plates, an attractive force F will develop
between the plates. This is because charges of opposite
polarity on the two plates give rise to an electrostatic
force between them.This, in fact, is true for all capacitors.
In the case of our actuator, however, we replace the
normally stiff, dielectric material with air (since air is
itself a dielectric) and attach it to a spring as before.
With this modification, an applied potential generates an
electrostatic force that moves the plates.

This basic idea can be applied to a variety of
applications. A classic application is the digital light
projector (DLP) system that drives most digital projectors

used today. In the DLP, hundreds of thousands of
capacitor actuators are arranged in a 2-D array on a
chip, with each actuator corresponding to a pixel on
an image displayed by the projector. One capacitive
plate of each pixel actuator (which is mirror smooth
and can reflect light exceedingly well) is connected
to the chip via a spring. In order to brighten or
darken a pixel, a voltage is applied between the
plates, causing the mirror to move into or out of
the path of the projected light. These same de-
vices have been used for many other applications,
including microfluidic valves and tiny force sensors
used to measure forces as small as a zeptonewton
(1 zeptonewton = 10−21 newtons).
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24 VVs

iCLR

υCC
+
_

t = 0

Figure 6-7: Series RLC circuit connected to a source Vs at
t = 0. In general, the capacitor may have had an initial charge
on it at t = 0−, with a corresponding initial voltage υC(0−).

6-3 Series RLC Overdamped
Response (α > ω0)

A key takeaway lesson from the qualitative description given
in the preceding section is that after closing the switch in a
series RLC circuit, the voltage across the capacitor will charge
up or discharge down to equalize to the voltage across the
source. In this section, we derive the differential equation for
the series RLC circuit in Fig. 6-7 and then solve it to obtain
an expression for υC(t) for t ≥ 0, with t = 0 designated as the
time immediately after the switch is closed.

As noted in the preceding section, the nature of the solution
for υC(t) depends on how the magnitude of the damping
coefficient α compares with that of the resonant frequency ω0.
The values of the two parameters are dictated by the values of
R, L, and C, per the expressions in Eq. (6.1). In the present
section, we consider the case corresponding to α > ω0, which
is called the overdamped response. The other two cases are
treated in follow-up sections.

6-3.1 Differential Equation

For the circuit in Fig. 6-7, the KVL loop equation for t ≥ 0
(after closing the switch) is

RiC + L
diC

dt
+ υC = Vs (for t ≥ 0), (6.2)

where iC and υC are the current through and voltage across the
capacitor. The capacitor may or may not have had charge on
it. If it had, we denote the value of the initial voltage across it
υC(0), which is the same as υC(0−), the voltage across it before
closing the switch (since the voltage across a capacitor cannot
change instantaneously).

By incorporating the relation

iC = C
dυC

dt
, (6.3)

and rearranging terms, Eq. (6.2) becomes

d2υC

dt2 + R

L

dυC

dt
+ 1

LC
υC = Vs

LC
. (6.4)

For convenience, we rewrite Eq. (6.4) in the abbreviated form

υ ′′
C + aυ ′

C + bυC = c, (6.5)

where

a = R

L
, b = 1

LC
, c = Vs

LC
. (6.6)

The second-order differential equation given by Eq. (6.5) is
specific to the capacitor voltage of the series RLC circuit of
Fig. 6-7, but the form of the equation is equally applicable to
any current or voltage in any second-order circuit (although the
values of the constants a, b, and c are different for different
circuits). The same is true for the general form of the solution
of the differential equation.

6-3.2 Solution of Differential Equation

The general solution of the second-order differential equation
given by Eq. (6.5) consists of two components:

υC(t) = υtr(t) + υss(t), (6.7)

where υtr(t) is the transient (also called homogeneous solution
of Eq. (6.5) or the natural response of the RLC circuit)
and υss(t) is the steady-state solution (also called particular
solution). The transient solution is the solution of Eq. (6.5)
under source-free conditions; i.e., with Vs = 0, which means
that c = Vs/LC also is zero. Thus υtr(t) is the solution of

υ ′′
tr + aυ ′

tr + bυtr = 0 (source-free). (6.8)

The steady-state solution υss(t) is related to the forcing function
on the right-hand side of Eq. (6.5), and its functional form is
similar to that of the forcing function. Since in the present case,
the forcing function c is simply a constant, so is υss(t). That is,
υss(t) is a non–time-varying constant υss that will be determined
later from initial and final conditions. Moreover, as we will see
shortly, the transient component υtr(t) always goes to zero as
t → ∞ (that’s why it is called transient). Hence, as t → ∞,
Eq. (6.7) reduces to

υC(∞) = υss, (6.9)

in which case Eq. (6.7) can be rewritten as

υC(t) = υtr(t) + υC(∞). (6.10)

Our remaining task is to determine υtr(t).
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When differentiated, the exponential function est replicates
itself (within a multiplying factor), so it is often offered as
a candidate solution when solving homogeneous differential
equations. Thus, we assume that

υtr(t) = Aest , (6.11)

where A and s are constants to be determined later. To ascertain
that Eq. (6.11) is indeed a viable solution of Eq. (6.8), we
insert the proposed expression for υtr(t) and its first and second
derivatives in Eq. (6.8). The result is

s2Aest + asAest + bAest = 0, (6.12)

which simplifies to

s2 + as + b = 0. (6.13)

Hence, the proposed solution given by Eq. (6.11) is indeed an
acceptable solution so long as Eq. (6.13) is satisfied.

The quadratic equation given by Eq. (6.13) is known as the
characteristic equation of the differential equation. It has two
roots:

s1 = −a

2
+
√(a

2

)2 − b ,

s2 = −a

2
−
√(a

2

)2 − b .

(6.14a)

(6.14b)

Since the values of a and b are governed by the values of only
the passive components in the circuit, so are the values of s1
and s2. Strictly speaking, the unit of s1 and s2 is 1/second, but
it is customary to add the dimensionless neper to the units of
quantities that appear in exponential functions. Hence, s1 and s2
are measured in nepers/second (Np/s).

The existence of two distinct roots implies that Eq. (6.8) has
two viable solutions, one in terms of es1t and another in terms
of es2t . Hence, we should generalize the form of our solution to

υtr(t) = A1e
s1t + A2e

s2t for t ≥ 0, (6.15)

where constants A1 and A2 are to be determined shortly.
Inserting Eq. (6.15) into Eq. (6.10) leads to

υC(t) = A1e
s1t + A2e

s2t + υC(∞). (6.16)

The exponential coefficients s1 and s2 are given by Eq. (6.14)
in terms of constants a and b, both of which are defined in
Eq. (6.6). By reintroducing the damping coefficient α and
resonant frequency ω0, which we defined earlier in Eq. (6.1),
as

α = R

2L
= a

2
(Np/s),

ω0 = 1√
LC

= b (rad/s),

(6.17a)

(6.17b)

the expressions given by Eq. (6.14) become

s1 = −α +
√

α2 − ω2
0 ,

s2 = −α −
√

α2 − ω2
0 ,

(6.18a)

(6.18b)

The solution in the present section pertains to the overdamped
case corresponding to α > ω0. Under this condition, both s1
and s2 are real, negative numbers. Consequently, as t → ∞,
the first two terms in Eq. (6.16) go to zero, just as we asserted
earlier.

6-3.3 Invoking Initial Conditions

To determine the values of constants A1 and A2 in Eq. (6.16),
we need to invoke initial conditions, which means that we need
to use information available to us about the values of υC and its
time derivative υ ′

C, both at t = 0. Since

iC(t) = C
dυC

dt
= C υ ′(t), (6.19)

the second requirement is equivalent to needing to know iC(0).
At t = 0, Eq. (6.16) simplifies to

υC(0) = A1 + A2 + υC(∞), (6.20)

and

iC(0) = C
dυC

dt

∣∣∣∣
t=0

= C(s1A1e
s1t + s2A2e

s2t )
∣∣
t=0

= C(s1A1 + s2A2). (6.21)

Simultaneous solution of Eqs. (6.20) and (6.21) for A1 and A2
gives

A1 =
1
C

iC(0) − s2[υC(0) − υC(∞)]
s1 − s2

, (6.22a)

A2 =
1
C

iC(0) − s1[υC(0) − υC(∞)]
s2 − s1

. (6.22b)

This concludes the general solution for the overdamped
response. A summary of relevant expressions is available in
Table 6-1.
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Table 6-1: Step response of RLC circuits for t ≥ 0.

Series RLC Parallel RLC

C υC

R L
Input: dc 
circuit
with switch
action 
@ t = 0

C

iL

R
L

Input: dc 
circuit
with switch
action 
@ t = 0

Total Response Total Response

Overdamped (α > ω0) Overdamped (α > ω0)

υC(t) = A1es1t + A2es2t + υC(∞)

A1 =
1
C

iC(0) − s2[υC(0) − υC(∞)]
s1 − s2

A2 =
[

1
C

iC(0) − s1[υC(0) − υC(∞)]
s2 − s1

]

iL(t) = A1es1t + A2es2t + iL(∞)

A1 =
1
L

υL(0) − s2[iL(0) − iL(∞)]
s1 − s2

A2 =
[

1
L

υL(0) − s1[iL(0) − iL(∞)]
s2 − s1

]

Critically Damped (α = ω0) Critically Damped (α = ω0)

υC(t) = (B1 + B2t)e−αt + υC(∞)

B1 = υC(0) − υC(∞)

B2 = 1
C

iC(0) + α[υC(0) − υC(∞)]

iL(t) = (B1 + B2t)e−αt + iL(∞)

B1 = iL(0) − iL(∞)

B2 = 1
L

υL(0) + α[iL(0) − iL(∞)]
Underdamped (α < ω0) Underdamped (α < ω0)

υC(t) = e−αt (D1 cos ωdt + D2 sin ωdt) + υC(∞)

D1 = υC(0) − υC(∞)

D2 =
1
C

iC(0) + α[υC(0) − υC(∞)]
ωd

iL(t) = e−αt (D1 cos ωdt + D2 sin ωdt) + iL(∞)

D1 = iL(0) − iL(∞)

D2 =
1
L

υL(0) + α[iL(0) − iL(∞)]
ωd

Auxiliary Relations

α =

⎧⎪⎪⎨
⎪⎪⎩

R

2L
Series RLC

1

2RC
Parallel RLC

ω0 = 1√
LC

ωd =
√

ω2
0 − α2

s1 = −α +
√

α2 − ω2
0 s2 = −α −

√
α2 − ω2

0

Example 6-3: Charging Up Capacitor with No Prior

Charge

Given that in the circuit of Fig. 6-8(a), Vs = 16 V, R = 64 �,
L = 0.8 H, and C = 2 mF, determine υC(t) and iC(t) for t ≥ 0.
The capacitor had no charge prior to t = 0.

Solution: We begin by establishing the damping condition of
the circuit. From the definitions forα andω0 given by Eq. (6.17),
we have

α = R

2L
= 64

2 × 0.8
= 40 Np/s,

ω0 = 1√
LC

= 1√
0.8 × 2 × 10−3

= 25 rad/s.
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(a)

(b)

(c)

Vs

iLR

υCC
+
_

t = 0

Capacitor voltage

t (s)

υC (V)

0 0.1 0.2 0.3 0.4 0.5

16

12

8

4

Current

t (s)

iC (A)

0 0.1 0.2 0.3 0.4 0.5

0.15

0.2

0.1

0

0.05

Figure 6-8: Example 6-3: (a) circuit, (b) υC(t), and (c) iC(t).

Hence, α > ω0, which means that the circuit will exhibit an
overdamped response after the switch is closed. The applicable
expression for υC(t) is given by Eq. (6.16),

υC(t) = [A1e
s1t + A2e

s2t + υC(∞)].
From Eq. (6.18),

s1 = −α +
√

α2 − ω2
0

= −40 +
√

402 − 252 = −8.8 Np/s,

s2 = −α −
√

α2 − ω2
0 = −71.2 Np/s.

As t → ∞, the circuit reaches steady state and the capacitor
becomes like an open circuit, allowing no current to flow
through the circuit. Consequently,

υC(∞) = Vs = 16 V.

At t = 0−, the capacitor was uncharged. Hence,

υC(0) = υC(0−) = 0.

Prior to t = 0, there was no current in the circuit, and since the
current through L (which is also the current through C) cannot
change instantaneously, it follows that

iC(0) = iL(0) = iL(0−) = 0.

From Eq. (6.22), A1 and A2 are given by

A1 =
1
C

iC(0) − s2[υC(0) − υC(∞)]
s1 − s2

= 0 + 71.2(0 − 16)

−8.8 + 71.2
= −18.25 V,

A2 = −
[

1
C

iC(0) − s1[υC(0) − υC(∞)]
s1 − s2

]

= −
[

0 + 8.8(0 − 16)

−8.8 + 71.2

]
= 2.25 V.

The total response υC(t) is then given by

υC(t) = [−18.25e−8.8t + 2.25e−71.2t + 16] V

(for t ≥ 0),

and the associated current is

iC(t) = C
dυC

dt

= 2 × 10−3[18.25 × 8.8e−8.8t − 2.25 × 71.2e−71.2t ]
= 0.32(e−8.8t − e−71.2t ) A (for t ≥ 0).

The waveforms of υC(t) and iC(t) are displayed in Figs. 6-8(b)
and (c), respectively.

Example 6-4: RLC Circuit with a Current Source

Determine υC(t) in the circuit of Fig. 6-9(a), given that
Is = 2 A, Rs = 10 �, R1 = 1.81 �, R2 = 0.2 �, L = 5 mH,
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(b) At t = 0− (after current-to-voltage transformation)(a) Original circuit

(c) After t = 0 (d) υC(t)

υCC
L

R1

R2

Rs Is = 2 A

t = 01.81 Ω

0.2 Ω

10 Ω
8 V

2 1
iL(0−) = 0

υC(0) = 20 VCL

R1

R2

RsIs = 20 V

1.81 Ω

Rs

10 Ω

0.2 Ω8 V

2 1

+
_

υC(0−) = 20 V

iL

υCCL

R1

R2

1.81 Ω

0.2 Ω8 V

2

υC (V)

t (ms)
50

5

0

8
10

15

20

25

10 15 20 25 30

Figure 6-9: Circuit for Example 6-4.

and C = 5 mF.Assume that the circuit had been in the condition
shown in Fig. 6-9(a) for a long time prior to t = 0.

Solution:

At t = 0−: Figure 6-9(b) depicts the state of the circuit at
t = 0−, but after making a current source to voltage source
transformation. The replacement voltage source is 20 V. Since
the circuit had been in steady state for a long time, the capacitor
behaves like an open circuit with

υC(0−) = 20 V.

We also note that in the left-hand part of the circuit, no current
can flow, mandating that

iL(0−) = 0.

At t ≥ 0: After moving the switch to terminal 2, the capacitor
becomes part of a new circuit composed of a combination

of R = R1 + R2 = 1.81 + 0.2 = 2.01 �, L = 5 mH, and
C = 5 mF, all connected in series with an 8 V source
(Fig. 6-9(c)). The current through C is the same as the current
through L, and since the current through an inductor cannot
charge instantaneously, it follows that

iC(0) = iL(0) = iL(0−) = 0.

For the capacitor,

υC(0) = υC(0−) = 20 V.

Also, as t approaches ∞, υC(t) approaches the voltage of the
8 V source. Hence,

υC(∞) = 8 V.

The parameters α and ω0 are given by

α = R1 + R2

2L
= 2.01

2 × 5 × 10−3 = 201 Np/s,

ω0 = 1√
LC

= 1√
5 × 10−3 × 5 × 10−3

= 200 rad/s.
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Since α > ω0, the response is overdamped and given by
Eq. (6.16),

υC(t) = A1e
s1t + A2e

s2t + υC(∞),

with

s1 = −α +
√

α2 − ω2
0

= −201 +
√

(201)2 − (200)2 = −181 Np/s,

s2 = −α −
√

α2 − ω2
0 = −221 Np/s,

A1 =
1
C

iC(0) − s2[υC(0) − υC(∞)]
s1 − s2

= 0 + 221[20 − 8]
−181 + 221

= 66.3,

A2 =
1
C

iC(0) − s1[υC(0) − υC(∞)]
s2 − s1

= 0 + 181[20 − 8]
−221 + 181

= −54.3.

Inserting the values of s1, s2, A1, A2, and υC(∞) in Eq. (6.16)
leads to

υC(t) = (66.3e−181t − 54.3e−221t + 8) V for t ≥ 0.

Figure 6-9(d) displays the time response of υC(t).

Exercise 6-3: After interchanging the locations of L

and C in Fig. 6-9(a), repeat Example 6-4 to determine
υC(t) across C.

Answer: υ(t) = 9.8(e−221t − e−181t ) V. (See      C3  )

6-4 Series RLC Critically Damped
Response (α = ω0)

� The critically damped response is the fastest response
the circuit can exhibit, without oscillation, between initial
and final conditions. �

When

R = 2

√
L

C
(critically damped), (6.23)

α = ω0, and according to Eq. (6.18),

s1 = s2 = −α. (6.24)

Repeated roots are problematic because Eq. (6.16) becomes

υC(t) = A1e
−αt + A2e

−αt + υC(∞)

= (A1 + A2)e
−αt + υC(∞) = (A3)e

−αt + υC(∞),

(6.25)

where A3 = A1 + A2. A solution containing a single constant
(A3) cannot simultaneously satisfy the initial conditions on both
the voltage across the capacitor and the current through the
inductor.

For this critically damped case, we introduce two new
constants, B1 and B2, and we adopt the modified form

υC(t) = B1e
−αt + B2te

−αt + υC(∞)

= (B1 + B2t)e
−αt + υC(∞)

(for t ≥ 0) (critically damped),

(6.26)

which contains a term with e−αt and a second term with (te−αt ).
It is a relatively straightforward task to show that the expression
given by Eq. (6.26) is indeed a valid solution of the differential
equation given by Eq. (6.4). When doing so, however, we need
to keep in mind that under the critically damped condition, R,
L, and C are interrelated by Eq. (6.23), and υC(∞) = Vs.

The constants B1 and B2 are governed by the initial
conditions on υC and ic. Thus, at t = 0, Eq. (6.26) provides

υC(0) = B1 + υC(∞), (6.27a)

iC(0) = C
dυC

dt

∣∣∣∣
t=0

= C (−αB1 − αB2t + B2)e
−αt

∣∣
t=0

= C(−αB1 + B2). (6.27b)

Simultaneous solution of Eqs. (6.27a and b) leads to

B1 = υC(0) − υC(∞),

B2 = 1

C
iC(0) + α[υC(0) − υC(∞)].

(6.28a)

(6.28b)
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(a)

(b) υC(t)

Vs = 24 V

iCLR

υCC
+
_

t = 0

υC(t)

t (s)
0 0.05 0.1 0.15 0.2

24 Critically damped (α = ω0)

Figure 6-10: Circuit response for Example 6-5.

Example 6-5: Critically Damped Response

Evaluate the response of the circuit in Fig. 6-10(a) for t ≥ 0,
given that the capacitor had no charge prior to t = 0 and
Vs = 24 V, R = 12 �, L = 0.3 H, and C = 8.33 mF.

Solution: The parameters α and ω0 are given by

α = R

2L
= 12

2 × 0.3
= 20 Np/s,

ω0 = 1√
LC

= 1√
0.3 × 8.33 × 10−3

= 20 rad/s.

Hence, because α = ω0, the response is critically damped and
given by Eq. (6.26) as

υ(t) = (B1 + B2t)e
−20t + υC(∞).

The initial conditions at t = 0 are

υC(0) = 0 and iC(0) = 0,

and the final condition on υC is

υC(∞) = Vs = 24 V.

Application of these initial and final conditions to Eq. (6.28)
leads to

B1 = υC(0) − υC(∞) = −24 V,

B2 = 1

C
iC(0) + α[υC(0) − υC(∞)]

= 0 + 20[0 − 24] = −480.

Hence,

υC(t) = (B1 + B2t)e
−αt + υC(∞)

= [−(24 + 480t)e−20t + 24] V, for t ≥ 0.

The response is plotted in Fig. 6-10(b).

Exercise 6-4: The switch in Fig. E6.4 is moved to
position 2 after it had been in position 1 for a long time.
Determine: (a) υC(0) and iC(0), and (b) iC(t) for t ≥ 0.

υC

20 Ω 10 Ω

40 V1 H 10 mF

2 1

t = 0
+
_

iC

Figure E6.4

Answer: (a) υC(0) = 40 V,  iC(0) = 0. 
(b) iC(t) = [−40te−10t ] A. (See                             )

Exercise 6-5: The circuit in Fig. E6.5 is a replica of the
circuit in Fig. E6.4, but with the capacitor and inductor
interchanged in location. Determine: (a) iL(0) and υL(0),
and (b) iL(t) for t ≥ 0.

υL

20 Ω 10 Ω

40 V1 H10 mF

2 1

t = 0

+
_

iL

Figure E6.5

Answer: (a) iL(0) = 4 A, υL(0) = −80 V.
(b) iL(t) = [4(1 − 10t)e−10t ] A. (See         )
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6-5 Series RLC Underdamped
Response (α < ω0)

If α < ω0, corresponding to

R < 2

√
L

C
(underdamped), (6.29)

we introduce the damped natural frequency ωd defined as

ω2
d = ω2

0 − α2. (6.30)

Since α < ω0, it follows that ωd > 0. In terms of ωd, the
expressions for the roots s1 and s2 given by Eq. (6.18) become

s1 = −α +
√

α2 − ω2
0 = −α +

√
−ω2

d = −α + jωd,

(6.31a)

s2 = −α −
√

α2 − ω2
0 = −α − jωd, (6.31b)

where j = √−1. The fact that s1 and s2 are complex conjugates
of one another will prove central to the form of the solution.
Inserting the expressions for s1 and s2 into Eq. (6.16) gives

υC(t) = A1e
−αt ejωdt + A2e

−αt e−jωdt + υC(∞). (6.32)

The Euler identity

e±jθ = cos θ ± j sin θ (6.33)

allows us to expand Eq. (6.32) as follows:

υC(t) = A1e
−αt (cos ωdt + j sin ωdt)

+ A2e
−αt (cos ωdt − j sin ωdt) + υC(∞)

= e−αt [(A1 + A2) cos ωdt

+ j (A1 − A2) sin ωdt] + υC(∞). (6.34)

Next, by introducing a new pair of constants, D1 = A1 + A2
and D2 = j (A1 − A2), we have

υC(t) = e−αt [D1 cos ωdt + D2 sin ωdt] + υC(∞)

(for t ≥ 0) (underdamped).

(6.35)

The negative exponential e−αt signifies that υ(t) has a damped
waveform with a time constant τ = 1/α, and the sine and
cosine terms signify that υC(t) is oscillatory with an angular
frequency ωd and a corresponding time period

T = 2π

ωd
. (6.36)

Since ωd is a measure of the oscillation associated with the
damped natural response of the circuit, it is only appropriate
that it be called the “damped natural frequency” of the circuit.

Invoking initial conditions on the expression given by
Eq. (6.35) leads to

D1 = υC(0) − υC(∞),

D2 =
1
C

iC(0) + α[υC(0) − υC(∞)]
ωd

.

(6.37a)

(6.37b)

The oscillatory behavior of the underdamped response is
illustrated by Example 6-6.

Example 6-6: Underdamped Response

Determine υC(t) for the circuit in Fig. 6-11, given that
Vs = 24 V, R = 12 �, L = 0.3 H, and C = 0.72 mF. The
circuit had been in steady state prior to moving the switch at
t = 0.

Solution: For the specified values of R, L, and C,

α = R

2L
= 12

2 × 0.3
= 20 Np/s

and

ω0 = 1√
LC

= 1√
0.3 × 0.72 × 10−3

= 68 rad/s.

Since α < ω0, the voltage response is underdamped and given
by Eq. (6.35) as

υC(t) = e−αt [D1 cos ωdt + D2 sin ωdt] + υC(∞),

with

ωd =
√

ω2
0 − α2 =

√
(68)2 − (20)2 = 65 rad/s.

Prior to t = 0, the circuit was in steady state, which means
that the capacitor was fully charged at Vs = 24 V and acting
like an open circuit. Hence, υC(0−) = 24 V and iC(0−) = 0.
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iC LR

υCC

1
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_

t = 0

Figure 6-11: Example 6-6 (a) circuit and (b) υC(t).

Since both υC across C and iL through L cannot change
instantaneously,

υC(0) = 24 V,

iC(0) = iL(0) = iL(0−) = 0.

After t = 0, the closed RLC circuit will no longer have any
active sources, allowing the capacitor to dissipate all its energy
in the resistor. Hence, as t → ∞, υC(∞) = 0. Using these
initial and final values in the appropriate expressions for D1
and D2 in Eq. (6.37) leads to D1 = 24 V, D2 = 7.4 V, and

υC(t) = e−20t [24 cos 65t + 7.4 sin 65t] V, for t ≥ 0.

Figure 6-11(b) shows a time plot of υC(t), which exhibits
an exponential decay (due to e−20t ) in combination with
the oscillatory behavior associated with the sine and cosine
functions.

Concept Question 6-4: What specific feature distin-
guishes the waveform of the underdamped response 
from those of the overdamped and critically damped 
responses? (See         )

Concept Question 6-5: Why is ωd called the damping
frequency? (See         )

Exercise 6-6: Repeat Example 6-4 after replacing the 8 V
source with a short circuit and changing the value of R1
to 1.7 �.

Answer:

υ(t) = e−190t (20 cos 62.45t + 60.85 sin 62.45t)  V.

(See                 )

6-6 Summary of the Series RLC
Circuit Response

6-6.1 Switch Action at t = 0

The left-hand column of Table 6-1 provides the general
expressions for υC(t) for each of the three damping conditions
associated with the series RLC circuit. The table also includes
expressions for the constants in those expressions in terms of
the initial and final values of υC and the initial value of iC. In
all three cases, the starting point is to compute the values of
α and ω0, then their relative values determines the applicable
damping condition.

6-6.2 Switch Action at t = T0

If the sudden change in the circuit occurs at t = T0, instead of
at t = 0, the only changes that need to be made are:

(1) t should be replaced with (t −T0) everywhere on the right-
hand side of all equations in Table 6-1.

(2) υC(0) and iC(0) should be replaced with υC(T0) and
iC(T0), respectively, in the expressions for the constants
in Table 6-1.

Example 6-7: Rectangular-Pulse Excitation

The switch in the circuit of Fig. 6-12(a) was in position 1 for
a long time before it was moved to position 2 at t = 0, and
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0 < t < 20 ms

After t = 20 ms
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Figure 6-12: Example 6-7 with Vs = 12 V, R = 40 �, L = 0.8 H, and C = 2 mF.

then back to position 1 at t = 20 ms. If Vs = 12 V, R = 40 �,
L = 0.8 H, and C = 2 mF, determine the waveforms of υC(t)

and i(t) for t ≥ 0.

Solution: From Eq. (6.17),

α = R

2L
= 40

2 × 0.8
= 25 Np/s,

ω0 = 1√
LC

= 1√
0.8 × 2 × 10−3

= 25 rad/s.

Since α = ω0, the circuit will exhibit a critically damped
response. We will divide the solution into two time segments.

Time Segment 1: 0 ≤ t ≤ 20 ms.

The general expression for the critically damped response of
the series RLC circuit is given by Eq. (6.26) as

υC1(t) = (B1 + B2t)e
−αt + υ1(∞). (6.38)

Even though we know that the switch will be moved back to
position 1 at t = 20 ms, when we evaluate the constants in
Eq. (6.38) for Time Segment 1, we do so as if the state of the
circuit shown in Fig. 6-12(b) is to remain the same until t = ∞.
Since the circuit is “unaware” of the change that will be taking
place at t = 20 ms, its reaction to the change at t = 0 presumes



“book” — 2015/5/4 — 7:16 — page 351 — #22

6-6 SUMMARY OF THE SERIES RLC CIRCUIT RESPONSE 351

that the new condition of the circuit will continue indefinitely.
Hence, the voltage across the capacitor at t = ∞ would have
been

υC1(∞) = Vs = 12 V. (6.39)

At t = 0−, the RLC circuit contains no active sources, so both
υ1(0−) and i1(0−) are zero. Moreover, since neither the voltage
across C nor the current through L can change instantaneously,
it follows that

υC1(0) = υC1(0
−) = 0,

iC1(0) = iC1(0
−) = 0.

Application of the expressions for B1 and B2 available in
Table 6-1 gives

B1 = υC(0) − υC(∞) = 0 − 12 = −12 V, (6.40a)

B2 = 1

C
iC1(0) + α[υC1(0) − υC1(∞)]

= 0 + 25[0 − 12] = −300 V/s. (6.40b)

Consequently, υC1(t) is given by

υC1(t) = 12 − (12 + 300t)e−25t V, (6.41)

for 0 ≤ t ≤ 20 ms.

The associated current is

iC1(t) = C
dυC1

dt
= 2 × 10−3 d

dt
[12 − (12 + 300t)e−25t ]

= 15te−25t A, (for 0 ≤ t ≤ 20 ms).
(6.42)

Time Segment 2: t ≥ 20 ms.

After moving the switch back to position 1 at t = 20 ms, the
circuit no longer has any active sources, and yet it is part of a
closed circuit (Fig. 6-12(c)), allowing the capacitor and inductor
to dissipate their stored energies through the resistor. Hence, at
t = ∞,

υC2(∞) = 0.

Upon shifting t by 0.02 s, the expression for υC2(t) assumes
the form

υC2(t) = [B3 + B4(t − 0.02)]e−25(t−0.02) V

for t ≥ 20 ms, (6.43)

where constants B3 and B4 are so labeled to avoid confusion
with B1 and B2 of the earlier time segment. The associated
current is

iC2(t) = C
dυC2

dt

= 2 × 10−3 d

dt
{[B3 + B4(t − 0.02)]e−25(t−0.02)}

= [(2B4 − 50B3) − 50B4(t − 0.02)]
· e−25(t−0.02) × 10−3 A for t ≥ 20 ms.

(6.44)

Across the juncture between time segment 1 and time segment 2,
neither the voltage can change (as mandated by the capacitor)
nor can the current (as mandated by the inductor). Thus,

υC1(t = 20 ms) = υC2(t = 20 ms), (6.45a)

iC1(t = 20 ms) = iC2(t = 20 ms). (6.45b)

Application of Eqs. (6.45a and b) to the expressions given by
Eqs. (6.41) to (6.44) gives

12 − (12 + 300 × 0.02)e−25×0.02 = B3,

15 × 0.02e−25×0.02 = (2B4 − 50B3) × 10−3,

whose joint solution leads to

B3 = 1.08 V, B4 = 118.04 V/s.

Consequently,

υC2(t) = [1.08 + 118.04(t − 0.02)]e−25(t−0.02) V

for t ≥ 20 ms (6.46a)

and

iC2(t) = [0.182 − 5.90(t − 0.02)]e−25(t−0.02) A

for t ≥ 20 ms. (6.46b)

The waveforms of υC(t) and iC(t) are displayed in Figs. 6-12(d)
and (e), respectively.

Example 6-8: Two-Source Circuit

The switch in the circuit of Fig. 6-13(a) was opened at t = 0,
after it had been closed for a long time. If Vs1 = 20 V,
Vs2 = 24 V, R1 = 40 �, R2 = R3 = 20 �, R4 = 10 �,
L = 0.8 H, and C = 2 mF, determine υC(t) for t ≥ 0.
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Figure 6-13: Circuit for Example 6-8.

Solution: Consider the state of the circuit at t = 0− (before
opening the switch), as depicted by Fig. 6-13(b). The mesh
current equations for the indicated loops are

−Vs1 + R1I1 + R2(I1 − I2) = 0,

R2(I2 − I1) + R3I2 + Vs2 + R4I2 = 0.

After substituting the given values for the sources and the
resistors, simultaneous solution of the two equations leads to

I1 = 0.2 A, I2 = −0.4 A.

Hence,

υC(0−) = I2R4 = −0.4 × 10 = −4 V, (6.47a)

iL(0−) = I1 = 0.2 A. (6.47b)

Next, we consider Fig. 6-13(c), which depicts the circuit
configuration at t > 0 (after opening the switch). To simplify
the analysis, we use source transformation to convert the circuit
into its Thévenin equivalent, as shown in Fig. 6-13(d), where

Req = (R2 + R3) ‖ R4 = (R2 + R3)R4

R2 + R3 + R4
= 8 �,

Veq = Vs2

R2 + R3
× Req = 4.8 V.

Now we are ready to analyze the series RLC circuit of
Fig. 6-13(d). To that end, we compute α and ω0:

α = Req

2L
= 8

2 × 0.8
= 5 Np/s,

ω0 = 1√
LC

= 1√
0.8 × 2 × 10−3

= 25 rad/s.
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Since α < ω0, the capacitor voltage υC will exhibit an
underdamped oscillatory response of the form given by
Eq. (6.35) as

υC(t) = {e−αt [D1 cos ωdt + D2 sin ωdt]} + υC(∞), (6.48)

where

ωd =
√

ω2
0 − α2 =

√
252 − 52 = 24.5 rad/s.

It is evident from the circuit in Fig. 6-13(d) that

υC(∞) = −Veq = −4.8 V.

To determine D1 and D2, we apply Eq. (6.37)
with υC(0) = −4 V, iC(0) = −iL(0) = −0.2 A, and
υC(∞) = −4.8 V,

D1 = υC(0) − υC(∞) = −4 + 4.8 = 0.8 V, (6.49a)

D2 =
1
C

iC(0) + α[υC(0) − υC(∞)]
ωd

= −100 + 5[−4 + 4.8]
24.5

= −3.92 V. (6.49b)

With all unknown quantities accounted for,

υC(t) = {−4.8 + e−5t [0.8 cos 24.5t − 3.92 sin 24.5t]} V,

for t ≥ 0. (6.50)

The waveform of υC(t) is displayed in Fig. 6-13(e).

6-7 The Parallel RLC Circuit

Having completed our examination of the series RLC circuit
[Fig. 6-14(a)], we now turn our attention to the parallel RLC
circuit shown in Fig. 6-14(b). As we will see shortly, the current
iL(t) flowing through the inductor in the parallel RLC circuit is
characterized by a second-order differential equation identical
in form to that for the voltage υC(t) across the capacitor of the
series RLC circuit. Accordingly, we will take advantage of this
correspondence between the series and parallel RLC circuits by
adapting the solutions we obtained in the preceding section for
the series circuit to the solutions we seek in this section for the
parallel circuit.

Application of KCL to the circuit in Fig. 6-14(b) gives

iR + iL + iC = Is for t ≥ 0. (6.51)

Series RLC

Parallel RLC

(a)

(b)

LR C
+
_Is u(t)

LR

+
_
+
_Vs u(t) υC(t)

υC(t)
iR iCi(t)

Figure 6-14: The differential equation for υC(t) of the series
RLC circuit shown in (a) is identical in form to that of the current
iL(t) in the parallel RLC circuit in (b).

When expressed in terms of υC(t), the voltage common to all
three passive elements, Eq. (6.51) becomes

υC

R
+ iL + C

dυC

dt
= Is. (6.52)

Using υC = υL = L diL/dt , and rearranging terms, leads to

d2iL

dt2 + 1

RC

diL

dt
+ 1

LC
iL = Is

LC
, (6.53)

which can be rewritten in the abbreviated form

i′′L + a2i
′
L + b2iL = c2, (6.54)

where

a2 = 1

RC
, b2 = 1

LC
, c2 = Is

LC
. (6.55)

Comparison of Eq. (6.54) with Eq. (6.5) for the capacitor
voltage of the series RLC circuit reveals that the two differential
equations are identical in form, albeit the constant coefficients
have different expressions in the two cases. The overdamped,
underdamped, and critically damped expressions for iL(t) are
given in Table 6-1.

Quantities s1, s2, ω0, and ωd retain the same expressions
given earlier, but α is now given by

α = 1

2RC
(parallel RLC). (6.56)
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Parallel RLC

Overdamped (α > ω0)

iL(t) = [A1e
s1t + A2e

s2t + iL(∞)], (for t ≥ 0)

(6.57a)

Critically damped (α = ω0)

iL(t) = [(B1 + B2t)e
−αt + iL(∞)], (for t ≥ 0)

(6.57b)

Underdamped (α < ω0)

iL(t) = [e−αt (D1 cos ωdt + D2 sin ωdt) + iL(∞)],
(for t ≥ 0) (6.57c)

∗More details in Table 6-1.

Example 6-9: Parallel RLC Circuit

Determine iL(t) in the circuit of Fig. 6-15(a) for t ≥ 0, given
that Is = 0.5 A, V0 = 12 V, R1 = 60 �, R2 = 30 �,
L = 0.2 H, and C = 500 μF.

Solution: The circuit in Fig. 6-15(b) represents the steady
state condition of the circuit at t = 0− (prior to moving the
switch). Under constant conditions, C acts like an open circuit
and L acts like a short circuit. Given that Is flows entirely
through the short circuit representing the inductor, it follows
that

iL(0−) = Is = 0.5 A,

υC(0−) = 0.

Since iL through an inductor cannot change instantaneously,
nor can υC across a capacitor, these conditions are equally
applicable at t = 0. Consequently,

iL(0) = iL(0−) = 0.5 A,

and

υL(0) = υC(0) = 0.

After moving the switch (t > 0), the circuit assumes the
configuration shown in Fig. 6-15(c). After application of
source transformation, current source I ′

0 and the equivalent
resistance R′ in Fig. 6-15(d) are given by

I ′
0 = V0

R1
= 12

60
= 0.2 A,

R′ = R1 ‖ R2 = R1R2

R1 + R2
= 20�.

For the parallel RLC circuit in Fig. 6-15(d), the expressions for
α and ω0 are given by

α = 1

2R′C
= 1

2 × 20 × 500 × 10−6 = 50 Np/s,

ω0 = 1√
LC

= 1√
0.2 × 500 × 10−6

= 100 rad/s.

Since α < ω0, the circuit will exhibit an underdamped response
with a damped natural frequency ωd given in Table 6-1 as

ωd =
√

ω2
0 − α2 =

√
1002 − 502 = 86.6 rad/s.

From Table 6-1, the expression for iL(t) is given by

iL(t) = [e−αt (D1 cos ωdt + D2 sin ωdt) + iL(∞)]
for t ≥ 0.

At t = ∞, the inductor behaves like a short circuit, forcing I ′
0

to flow through it exclusively. Hence,

iL(∞) = I ′
0 = 0.2 A.

The only remaining unknowns are D1 and D2, which we
determine by applying the expressions given in Table 6-1,
namely

D1 = iL(0) − iL(∞) = (0.5 − 0.2) A = 0.3 A,

and

D2 =
1
L

υL(0) + α[iL(0) − iL(∞)]
ωd

= 0 + 50(0.5 − 0.2)

86.6
= 0.17 A.

The final expression for iL(t) is then given by

iL(t) = [0.2 + e−50t (0.3 cos 86.6t + 0.17 sin 86.6t)] A,

for t ≥ 0,

and its plot is displayed in Fig. 6-15(e).

Exercise 6-7: Determine the initial and final values for iL
in the circuit of Fig. E6.7 on the following page and
provide an expression for iL(t).
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Figure 6-15: Circuit for Example 6-9.

iL

υL
40 Ω15 mA

2 H

5 mF t = 0 80 Ω
+ _

Figure E6.7

Answer: iL(0) = 5 mA, υL(0) = 0.4 V,
iL(∞) = 15 mA, α = 2.5 Np/s,

ω0 = 10 rad/s, ωd = 9.68 rad/s, 
iL(t) = {15 − [10 cos 9.68t −18.08 sin 9.68t]e−2.5t } mA. 
(See                   )
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Technology Brief 16
RFID Tags and Antenna Design

RFID Applications

Radio-frequency identification (RFID) uses electro-
magnetic fields to transfer identifying information from
a small electrical ID circuit to an external receiver.
These are commonly used for identifying or tracking
animals, packages and goods, smart cards, tags,
etc. (Fig. TF16-1). RFID circuits are injected in pets to
help identify and return lost or stolen animals, attached
via ear tags to livestock to identify their whereabouts and
activities (how much time they spend eating or drinking),
attached to athletes via wrist bands to track and verify
their progress in a race, affixed to consumer goods
and packaging to track, locate, and maintain inventory,
and prevent theft. RFID tags can be based on either
static, unchanging data (such as the ID number for a
dog or cat), or their data can be changed by either
an internal circuit (monitoring and reporting temperature
of a refrigerated shipping container, for instance) or an
external circuit (such as marking the last time a box was
inspected).

Grain of rice

11.5 mm 11.5 mm

Figure TF16-1: RFID examples.

When combined with other circuits, the information
provided by RFID tags can be used in a myriad of
ways. For instance, credit-card sized RFID tags attached
to valuable art or other one-of-a-kind objects contain
a unique ID number, as well as circuits detecting tilt
and vibration.This information is continuously transmitted
to receivers on the ceiling of a museum to create a
security system that constantly monitors their location and
status, and generates alarms if they are moved. RFID
tags permanently installed in new guitars can help track
them throughout their lives, and those installed in vintage
guitars can help prevent fraud and theft. RFID tags are
in most access-monitoring cards today, and can uniquely
identify a person and his/her time of entry and exit. If other
items are also tracked (sensitive documents for instance),
an RFID reader can also identify what he/she is carrying
and can generate an alarm if documents are leaving a
room (or books leaving a library) that shouldn’t be. RFID
tags can be used in numerous medical applications to
identify a person and identify and track the drugs or
treatments he/she receives.

RFID and bar code scanners can be used for similar
applications, but work in very different ways. Bar code
scanners require direct visual access for a laser to read
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RFID reader

Antenna

TagTransponder

Chip

Antenna

Figure TF16-2: RFID system.

the bar code. RFID circuits can be out of sight (inside a
pet or package) as long as the wireless electromagnetic
signal can penetrate the external packaging. Bar codes
are read only. RFID systems can be read only or read-
write. Bar codes are printed directly on packaging, or
stickers affixed to packaging. RFID systems require an
external antenna and a (tiny) computer chip.The antenna
can be printed, but the chip must be somehow affixed.The
entire system is often implemented in a sticker or card.Bar
codes are essentially free (printed), whereas RFID tags
cost 15 US cents and up.

RFID Operation

In a passive RFID system, an external transponder trans-
mits a wireless signal to the RFID circuit (Fig. TF16-2),
which “wakes up” and receives power from the signal
through inductive coupling or other power harvesting
methods. It then transmits its coded ID information back to
the transponder, through the inductive link.The advantage
of passive RFID systems is that they can be very small,
not much bigger than a grain of rice, and can last for
decades without maintenance as they do not require an
internal battery to power the circuit. But the transponder
must be within a short distance (less than 1 m) of the RFID
circuit in order to receive the ID information. Active RFID
systems have a battery to power the internal RFID circuit
and can therefore transmit much further, up to 200 m.

RFID systems consist of an RFID transceiver with a
sinusoidal source and (typically) a loop antenna, through
which the current flows, creating a magnetic field. The
magnetic field is part of an electromagnetic wave that
travels a short distance through the air to the RFID tag.
The RFID tag has another (typically) loop or loop-like
antenna to receive the magnetic field and convert it back
to a current, and an RF circuit to convert it to a small

voltage that can be used to power the data circuit in
the chip. Frequencies used for RFID and some of their
applications are listed in Table TT16-1.

RFID Antennas

Two examples of RFID antennas are shown in
Fig. TF16-3. Both are printed 2-D antennas containing
an inductor, in either a coiled design as in part (a) or in a
“squiggly” design (yes, it really is called a squiggle tag),

(a) Texas Instruments RFID tag

(b) Squiggle antenna

Antenna
coil

Substrate

Chip

Chip

Figure TF16-3: RFID antennas.
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Table TT16-1: RFID frequency bands.

Approximate
Tag Cost
in Volume

Band Regulations Range Data Speed Remarks (2006) US$

120–150 kHz (LF) Unregulated 10 cm Low Animal
identification,
factory data
collection

$1

13.56 MHz (HF) (ISM) band
worldwide

10 cm – 1 m Low to
moderate

Smart cards
(MIFARE, ISO/IEC
14443)

$0.50

433 MHz (UHF) Short-range
devices

1–100 m Moderate Defense
applications, with
active tags

$5

865–868 MHz
(Europe),
902–928 MHz
(North America)
UHF

ISM band 1–12 m Moderate to
high

EAN, various
standards

$0.15
(passive tags)

2450–5800 MHz
(microwave)

ISM band 1–2 m High 802.11 (WLAN),
Bluetooth standards

$25
(active tag)

3.1–10 GHz
(microwave)

Ultra wide
band

1 to 200 m High Requires semi-active
or active tags

$5

which is often printed on a sticker label for consumer
products.

Antenna design is a subspecialty of electrical engineer-
ing. Antenna designers consider ways to either convert
current and voltage to electric and magnetic fields in
the air (for wireless transmission) or to collect those
fields in the air and convert them back into currents
and voltages. In general, the same antenna can be
used to receive and transmit the RFID signals. Antenna
performance is governed by the shape of the antenna and
its size relative to the wavelength λ of the electromagnetic
(EM) wave it radiates or intercepts. The wavelength, in
turn, is related to the signal frequency f by λ = c/f ,
where c is the velocity of light in vacuum. Hence, the
size of an antenna usually is chosen to match the EM
frequency that the RFID is intended to use. The ratio of
electric to magnetic field is called the impedance of the
antenna, and it needs to be matched to the same ratio
of voltage and current that are produced or received by
the circuit (the impedance of the circuit). The impedance
of the circuit is controlled by the capacitors, resistors,

inductors, and other elements at the input or output of the
circuit. The impedance of the antenna is controlled by its
shape and size. Coils tend to be more inductive, which
means their impedance is more like an inductor (has
a positive imaginary part). Antennas shaped like plates
tend to be more capacitive (having a negative imaginary
part). Most antennas are a combination of inductive
and capacitive, and can be modeled in circuit analysis
as circuits containing both inductors and capacitors.
Circuit elements are called lumped elements because
their capacitance, inductance, and resistance are built
from individual components, whereas an antenna is a
distributed element whose capacitance, inductance,
and resistance are spatially distributed along the length of
the antenna.Taking all of these design factors into account
at once is fairly daunting, so computer software is used
extensively in antenna design, leading to creative designs
such as the squiggle antenna and beyond. Antenna
designers sometimes say they are “painting with copper”
to describe the creative artistry of their field.
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Exercise 6-8: In the parallel RLC circuit shown in
Fig. 6-14(b), how much energy will be stored in L and C

at t = ∞?

Answer: wL = 1
2 LI 2

s , wC = 0. (See )

6-8 General Solution for Any
Second-Order Circuit with dc
Sources

According to the material covered in the preceding sections,
series and parallel RLC circuit share a common set of
characteristics. An RLC circuit is characterized by a resonant
frequency ω0 and a damping coefficient α, and when driven
by a sudden dc excitation, the circuit exhibits a response that
decays exponentially as e−αt , and it may or may not contain
an oscillatory variation, depending on whether ω0 is or is not
larger than α in magnitude, respectively. These characteristics
arise from the interplay between energy storage and energy
dissipation. During the operation of the RLC circuit, energy
is exchanged between the two storage elements—the capacitor
and the inductor—through the resistor. Dissipation is governed
by e−αt , which we can redefine as e−t/τ , with

τ = 1

α
(s). (6.58)

In this alternative form, the decay rate is specified by the time
constant τ . If τ is short (rapid decay) in comparison with the
duration of a single oscillation period T , where T = 2π/ωd,
it means that energy burns away too quickly to generate an
oscillation. This is the overdamped case. On the other hand,
if τ is sufficiently long (slow decay) in comparison with T ,
energy will move back and forth betweenL andC, generating an
oscillation. With every cycle, however, the resistance will burn
off some of the remaining energy, resulting in an underdamped
response that decays and oscillates simultaneously. If R = 0,
the circuit will oscillate forever at the resonant frequency ω0
(see Exercise 6-9).

Building on the experience we gained from our examination
of the series and parallel RLC circuits, we now extend the
method of solution to any second-order circuit, including those
containing op amps. For a circuit containing only dc sources
(or no independent sources at all), we seek to find the circuit
response x(t) for t ≥ 0, where x(t) is a voltage or current of
interest in the circuit, and t = 0 is the instant at which the circuit
experiences a sudden change (usually caused by a switch). To
that end, we propose the following solution outline:

Step 1: Develop a second-order differential equation for x(t),
for t ≥ 0. Express the equation in the general form

x′′ + ax′ + bx = c, (6.59)

where a, b, and c are constants.

Step 2: Determine the values of α and ω0:

α = a

2
, ω0 = √

b . (6.60)

Step 3: Determine whether the response x(t) is overdamped,
critically damped, or underdamped, and write down the
expression corresponding to that case from the following
general solution:

General Solution

Overdamped (α > ω0)

x(t) = [A1e
s1t + A2e

s2t + x(∞)], (for t ≥ 0)
(6.61a)

Critically Damped (α = ω0)

x(t) = [(B1 + B2t)e
−αt + x(∞)], (for t ≥ 0)

(6.61b)

Underdamped (α < ω0)

x(t) = [e−αt (D1 cos ωdt + D2 sin ωdt) + x(∞)],
(for t ≥ 0) (6.61c)

where

s1 = −α +
√

α2 − ω2
0 , (6.62a)

s2 = −α −
√

α2 − ω2
0 , (6.62b)

ωd =
√

ω2
0 − α2 . (6.62c)

� The three expressions given by Eq. (6.61) represent the
circuit response to a sudden change that occurs at t = 0.
Had the sudden change occurred at t = T0 instead, the
expressions would continue to apply, but t will need to be
replaced with (t − T0) everywhere on the right-hand side
(only) of those expressions. �
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Table 6-2: General solution for second-order circuits for t ≥ 0.

x(t) = unknown variable (voltage or current)
Differential equation: x′′ + ax′ + bx = c

Initial conditions: x(0) and x′(0)

Final condition: x(∞) = c

b

α = a

2
ω0 = √

b

Overdamped Response α > ω0

x(t) = [A1es1t + A2es2t + x(∞)] u(t)

s1 = −α +
√

α2 − ω2
0 s2 = −α −

√
α2 − ω2

0

A1 = x′(0) − s2[x(0) − x(∞)]
s1 − s2

A2 = −
[

x′(0) − s1[x(0) − x(∞)]
s1 − s2

]

Critically Damped α = ω0

x(t) = [(B1 + B2t)e−αt + x(∞)] u(t)

B1 = x(0) − x(∞) B2 = x′(0) + α[x(0) − x(∞)]
Underdamped α < ω0

D1 = x(0) − x(∞) D2 = x′(0) + α[x(0) − x(∞)]
ωd

ωd =
√

ω2
0 − α2

Step 4: Evaluate the circuit to determine x(∞) at t = ∞.
Alternatively, we can use

x(∞) = c

b
. (6.63)

Step 5: Apply initial conditions for x(t) and x′(t) at t = 0 (or
at t = T0 if the sudden change occurred at T0) to determine the
remaining unknown constants.

This procedure is highlighted in Table 6-2 and demonstrated
through Examples 6-10 to 6-12.

Example 6-10: RLC Circuit with a Short-Circuit Switch

The switch in the circuit of Fig. 6-16(a) had been open for a long
time before it was closed at t = 0. Determine iL(t) for t ≥ 0.
The circuit elements have the following values: V0 = 24 V,
R1 = 4 �, R2 = 8 �, R3 = 12 �, L = 2 H, and C = 0.2 F.

Solution: Figures 6-16(b), (c), and (d) depict the state of
the circuit at t = 0−, t ≥ 0, and t = ∞, respectively.

Step 1: Obtain differential equation for iL(t)

After closing the switch, node 1 gets connected to node 2 and
R2 becomes inconsequential to the rest of the circuit because
it is connected in parallel with a short circuit. At node 2 of the
circuit in Fig. 6-16(c), KCL gives

−i1 + iL + iC = 0. (6.64)

In terms of the node voltage υC,

−i1 = υC − V0

R1
, (6.65a)

iC = C
dυC

dt
. (6.65b)

Hence,
υC

R1
+ iL + C

dυC

dt
= V0

R1
. (6.66)

The voltage υC is equal to the sum of the voltages across L

and R3,

υC = L
diL

dt
+ iLR3. (6.67)
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(a) Circuit with switch (b) At t = 0−:  iL(0−) = V0 /(R1 + R2 + R3) = 1 A,
and υC(0−) = iL(0−) R3 = 12 V.

(c) At t > 0 (d) At t =    :  iL(   ) = V0 /(R1 + R3) = 1.5 A.8 8

iL

υC

i1

iC

L
R1

R3

C
V0

+
_

R2

i1

LR1

R3

C

V0
+
_

R2

iL

υC

1 2

1 2

21
t = 0

iC

υC(0−) = 12 V

iL(0−) = 1 A iC(0−) = 0

υ2(0−)

υ2 = υC

L
R1

i1

R3

C
V0

+
_

L
R1

R3

C
V0

+
_

iL(   )8 iC(   ) = 08

υC(   )8

i1(   )8

+
_

+
_

+
_

+
_

Figure 6-16: Circuit for Example 6-10.

Substituting Eq. (6.67) in Eq. (6.66) leads to

1

R1

(
L

diL

dt
+ iLR3

)
+ iL + C

d

dt

(
L

diL

dt
+ iLR3

)
= V0

R1
.

(6.68)
After carrying out the differentiation in the third term and
rearranging terms, we have

d2iL

dt2 +
(

L + R1R3C

R1LC

)
diL

dt
+
(

R1 + R3

R1LC

)
iL = V0

R1LC
.

(6.69)
For convenience, we rewrite Eq. (6.69) in the compact form

i′′L + ai′L + biL = c, (6.70)

where

a = L + R1R3C

R1LC
= 2 + 4 × 12 × 0.2

4 × 2 × 0.2
= 7.25, (6.71a)

b = R1 + R3

R1LC
= 4 + 12

4 × 2 × 0.2
= 10, (6.71b)

c = V0

R1LC
= 24

4 × 2 × 0.2
= 15. (6.71c)

Step 2: Determine α and ω0

α = a

2
= 7.25

2
= 3.625 (6.72a)

and

ω0 = √
b = √

10 = 3.162. (6.72b)
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Step 3: Determine damping condition and select
appropriate expression

Since α > ω0, the response is overdamped, and

iL(t) = A1e
s1t + A2e

s2t + iL(∞) (6.73)

with

s1 = −α +
√

α2 − ω2
0 = −1.85 Np/s (6.74a)

and

s2 = −α −
√

α2 − ω2
0 = −5.40 Np/s. (6.74b)

Step 4: Determine iL(∞)

From the circuit in Fig. 6-16(d), iC = 0 (open-circuit capacitor)
and

iL(∞) = V0

R1 + R3
= 24

4 + 12
= 1.5 A. (6.75)

Step 5: Invoke initial conditions

With C acting like an open circuit at t = 0− (Fig. 6-16(b)),

IL(0−) = i1(0
−) = V0

R1 + R2 + R3
= 1 A.

Since iL cannot change in zero time,

iL(0) = iL(0−) = 1 A. (6.76)

We need one additional relationship involving A1 and A2, which
can be provided by the initial condition on i′L. From the circuit
in Fig. 6-16(b) at t = 0−, we have

υC(0−) = iL(0−) R3 = 1 × 12 = 12 V. (6.77)

As we transition from t = 0− (before closing the switch) to
t = 0 (after closing the switch), neither iL nor υC can change,
which means that the voltage υ2(0) at node 2 will continue to
be 12 V and the current iL through R3 will continue to be 1 A.
Hence, the voltage υL(0) has to be

υL(0) = υ2(0) − iL(0) R3 = 12 − 1 × 12 = 0. (6.78)

Since υL = L diL/dt , it follows that

i′L(0) = 0. (6.79)

The expressions for A1 and A2 in Table 6-2 are given in terms
of x, the variable associated with the second-order differential
equation. In the present case, our differential equation is given
by Eq. (6.70), with iL(t) as the unknown variable. Hence, by
setting x = iL in the expressions for A1 and A2, we have

A1 = i′L(0) − s2[iL(0) − iL(∞)]
s1 − s2

= 0 + 5.4(1 − 1.5)

−1.85 + 5.4
= −0.76 A (6.80a)

and

A2 = −
[
i′L(0) − s1[iL(0) − iL(∞)]

s1 − s2

]
(6.80b)

= −
[

0 + 1.85(1 − 1.5)

−1.85 + 5.4

]
= 0.26 A, (6.80c)

and the final solution is then given by

iL(t) = [1.5−0.76e−1.85t +0.26e−5.4t ] A for t ≥ 0. (6.81)

Exercise 6-9: Develop an expression for iC(t) in the
circuit of Fig. E6.9 for t ≥ 0.

iC
+
_

iLt = 0

CL
I0

Figure E6.9

Answer: iC(t) = I0 cos ω0t , with ω0 = 1/
√

LC . This
is an LC oscillator circuit in which dc energy provided 
by the current source is converted into ac energy in the 
LC circuit. (See         )
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Technology Brief 17
Neural Stimulation and Recording

Section 4-12 introduced neural probes and how they can
be used to measure voltage at specific locations in the
brain. They can also be used to stimulate neurons to
control movement, sight, hearing, touch, smell, emotion,
and more. Neural stimulation and recording begin with a
neural probe such as the three dimensional neural probe
shown in Fig. 4-30 or the spiral-shaped cochlear implant
electrodes shown in Fig.TF17-1. Each electrode is meant
to stimulate one or more nearby neurons.

The electrodes are surgically inserted in proximity to
the neurons of interest, and connected onto an electrical
stimulation device that sends carefully designed electrical
pulses into the extracellular fluid around them (for neural
stimulation), or connected to an electrical receiver (that
reads signals from them in the case of neural recording).
There are many different devices, both commercially
available and in research applications, that utilize neural
stimulation or recording. These bioelectronics are one of
the most exciting and rapidly advancing areas of electrical
engineering. Several examples of these devices are given
below.

Cochlear Implant

In the cochlear implant shown in Fig. TF17-2, the ear
drum and stapes (inner bones of the ear) are replaced

Electrodes

Figure TF17-1: Preformed spiral electrode for cochlear
implant. (Courtesy of Cochlear Americas, c© 2015
Cochlear Americas.)

by a microphone and electrical circuitry. The sounds
are picked up by the microphone mounted behind the
ear, processed or coded (using electrical circuitry) into
electrical pulses associated with the sounds, and then
transmitted through the skin via inductive coupling or
direct connection to the electrodes. The electrodes place
these signals directly onto the auditory nerves, which
then send the signals to the brain, which “hears” the
sound. If the auditory nerve is not functional, an auditory
brainstem implant is used instead, wherein electrodes
directly stimulate the cochlear nucleus complex in the
lower brain stem.

Artificial Eye Retina

The artificial retina, or cortical implant, replaces
damaged eye structures with an external camera, a
wireless link (shown as the two orange inductive coils in
Fig. TF17-3), and an electrode array that stimulates the
optic nerve in the back of the eye. Another alternative is to
bypass the optical nerve and stimulate the visual cortex
of the brain directly. The resolution of sight depends on
the number of electrodes, as shown in Fig. TF17-4.

Brain Stimulation

The deep brain stimulation (DBS) or cognitive
prosthesis shown in Fig. TF17-5 is used to stimulate

1. Sounds are picked up by

the microphone.

2. The signal is then 

“coded” (turned into a 

special pattern of electrical 

pulses).

3. These pulses are sent to 

the coil and are then 

transmitted across the skin 

to the implant.

4. The implant sends a 

pattern of electrical pulses 

to the electrodes in the 

cochlea.

5. The auditory nerve picks 

up these electrical pulses 

and sends them to the 

brain. The brain recognizes 

these signals as sound.

Figure TF17-2: A cochlear implant stimulates the
auditory nerves to help deaf people hear. (Courtesy MED-
EL.)
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FigureTF17-3: Artificial retina simulates the optic nerve
to help blind people see. (Credit: John Wyatt.)

nerves deep within the brain. This has been used
to reduce tremors due to Parkinson’s disease and to
relieve some types of depression, and it has been
proposed for treating a number of other psychological and
physiological disorders. The development of applications
for direct stimulation of the brain is often preceded by
neural recording, to help researchers better understand
the natural electrical signals in the body.

Sensory and Motor Prostheses

Several designs of sensory/motor prostheses are being
developed to help patients with spinal cord injuries,
damaged or amputated limbs, loss of bladder control, and
other physical impairments. If only the nerve connections
are damaged, these may be replaced by neural recording
(to receive signals) and stimulation devices (to transmit

16 electrodes 200+ electrodes 1000+ electrodes

Figure TF17-4: Vision resolution expected with various
numbers of sight-stimulating electrodes.

Figure TF17-5: Deep brain stimulation (DBS) is used to
treat depression and tremors associated with Parkinson’s
disease. (Credit: Medtronic.)

them), thus returning some level of motion control. If a
limb is entirely gone, it can be replaced by an artificial
limb, controlled by neural recording and stimulation
(Fig. TF17-6). An interesting phenomenon associated
with these and many other types of neural prosthetics
is that the plasticity of the brain often allows the user to
learn and train the brain and body to see, hear, touch, and
move based on the adapted machine-brain interface from
the neural signals.

Pain Control

Another application of both internal and external electrical
stimulation is in control of pain. Basically, the pain
signals are masked by a stimulation-induced tingling
known as paresthesia. Internal devices used to induce
paresthesia include the spinal cord stimulator (SCS)
shown in Fig.TF17-7 and external devices include pulsed
electromagnetic field (PEMF) stimulators. External
devices use one of two methods for directing the pulsed
energy to the location of the pain. One method involves
inductive coupling (using coils external to the body),
and the other involves the use of two electrodes on
either side of the region, transmitting current from one
electrode through the body region to the other electrode
(Fig. TF17-8). PEMF devices have also been used to
improve bone and soft tissue healing.

Emerging technology in neural prostheses and other
body-machine interfaces has already provided life im-
provements for many.This technology is still in its infancy,
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Figure TF17-6: Mind-controlled bionic arm uses both neural recording and neural stimulation within the brain and at the
attachment site of the artificial limb. (Credit: Todd Kuiken, MD, Center for Bionic Medicine.)

Figure TF17-7: Spinal cord stimulator (SCS). (Credit:
Spine-health.com.)

and many interesting challenges remain. How to create
a full-function, long-term biocompatible implant small
enough to be placed directly into the eye, brain, spine,
bladder, brain and other organs, with battery life and/or
power harvesting to support its operation, but with heat
and power low enough not to damage the critical neurons
it is connected to, surgically placing it correctly every time

Figure TF17-8: Wearable pulsed electromagnetic
field (PEMF) pain-control device for the knee. (Credit:
Orthomedical.)

for every patient, with easy ways to get information to and
from the device . . . there are enough challenges to keep
engineers engaged for decades to come!



“book” — 2015/5/4 — 7:16 — page 366 — #37

366 CHAPTER 6 RLC CIRCUITS

(a) Circuit

(b) At t = 8

i1

R1

L1 L2

R2

Vs u(t)
+
_ ix iy

i2

R1

L1 L2

R2

Vs
+
_

8i2(  )8i1(  )

8ix(  ) 8iy(  )

Figure 6-17: Circuit for Example 6-11.

Example 6-11: Two-Inductor Circuit

Determine i1(t) and i2(t) in the circuit of Fig. 6-17 for
t ≥ 0. The component values are Vs = 1.4 V, R1 = 0.4 �,
R2 = 0.3 �, L1 = 0.1 H, and L2 = 0.2 H.

Solution: We designate ix and iy as the mesh currents in the
two loops, as shown. We will analyze the circuit in terms of ix
and iy and then use the solutions to determine i1 and i2.

For t ≥ 0, the mesh equations are given by:

−Vs + R1ix + L1
d

dt
(ix − iy) = 0, (ix loop)

L1
d

dt
(iy − ix) + R2iy + L2

diy

dt
= 0, (iy loop)

which can be rearranged and rewritten in the form

R1ix + L1i
′
x − L1i

′
y = Vs, (ix loop) (6.82)

−L1i
′
x + R2iy + (L1 + L2)i

′
y = 0. (iy loop) (6.83)

Step 1: Develop a differential equation in ix alone

Take the time derivative of all terms in the iy-loop equation:

−L1i
′′
x + R2i

′
y + (L1 + L2)i

′′
y = 0. (6.84)

To convert Eq. (6.84) into a differential equation in ix alone, we
need to develop expressions for i′y and i′′y in terms of ix and its
derivatives. By isolating i′y in Eq. (6.82), we have

i′y = R1

L1
ix + i′x − Vs

L1
. (6.85)

To obtain an expression for i′′y , we simply take the derivative of
Eq. (6.85),

i′′y = R1

L1
i′x + i′′x . (6.86)

After inserting Eqs. (6.85) and (6.86) into Eq. (6.84) and
rearranging terms, we have

i′′x +
[
(R1 + R2)L1 + R1L2

L1L2

]
i′x +

(
R1R2

L1L2

)
ix = R2Vs

L1L2
,

(6.87)
which can be rewritten in the compact form

i′′x + ai′x + bix = c, (6.88)

where

a = (R1 + R2)L1 + R1L2

L1L2
= 7.5,

b = R1R2

L1L2
= 6, c = R2Vs

L1L2
= 21.

Step 2: Evaluate α, ω0, s1, and s2

α = a

2
= 7.5

2
= 3.75 Np/s, (6.89a)

ω0 = √
b = √

6 = 2.45 rad/s, (6.89b)

s1 = −α +
√

α2 + ω2
0

= −3.75 +
√

(3.75)2 − 6 = −0.91 Np/s, (6.89c)

and

s2 = −3.75 −
√

(3.75)2 − 6 = −6.6 Np/s. (6.89d)

Step 3: Write expression for ix(t)

Since α > ω0, ix will exhibit an overdamped response given
by

ix(t) = [ix(∞) + A1e
s1t + A2e

s2t ]
= [ix(∞) + A1e

−0.91t + A2e
−6.6t ]. (6.90)

Step 4: Evaluate final condition

At t = ∞, the inductors in the circuit behave like short circuits
(Fig. 6-17(b)), in which case the current generated by Vs will
flow entirely through L1. Hence,

ix(∞) = Vs

R1
= 1.4

0.4
= 3.5 A (6.91a)

and

iy(∞) = 0. (6.91b)

The expression for ix(t) becomes

ix(t) = 3.5 + A1e
−0.91t + A2e

−6.6t . (6.92)
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Step 5: Invoke initial conditions

Before t = 0, the circuit contained no sources. Hence,

i1(0) = i1(0
−) = 0 (6.93a)

and

i2(0) = i2(0
−) = 0, (6.93b)

which implies that

ix(0) = ix(0
−) = 0 (6.94)

and

iy(0) = iy(0
−) = 0. (6.95)

At t = 0, with no currents flowing through either loop, the
voltages across L1 and L2 are both equal to Vs. That is,

i′1(0) = 1

L1
υL1(0) = Vs

L1
(6.96a)

and

i′2(0) = 1

L2
υL2(0) = Vs

L2
, (6.96b)

Consequently,

i′x(0) = i′1(0) + i′2(0) = Vs

L1
+ Vs

L2
= 21. (6.97)

Now that we know the values of ix(0), i′x(0), and ix(∞), we
can apply the general expressions for A1 and A2 in Table 6-2
to get

A1 = i′x(0) − s2[ix(0) − ix(∞)]
s1 − s2

= 21 + 6.6(0 − 3.5)

−0.91 + 6.6
= −0.36 A

and

A2 = −
[
i′x(0) − s1[ix(0) − ix(∞)]

s1 − s2

]

= −
[

21 + 0.91(0 − 3.5)

−0.91 + 6.6

]
= −3.14 A.

The final expression for ix(t) is then given by

ix(t) = [3.5 − 0.36e−0.91t − 3.14e−6.6t ] A. (6.98)

Repetition of steps 1–4 for iy requires that we start by taking
the time derivative of the ix-loop equation (Eq. (6.82)) and then

using the iy-loop equation (Eq. (6.83)) to generate expressions
for i′x and i′′x . The procedure leads to

iy(t) = 1.23(e−0.91t − e−6.6t ) A. (6.99)

Finally, the solutions for i1(t) and i2(t) are:

i1(t) = ix(t) − iy(t)

= [3.5 − 1.59e−0.91t − 1.91e−6.6t ] A (6.100a)

and

i2(t) = iy(t) = 1.23(e−0.91t − e−6.6t ) A (6.100b)

(for t ≥ 0)

Exercise 6-10: For the circuit in Fig. E6.10, determine
iC(t) for t ≥ 0.

iCt = 0

3 Ω
3 Ω

2 A
2 H 20 mF

Figure E6.10

Answer: iC(t) = 2e−1.5t cos 4.77t A. (See )

Example 6-12: Second-Order Op-Amp Circuit

Determine iL(t) in the op-amp circuit of Fig. 6-18(a) for t ≥ 0.
Assume Vs = 1 mV, R1 = 10 k�, R2 = 1 M�, R3 = 100 �,
L = 5 H and C = 1 μF.

Solution: KCL at node υn gives

i1 + in + i2 + i3 = 0,

or equivalently,

υn − Vs

R1
+ in + υn − υout

R2
+ C

d

dt
(υn − υout) = 0. (6.101)

Since υn = υp = 0, in = 0, and

υout = R3iL + L
diL

dt
, (6.102)
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(a)

(b)

(c)

Op-amp circuit

8At t =

At t = 0

in

R3

R1

R2

C

L

i1
i2

i3

iL
υn
υp+

- +
+
_ Vs u(t)

υout

_

8iL(  )

R3

R1

R2

8υout(  )

C

L

+
+
_ Vs

_

iL(0)

R3

R1

R2

υout(0)

C

L

+
- +

−

+
_ Vs +

_

Figure 6-18: Op-amp circuit of Example 6-12.

Equation (6.101) becomes

R3

R2
iL +

(
L

R2
+ R3C

)
diL

dt
+ LC

d2iL

dt2 = − Vs

R1
. (6.103)

Rearranging, we have

i′′L + ai′L + biL = c, (6.104)

where

a = L + R2R3C

R2LC
= 21,

b = R3

R2LC
= 20,

and

c = −Vs

R1LC
= −0.02.

The damping behavior of iL is determined by how the magnitude
of α compares with that of ω0:

α = a

2
= 10.5 Np/s,

ω0 = √
b = √

20 = 4.47 rad/s.

Since α > ω0, iL will exhibit an overdamped response given
by

iL(t) = [A1e
s1t + A2e

s2t + iL(∞)] u(t),

with

s1 = −α +
√

α2 − ω2
0 = −1.0,

s2 = −α −
√

α2 − ω2
0 = −20.

At t = ∞, the circuit assumes the equivalent configuration
shown in Fig. 6-18(b), which is an inverting amplifier with
an output voltage

υout(∞) = −R2

R1
Vs.

Hence,

iL(∞) = υout(∞)

R3
= − R2Vs

R1R3
= −1 mA.

The expression for iL(t) becomes

iL(t) = [A1e
−t + A2e

−20t − 10−3]. (6.105)

To determine the values of A1 and A2, we examine initial
conditions for iL and i′L.At t = 0−, there were no active sources
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in the circuit, and since iL cannot change instantaneously, it
follows that

iL(0) = iL(0−) = 0,

which means that the inductor behaves like an open circuit at
t = 0, as depicted in Fig. 6-18(c). Also, since the voltage υC
across the capacitor was zero before t = 0, it has to remain at
zero at t = 0, which is why it has been replaced with a short
circuit in Fig. 6-18(c). Consequently, υout(0) = 0, υL(0) = 0,
and

i′L(0) = 1

L
υL(0) = 0.

From Table 6-2, with x = iL,

A1 = i′L(0) − s2[iL(0) − iL(∞)]
s1 − s2

= 0 + 20(0 + 1)

−1 + 20
× 10−3 = 1.05 mA (6.106)

and

A2 = −
[
i′L(0) − s1[iL(0) − iL(∞)]

s1 − s2

]

= −
[

0 + 1(0 + 1)

−1 + 20

]
× 10−3 = −0.053 mA. (6.107)

The final expression for iL(t) is then given by

iL(t) = [1.05e−t − 0.053e−20t − 1] mA, for t ≥ 0.

Concept Question 6-6:A circuit contains two capacitors
and three inductors, in addition to resistors and 
sources. Under what circumstance is it a second-
order circuit? (See         )

Concept Question 6-7: Suppose a = 0 in Eq. (6.59).
What type of response will x(t) have in that case?
(See         )

6-9 Multisim Analysis of Circuit
Response

Understanding the behavior of even a simple RLC circuit
is sometimes a challenging task for electrical and computer
engineering students. In reaction to a sudden change, a circuit
gives rise to voltage and current variations that depend on the
circuit topology, the initial conditions of its components, and the
values of those components. In this section, we describe how to
use Multisim to analyze the response of the series RLC circuit
we discussed in earlier sections. The procedure is intended to
demonstrate the steps one would follow to analyze any circuit

with Multisim. As an example of a real-world application of the
RLC-circuit response, we will then examine how such a circuit
is used in RFID (radio frequency identification) technology.

6-9.1 The Series RLC Circuit

Using the now (hopefully) familiar schematic tools, draw
a series RLC circuit, including a switch, in the Multisim
Schematic Capture window. Use the parts and component
values listed in Table 6-3, and add an oscilloscope as shown
in Fig. 6-19. The scope is used for both L1 and C1, so that
we may compare the voltages across them on the same screen.
Make sure that before starting the interactive simulation, the
initial condition of the switch is in position 2, so that the dc
voltage source is not connected directly to the RLC circuit.
Upon starting the simulation, you should see no voltage across
any of the three components. After hitting the space bar to
move the switch (Fig. 6-20), υL(t) will initially jump in level
to 1 V and then exhibit an underdamped oscillatory response as
a function of time. In contrast, υC(t) will exhibit an oscillatory
behavior that will dampen out with time to assume a final value
of 1 V.

A note on the Interactive Simulation settings is appropriate
here. When you run an Interactive Simulation, Multisim
numerically solves for the solution to the circuit at successive
points in time. The resolution of this time step can be modified
under Simulate → Interactive Simulation Settings. Both
the maximum time step (TMAX) and the initial time step
can be changed. Normally, there is no reason to do this and
Multisim’s defaults will work well. However, when using the
virtual instruments, sometimes time points are generated too
quickly and this makes it difficult for the user to observe the
behavior, or conversely the resolution may be too small so that

Position 1

Position 2

Figure 6-19: Multisim screen with RLC circuit.
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Table 6-3: Component values for the circuit in Fig. 6-19.

Component Group Family Quantity Description

1 Basic Resistor 1 1 � resistor

300 m Basic Inductor 1 300 mH inductor

5.33 m Basic Capacitor 1 5.33 mF capacitor

SPDT Basic Switch 1 Single-pole double-throw (SPDT) switch

DC POWER Sources Power Sources 1 1 V dc source

υC(t)

υL(t)

Switch moved from position 2
to position 1

Interactive Simulation

Figure 6-20: Voltage responses to moving the switch in the
RLC circuit from position 2 to position 1.

the progression of time in the Interactive Simulation becomes
annoyingly slow. When generating the traces in Fig. 6-20,
for example, it may be difficult to see the damped behavior
directly on the scope window because it scrolls by too fast.
In that case, it can be helpful to reduce both the maximum and
initial time steps (10–100 × reduction usually works fine). This
forces the computer to simulate more data points and slows it
down, allowing you to see the trace appear more slowly. The
drawback of this tweak is that you also use up more memory
(and filespace).

Exercise 6-11: Given the component values in the 
Multisim circuit of Fig. 6-19, what are the values of ω0

and α for the circuit response?

Answer: (See            )

Exercise 6-12: Is the natural response for the circuit in
Fig. 6-19 over-, under-, or critically damped? You can
determine this both graphically (from the oscilloscope)
and mathematically, by comparing ω0 and α. 

Answer: (See                  )

Exercise 6-13: Modify the value of R in the circuit of
Fig. 6-19 so as to obtain a critically damped response.

Answer: (See )

6-9.2 RFID Circuit

Radio frequency identification (RFID) circuits are fast
becoming ubiquitous in many mass consumer applications,
ranging from tracking parcels and shipments to “smart” ID
badges (see Technology Brief 16). Most systems in use today
rely on a transceiver (usually handheld) that can remotely
interrogate one or more RFID tags (ranging in size from
a few millimeters to a few centimeters). Some tags reply
with only a serial number, while others are connected to
miniature sensors and return values for temperature, humidity,
acceleration, position, etc. The key to the widespread success of
these RFID tags is that they do not require batteries to operate!
If the transceiver is in close proximity to the tag (usually within
a fraction of a meter), the radio-frequency power it transmits
is sufficient to activate the RFID tag. The RFID tag uses an
RLC circuit to harvest this power and communicate back to
the transceiver (Fig. 6-21). The essential elements of the RFID
communication system are shown in the circuit of Fig. 6-22. [An
actual RFID circuit is more sophisticated, but the basic principle
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Transceiver

RF transceiver

Antenna 1 (Ls)

Antenna 2 (Lp)

RFID tag

Magnetic field coupling

Vs
+

_

Cp

Rp

Figure 6-21: Illustration of an RFID transceiver in close proximity to an RFID tag. Note that the RFID tag will only couple to the transceiver
when the two inductors are aligned along the magnetic field (shown in blue).

RFID transceiver RFID tag

CpLpLs

R
T

υout(t)
υs RpυC

+
−~

Magnetic field

To receiver circuits

Figure 6-22: Basic elements of the RFID.

of operation is the same.] In transmit mode—with the SPDT
switch connected to terminal T —the transceiver circuit consists

of a ac voltage source, υs, connected in series with inductor Ls.
By moving the switch to terminal R, the transceiver circuit
becomes a receiver with output voltage υout(t). In transmit
mode, υs generates a current through Ls, which induces a
magnetic field around it. If inductor Lp of the RFID tag is
close to Ls, the magnetic field generated by Ls will induce
a current through Lp. This current becomes the power source
in the RFID-tag circuit, and the mechanism for building up the
voltage across Cp to some maximum value VC.

When the switch is moved from transmit mode to receive
mode, υs stops delivering power to Ls. The current through Lp,
however, cannot change to zero instantaneously. The RLC
circuit will react to the sudden change with an oscillatory
underdamped response characterized by a damped natural
frequency ωd, whose value is governed by the choice of values
for Rp, Lp, and Cp of the RFID tag. This oscillation frequency
becomes part of the ID of that particular tag. In the same way
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Table 6-4: Parts for the Multisim circuit in Fig. 6-23.

Component Group Family Quantity Description

TS IDEAL Basic Transformer 1 1 mH:1 mH ideal transformer

1 k Basic Resistor 1 1 k� resistor

1 μ Basic Capacitor 1 1 μF capacitor

SPDT Basic Switch 1 SPDT switch

AC CURRENT Sources Signal Current Source 1 1 mA, 5.033 kHz

that magnetic coupling served to transfer power from Ls to Lp
during the transmit mode, it also serves to transfer information
in the opposite direction—from Lp to Ls—during the receive
mode. Since

υout(t) = Ls
diLs

dt
,

the output voltage recorded after moving the switch to receive

mode provides the reply by the RFID tag to the earlier
excitation introduced by υs during the transmit mode. [Real
RFID transceivers transmit a few bits of data by superimposing
digital bits onto the oscillations.]

To illustrate the operation of the RFID tag, we can simulate
the process in Multisim. Using the parts listed in Table 6-4, we
can build the circuit shown in the Multisim window of Fig. 6-23.

T

R

vout(t) vC(t)

vout

Figure 6-23: Multisim rendition of RFID circuit.
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Switch moved from T to R

C
ha

nn
el

 A
 V

ol
ta

ge
 (V

)

Time (s)

Figure 6-24: Oscilloscope trace for RFID receive channel
υout(t) after moving the switch from T to R.

To simulate magnetic coupling between inductors Ls and Lp,
we use transformer T1, which represents two closely coupled
inductors sharing a common magnetic field. In Multisim we set
the inductance of each of the two transformer units to 1 mH and
the coupling coefficient to 1. The circuit uses an oscilloscope to
monitor υout(t). The oscilloscope trace is displayed in Fig. 6-24.
Note that when the switch is moved from transmit to receive
mode, υout(t) exhibits an immediate response that then decays
exponentially with time. You may also want to plot υC(t) and
iC(t) to examine the voltage and current experienced by the
RFID tag itself during transmit and receive periods.

Concept Question 6-8: How does the transmitter in the
RFID system transfer power to the RLC circuit?
(See         )

Concept Question 6-9: How does the transceiver elicit a
reply from the RFID tag? (See         )

Exercise 6-14:Calculate ω0, α, and ωd for the RLC circuit 
in Fig. 6-23. How do ω0 and ωd compare with the angular 
frequency of the current source? This result, as we will 
learn later when we study resonant circuits in Chapter 9, 
is not at all by coincidence.

Answer: (See             )

Exercise 6-15: Ideally, we would like the response of the
RFID tag to take a very long time to decay down to zero,
so as to contain as many digital bits as possible. What
determines the decay time? Change the values of some of
the components in Fig. 6-23 so as to decrease the damping 
coefficient by a factor of 2.

Answer: (See           )

Summary

Concepts

• Under dc steady state conditions, a capacitor behaves
like an open circuit and an inductor behaves like a short
circuit.

• Second-order circuits include series and parallel RLC
circuits, as well as any circuit containing two passive,
energy storage elements (capacitors and inductors).

• The response of a second-order circuit (containing dc
sources) to a sudden change consists of a transient

component, which decays to zero as t → ∞, and a
steady state component that has a constant value.

• The transient response may be overdamped, critically
damped, or underdamped, depending on the values of
the circuit elements.

• The general solution for second-order circuits is
applicable to circuits containing op-amps.

• Multisim can be used to simulate the response of any
second-order circuit.



“book” — 2015/5/4 — 7:16 — page 374 — #45

374 CHAPTER 6 RLC CIRCUITS

Mathematical and Physical Models
Step response of series and parallel

RLC circuits (See Table 6-1)

General Solution for Second Order Circuits:
(see details in Table 6-3)

Differential equation x′′ + ax′ + bx = c

General Solution for Second Order Circuits (cont’d.):

Overdamped Response (α > ω0)
x(t) = [x(∞) + A1e

s1t + A2e
s2t ] u(t)

Critically Damped Response (α > ω0)
x(t) = [x(∞) + (B1 + B2t)e

−αt ] u(t)

Underdamped Response (α > ω0)
x(t) = [x(∞) + [D1 cos ωdt + D2 sin ωdt]e−αt u(t)

Important Terms Provide definitions or explain the meaning of the following terms:

characteristic equation
critically damped
critically damped

response
damped natural

frequency
damping coefficient
initial condition
initial time step

final condition
first-order circuit
homogeneous
homogeneous solution
invoke initial and

final conditions
MEMS
maximum time step
natural response

nepers/second
oscillator
overdamped response
particular
particular solution
resonant frequency
radio frequency

identification
RFID

second-order circuit
steady-state
steady-state response
time constant
time period
transient
transient response
underdamped response

PROBLEMS

Section 6-1: Initial and Final Conditions

*6.1 The SPST switch in the circuit of Fig. P6.1 closes at t = 0
after it had been open for a long time. Draw the configurations
that appropriately represent the state of the circuit at t = 0−,
t = 0, and t = ∞ and use them to determine (a) υC(0) and
iL(0), (b) iC(0) and υL(0), and (c) υC(∞) and iL(∞).

υC

υL iL

L

C

iC
3 Ω

4 Ω

+
_

t = 0
12 V

Figure P6.1: Circuit for Problem 6.1.

6.2 The SPST switch in the circuit of Fig. P6.2 opens at t = 0,
after it had been closed for a long time. Draw the configurations

∗
Answer(s) available in Appendix G.

that appropriately represent the state of the circuit at t = 0−,
t = 0, and t = ∞ and use them to determine (a) υC(0) and
iL(0), (b) iC(0) and υL(0), and (c) υC(∞) and iL(∞).

υC

υL

iLL

C

iC

2 Ω

4 Ω

5 Ω

+
_

t = 0
18 V

Figure P6.2: Circuit for Problem 6.2.

6.3 The SPST switch in the circuit of Fig. P6.3 opens at t = 0,
after it had been closed for a long time. Draw the configurations
that appropriately represent the state of the circuit at t = 0−,
t = 0, and t = ∞ and use them to determine

*(a) υC(0) and iL(0),

(b) iC(0) and υL(0), and
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(c) υC(∞) and iL(∞).

υC

υL iL

L

C

iC

2 kΩ

4 kΩ

+
_

t = 0
6 V

+
_12 V

Figure P6.3: Circuit for Problem 6.3.

6.4 The SPST switch in the circuit of Fig. P6.4 opens at t = 0,
after it had been closed for a long time. Draw the configurations
that appropriately represent the state of the circuit at t = 0−,
t = 0, and t = ∞ and use them to determine (a) υC(0) and
iL(0), (b) iC(0) and υL(0), and (c) υC(∞) and iL(∞).

υC

iC

5 Ω

10 Ω 8 Ω

+
_45 V

iL

υL CL

t = 0

Figure P6.4: Circuit for Problem 6.4.

6.5 The SPST switch in the circuit of Fig. P6.5 closes at t = 0,
after it had been opened for a long time. Draw the configurations
that appropriately represent the state of the circuit at t = 0−,
t = 0, and t = ∞ and use them to determine (a) υC(0) and
iL(0), (b) iC(0) and υL(0), and (c) υC(∞) and iL(∞).

υC

υLL

C

iC
2 Ω

3 Ω

24 Ω
+
_10 V

4 A

iL

t = 0

Figure P6.5: Circuit for Problems 6.5 and 6.6.

6.6 Repeat Problem 6.5, but start with a closed switch that
opens at t = 0.

*6.7 For the circuit in Fig. P6.7, determine i1(0) and i2(0).

L2L1

i2

8 Ω

6 Ω 3 Ω+
_30 V

1

2
i1t = 0

Figure P6.7: Circuit for Problem 6.7.

6.8 For the circuit of Fig. P6.8, determine (a) iC1(0), iR1(0),
iC2(0), and iR2(0) and (b) υC1(∞) and υC2(∞).

C1

C2

iR2

iC1

υC1

iR1

iC2

υC22 Ω

5 Ω

5 Ω

3 Ω

20 V
10 V

+
_ +

_

t = 0

Figure P6.8: Circuit for Problem 6.8.
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6.9 For the circuit in Fig. P6.9:

(a) Draw the configurations that appropriately represent the
state of the circuit at t = 0−, t = 0, and t = ∞.

(b) Use the configurations to determine iL(0−), υC(0−), iL(0),
υC(0), iL(∞), and υC(∞).

+
_ 4 Ω

2 Ω

5 V L

iL

10 Ω

+
_C υC

t = 0 t = 0

Figure P6.9: Circuit for Problem 6.9.

*6.10 For the circuit in Fig. P6.10, determine iC(0), υC(0),
iR(0), υR(0), iL(0), υL(0), υL(∞), iR(∞), υC(∞), and iL(∞).

+

+

_

_

+

_
+
_

υC

υR

12 Ω

8 Ω Lt = 024 V υL

iC iL

iR

Figure P6.10: Circuit for Problem 6.10.

6.11 For the circuit in Fig. P6.11, find i1(0−), i2(0), υC(0),
and i3(∞).

Sections 6-2 to 6-6: Series RLC Circuit

*6.12 Determine υC(t) in the circuit of Fig. P6.12 and plot
its waveform for t ≥ 0, given that V0 = 12 V, R1 = 0.4 �,
R2 = 1.2 �, L = 0.1 H, and C = 0.4 F. Use a time scale that
appropriately captures the shape of the waveform in your plot.

υCV0

R1

R2

L

C
+
_

iL

t = 0

Figure P6.12: Circuit for Problems 6.12 to 6.14.

+

+

_

_

+
_

υC

i1

i3

i2

3 Ω 3 Ω

6 Ω
3 Ω

30 V

υL
5 A

t = 0

Figure P6.11: Circuit for Problem 6.11.

6.13 Determine iL(t) in the circuit of Fig. P6.12 and plot
its waveform for t ≥ 0, given that V0 = 12 V, R1 = 0.4 �,
R2 = 1.2 �, L = 0.1 H, and C = 0.1 F. Use a time scale that
appropriately captures the shape of the waveform in your plot.

*6.14 In the circuit of Fig. P6.12, V0 = 12 V, R1 = 0.4 �,
R2 = 1.2 �, and L = 0.1 H. What should the value of C be in
order for iL(t) to exhibit a critically damped response? Provide
an expression for iL(t) and plot its waveform for t ≥ 0.

6.15 The voltage υ in a certain circuit is described by the
differential equation

3υ ′′ + 24υ ′ + 75υ = 0.

(a) Determine the values of α and ω0.

(b) What type of damping is exhibited by υ(t)?

*6.16 In the circuit of Fig. P6.16, the switch is moved from
position 1 to position 2 at t = 0. Provide an expression for
υC(t) for t ≥ 0.

υCV0

R 1

2

L

C
+
_

t = 0

Figure P6.16: Circuit for Problem 6.16.
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6.17 A series RLC circuit exhibits the following voltage and
current responses:

υC(t) = (6 cos 4t − 3 sin 4t)e−2t u(t) V,

iC(t) = −(0.24 cos 4t + 0.18 sin 4t)e−2t u(t) A.

Determine α, ω0, R, L, and C.

*6.18 Determine iC(t) in the circuit of Fig. P6.18 for t ≥ 0.

υC

iC
+
_

2 Ω

4 Ω

2 Ω
12 Ω30 V 0.64 F

4 H

t = 0

Figure P6.18: Circuit for Problem 6.18.

6.19 Determine υC(t) in the circuit of Fig. 6.19 for t ≥ 0.

υC

0.5 kΩ

4 mA 4 μF 0.25 H

t = 0

Figure P6.19: Circuit for Problem 6.19.

6.20 Determine iC(t) in the circuit of Fig. 6.20 for t ≥ 0.

iC

8 Ω2 Ω

3 Ω0.25 H

20 V

2.5 mF

t = 0

+
_

Figure P6.20: Circuit for Problem 6.20.

6.21 The circuit in Fig. 6-4(c) exhibits the response

υ(t) = (12 + 36t)e−3t V, (for t ≥ 0).

If R = 12 �, determine the values of Vs, L, and C.

*6.22 Determine iC(t) in the circuit of Fig. 6.22 and plot its
waveform for t ≥ 0.

υC

iC

2 Ω 8 Ω

+
_12 V 2 H

0.1 F

t = 0

Figure P6.22: Circuit for Problems 6.22 and 6.23.

6.23 Repeat Problem 6.22, retaining the same values for all
elements in the circuit except C. Choose the value of C so that
the response of iC(t) is critically damped.

6.24 Determine iC(t) in the circuit of Fig. 6.24 and plot its
waveform for t ≥ 0, given that L = 0.05 H. Use a time scale
that appropriately captures the shape of the waveform in your
plot.

iC

υC

0.52 Ω

0.1 Ω
0.1 Ω4 mA Ft = 0

L

1
1.8

Figure P6.24: Circuit for Problem 6.24 and 6.25.

*6.25 Choose the value of the inductor in the circuit of Fig. 6.24
so that υC exhibits a critically damped response and determine
υC(t) for t ≥ 0.

6.26 Determine iC(t) in the circuit of Fig. 6.26 and plot
its waveform for t ≥ 0, given that Vs = 24 V, R1 = 2 �,
R2 = 4 �, L = 0.4 H, and C = 10

24 F.

iC
t = 0Vs

R1

R2

C

L

+
_

Figure P6.26: Circuit for Problems 6.26 and 6.27.
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6.27 Repeat Problem 6.26 with the elements retaining their
values, except change C to 10

29 F.

6.28 In the circuit of Fig. 6.28:

*(a) What is the value of υC(∞)?

(b) How long does it take after t = 0 for υC to reach 0.99 of
its final value? [Hint: After solving for υC(t), step through
values of t over the range 2 ≤ t ≤ 2.5 to determine the
value that satisfies the stated condition.]

+
_

υC4 Ω

Ω

2 Ω
6 Ω

24 V
0.25 F

3 A

1 H
4
3t = 0

Figure P6.28: Circuit for Problem 6.28.

*6.29 Choose the value of C in the circuit of Fig. 6.29 so
that υC(t) has a critically damped response for t ≥ 0. Plot the
waveform of υC(t).

υC

6 Ω

6 Ω

+
_18 V +

_12 V

0.1 H C

t = 0

6 Ω

Figure P6.29: Circuit for Problem 6.29.

6.30 Determine iL(t) in the circuit of Fig. 6.30 and plot its
waveform for t ≥ 0.

iL

t = 0+
_

0.1 Ω 0.3 Ω

0.2 F0.2 V
0.1 V

0.2 H

+
_

Figure P6.30: Circuit for Problem 6.30.

6.31 Determine iC(t) and iL(t) in the circuit of Fig. 6.31 for
t ≥ 0.

iC

100 Ω10 Ω

1 H

12 V

5 mFt = 0

iL

+
_

Figure P6.31: Circuit for Problem 6.31.

*6.32 For the circuit in Fig. P6.32, assume that before t = 0,
the circuit had been in that state for a long time. Find υC(t) and
iL(t) for t ≥ 0.

+
_

12 Ω 2 mH1 mH

4 V 5 Ωt = 0 2 A

υC

6 μF

+ _ iL

Figure P6.32: Circuit for Problem 6.32.

6.33 Find υC(t) for t ≥ 0 in the circuit in Fig. P6.33.
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+ _
+ _

+
_

2 Ω

2 Ω2 Ω

2 Ω10 V 2 Ω
2 mH

4u(−t) V υC

8 mF

Figure P6.33: Circuit for Problem 6.33.

6.34 For the circuit in Fig. P6.34, determine:

(a) υC(0).

(b) α, ω0, and the type of response you expect υC(t) to exhibit.

(c) iC(t) for t ≥ 0.

+
_

+
_

0.5 A
t = 0

t = 0

υC

iC
4 Ω

8 Ω

6 V

12 Ω

10 Ω

0.5 mH

10 μF

Figure P6.34: Circuit for Problem 6.34.

*6.35 For the circuit in Fig. P6.35, find υC(t) for t ≥ 0.

+
_

+
_

υC 2 mF

t = 0

υs

2 A

5 Ω 0.5 mH

1 Ω2 Ω

4 A8 V

Figure P6.35: Circuit for Problem 6.35.

Section 6-7: Parallel RLC Circuit

6.36 Determine iL(t) and iC(t) in the circuit of Fig. 6.36 and
plot both waveforms for t ≥ 0. The SPDT switch was moved
from position 1 to position 2 at t = 0.

10 Ω

2 Ω H
0.1 F

12 V

21

t = 0
+
_

iL

iC 10
6

Figure P6.36: Circuit for Problem 6.36.

6.37 Determine iL(t) in the circuit of Fig. 6.37 and plot its
waveform for t ≥ 0.

3 Ω

24 V
+
_ 0.5 mF2 mH

iL iC

6 Ω 6 A

t = 0

Figure P6.37: Circuit for Problems 6.37 and 6.39.

*6.38 Determine iL(t) in the circuit of Fig. 6.38 and plot its
waveform for t ≥ 0. The capacitor had no charge on it prior to
t = 0.

2 kΩ1.5 mA 0.1 μF1.6 H

t = 0
+
_

iL

υC

Figure P6.38: Circuit for Problem 6.38.

6.39 Determine iC(t) in the circuit of Fig. 6.37 for t ≥ 0.

*6.40 Determine iL(t) in the circuit of Fig. 6.40 and plot its
waveform for t ≥ 0.
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500 Ω

16 V 2.5 μF 2.5 H

t = 0
+
_

iC iL

Figure P6.40: Circuit for Problems 6.40 and 6.41.

6.41 Determine iC(t) in the circuit of Fig. 6.40 and plot its
waveform for t ≥ 0.

6.42 Determine iL(t) in the circuit of Fig. 6.42 and plot its
waveform for t ≥ 0.

iL200 Ω

800 Ω16 V 0.2 mF

H

+
_ t = 0

25
3

Figure P6.42: Circuit for Problem 6.42.

*6.43 For the circuit of Fig. 6.43, determine:

(a) iL(t) for t ≥ 0

(b) The amount of energy stored in the capacitor at t = ∞.

+
_ +

_

2 Ω

1 mH

1 mF

iL

10 V

5 V 15 V
+
_

1 Ω

4 Ω

t = 0 t = 0

5 Ω

Figure P6.43: Circuit for Problem 6.43.

6.44 Assume that the circuit in Fig. P6.44 had been in that
state for a long time prior to t = 0.

(a) Determine the value of C for which iL(t) exhibits the
fastest smooth response.

(b) Use the value of C found in part (a) to find iL(t) for t ≥ 0.

+
_

6 Ω
8 Ω5 mH

t = 0

iL

C
6 Ω

9 V

Figure P6.44: Circuit for Problem 6.44.

6.45 For the circuit in Fig. P6.45:

(a) Determine υC(t) for t ≥ 0.

(b) Determine the time at which the inductor has maximum
energy stored in it and calculate the amount of that
maximum energy.

+
_3 Ω 6 mH 0.5 mF

t = 0

12 VυC

2 Ω6 Ω

6 A +
_

Figure P6.45: Circuit for Problem 6.45.

*6.46 In the circuit in Fig. P6.46, υs = 20 V.

(a) Determine iL(t) for t ≥ 0.

(b) If the source is changed to υs(t) = e−2t u(t), can you still
use the solution method in part (a) to find iL(t)? If not,
why not?

+
_

+
_

iL
10 Ω

10 Ω

2 mH 1 mF υC

t = 0

5 Ωυs

Figure P6.46: Circuit for Problem 6.46.
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Section 6-8: General Solution

6.47 The switch in the circuit of Fig. P6.47 was closed at t = 0
and then reopened at t = 1 ms. Determine iL(t) and υC(t) for
t ≥ 0. Assume the capacitor had no charge prior to t = 0.

1 kΩ3 mA 0.2 μF3.2 H

t = 0

t = 1 ms

+
_ υC

iL

Figure P6.47: Circuit for Problem 6.47.

*6.48 After closing the switch in the circuit of Fig. P6.48 at
t = 0, it was reopened at t = 1 ms. Determine iC(t) and plot
its waveform for t ≥ 0. Assume no energy was stored in either
L or C prior to t = 0.

200 Ω

20 V 2.5 μF2.5 H

t = 0

t = 1 ms

+
_

iC

Figure P6.48: Circuit for Problem 6.48.

6.49 Determine the current responses iL(t) and iC(t) to a
rectangular-current pulse as shown in Fig. P6.49, given that
Is = 10 mA and R = 499.99 �. Plot the waveforms of iL(t),
iC(t), and is(t) on the same scale.

1 μF1 H
R

iCiL
is =

t = 0 t = 1 ms

Is

0

Figure P6.49: Circuit for Problem 6.49.

*6.50 The voltage in a certain circuit is described by the
differential equation

υ ′′ + 5υ ′ + 6υ = 144 (for t ≥ 0).

Determine υ(t) for t ≥ 0 given that υ(0) = 16 V and
υ ′(0) = 9.6 V/s.

6.51 The current in a certain circuit is described by the
differential equation

i′′ + √
24 i′ + 6i = 18 (for t ≥ 0).

Determine i(t) for t ≥ 0 given that i(0) = −2 A and
i′(0) = 8

√
6 A/s.

6.52 For the circuit in Fig. P6.52:

(a) Determine iL(0) and υL(0).

(b) Derive the differential equation for iL(t) for t ≥ 0.

*(c) Solve the differential equation and obtain an explicit
expression for iL(t), given that Vs = 12 V, Rs = 3 �,
R1 = 0.5 �, R2 = 1 �, L = 2 H, and C = 2 F.

R2

Rs

R1

L

C

iL

+
_

1

2
Vs

t = 0

Figure P6.52: Circuit for Problem 6.52.

6.53 Develop a differential equation for iL(t) in the circuit
of Fig. P6.53. Solve it to determine iL(t) for t ≥ 0 subject
to the following element values: Is = 36 μA, Rs = 100 k�,
R = 100 �, L = 10 mH, and C = 10 μF.

R

Rs LC

iL
�
�Is

t = 0

Figure P6.53: Circuit for Problem 6.53.
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*6.54 Develop a differential equation for υC in the circuit of
Fig. P6.54. Solve it to determine υC(t) for t ≥ 0. The element
values are Is = 0.2 A, Rs = 30 �, R1 = 10 �, R2 = 20 �,
R3 = 20 �, L = 4 H, and C = 5 mF.

R3

Rs υC

L
C

R1

R2

Is

t = 0

Figure P6.54: Circuit for Problem 6.54.

6.55 Develop a differential equation for iL in the circuit of
Fig. P6.55. Solve it for t ≥ 0. The switch was closed at t =
0 and then reopened at t = 0.5 s, and the element values are
Vs = 18 V, Rs = 1 �, R1 = 5 �, R2 = 2 �, L = 2 H, and
C = 1

17 F.

t = 0

t = 0.5 s

R2

C

R1

Rs

Vs

L

iL

+
_

Figure P6.55: Circuit for Problem 6.55.

*6.56 Determine i2 in the circuit of Fig. P6.56 for t ≥ 0, given
that Vs = 10 V, Rs = 0.1 M�, R = 1 M�, C1 = 1 μF, and
C2 = 2 μF.

C2
C1

R

Rs

Vs

i2

+
_

t = 0

Figure P6.56: Circuit for Problems 6.56 and 6.57.

6.57 Repeat Problem 6.56, but this time assume that the
switch had been closed for a long time and then opened at
t = 0.

*6.58 The op-amp circuit shown in Fig. P6.58 is called a
multiple-feedback bandpass filter. If υin = A u(t), determine
υout(t) for t ≥ 0 for A = 6 V, R1 = 10 k�, R2 = 5 k�,
Rf = 50 k�, and C1 = C2 = 1 μF.

υout
υin

Rf

R2

R1

C2

C1

+
_

Figure P6.58: Circuit for Problem 6.58.

6.59 The op-amp circuit shown in Fig. P6.59 is called a
two-pole low-pass filter. If υin = A u(t), determine υout(t) for
t ≥ 0 for A = 2 V, R1 = 5 k�, R2 = 10 k�, R3 = 12 k�,
R4 = 20 k�, C1 = 100 μF, and C2 = 200 μF.

υout
υin

R2

R3

R1

C2

C1

R4

+
_

Figure P6.59: Circuit for Problem 6.59.

Section 6-9: Multisim

6.60 Using Multisim, draw a series RLC circuit with
Vs = 24 V, R = 12 �, L = 300 mH, and C = 10 mF. Use
the Transient Analysis tool to obtain a plot of υC(t) for
0 < t < 0.2 s.
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220 Ω
90 Ω 500 mH

R1 L1

R2 υC C1 100 μF
+
_

+
_V1 I1 0.1u(t − 0.05) A5u(0.003 − t) V

Figure P6.64: Circuit for Problem 6.64.

6.61 Using Multisim, draw the circuit in Fig. E6.4 of Exercise
6.4. Use the Transient Analysis tool to obtain a plot of iC(t) for
0 < t < 1 s.

6.62 Using Multisim, draw the circuit in Fig. E6.4 of Exercise
6.4. Use the Transient Analysis tool to obtain three plots of
iC(t) for (a) an underdamped response, (b) a critically damped
response, and (c) an overdamped response. To obtain the three
desired responses, adjust the value of the 20 � resistor as
needed.

6.63 Adjust the values of the source and the components in
Fig. 6-23 such that the RLC circuit is excited and oscillates at a
frequency of 1 MHz and the oscillation envelope decays to 10
percent of its initial value after 12 oscillations once the circuit
is switched to “listen” mode.

6.64 Build the circuit shown in Fig. P6.64 in Multisim and
then plot the voltage υC(t) from 0 to 200 ms using Transient
Analysis.

6.65 Build the active second-order circuit shown in
Fig. P6.65, plot the signal υout from 0 to 5 ms, and note how
long it takes before the amplitude of the oscillations drops
below 1 V. Change the value of R2 to 100 k� and repeat the
simulation. (You may need to readjust your timescale.)

Potpourri Questions

6.66 How are transducers and actuators related?

6.67 How does a capacitive accelerometer work?

6.68 What are the differences between a passive RFID tag and
an active RFID tag?

6.69 RFID tags operate at several frequency bands. How does
the data speed change as the frequency is increased from the
LF band to the microwave band?

6.70 Describe how electrical stimulation is used in a cochlear
implant, in motor prostheses, and in reducing tremors in patients
with Parkinson’s disease.

υout

10 kΩ

+
_

+
_V1

R2

1 kΩ

R1

(1 + 4u(t − 0.001)) V

10 mH

L1

C1

10 nF

Figure P6.65: Circuit for Problem 6.65.

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest
via your computer. [myDAQ tutorials and videos are available
on                        .]

m6.1 Initial and Final Conditions: The SPST switch in the 
circuit of Fig. m6.1 opens at t = 0, after it had been closed for 
a long time. Draw the circuit configurations that appropriately 
represent the state of the circuit at t = 0−, t = 0, and t = ∞
and use them to determine:

(a) υC(0), iC(0) and υC(∞), and

(b) iL(0), υL(0) and iL(∞).

Component values are: R1 = 680 �, R2 = 100 �,
R3 = 100 �, switch resistance Rsw = 10 �, wire resistance
Rw = 10 �, L = 3.3 mH, C = 0.1 μF, and Vs = 4.7 V.
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+ _

+ _

R3

L

iC(t)

iL(t)

t = 0

C

R2 Rw

R1 Vs

Rsw
+
_

υC(t)

υL(t)

Figure m6.1 Circuit for Problem m6.1.

m6.2 Natural Response of the Series RLC Circuit: The
SPST switch in the circuit of Fig. m6.2 opens at t = 0, after it
had been closed for a long time.

(a) Determine υC(t) for t ≥ 0.

(b) Plot υC(t) over the time range 0 ≤ t ≤ 1 ms with a plotting
tool such as MathScript or MATLAB.

(c) Determine the following numerical values; use either the
equation υC(t) or take cursor measurements from the plot
you created in the previous step:

• Initial voltage υC,

• υC(0),

• Maximum value of υC,

• Damped oscillation frequency fd = ωd/2π in Hz,
and

• Damping coefficient α.

Use these component values: R1 = 220 �, R2 = 330 �,
L = 33 mH, C = 0.01 μF, and Vsrc = 3.0 V.

+
_

R2R1

CVsrc L
+
_ υC(t)

t = 0

Figure m6.2 Circuit for Problem m6.2.

m6.3 Three-Resistor Circuit: Determine υ(t) of the circuit
shown in Fig. m6.3 for t ≥ 0, given that the switch is opened
at t = 0, after having been closed for a long time. Use
the following component values: Vsrc = 8 V, R1 = 470 �,
R2 = 100 �, Rw = 90 �, C = 1.0 μF, and L = 33 mH.

(a) Plot υ(t) from 0 to 5 ms using a tool such as MathScript or
MATLAB. Include a hard copy of the script used to create
the plot.

(b) Determine the following values for υ(t):

• Initial value υ(0),

• Final value of υ(t),

• Minimum value of υ(t), and

• Time to reach the minimum value of υ(t).

+ _
υ(t)

+
_

R1

Rw

L
Vsrc C

R2t = 0

Figure m6.3 Circuit for Problem m6.3.
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Objectives

Learn to:

� Transform time-varying sinusoidal functions to
the phasor domain and vice versa.

� Analyze any linear circuit in the phasor domain.

� Determine the impedance of any passive element,
or the combination of elements connected in series
or in parallel.

� Perform source transformations, current division
and voltage division, and determine Thévenin
and Norton equivalent circuits, all in the phasor
domain.

υ(t)

T/2 T 3T/2 2T
0 t

Vm

−Vm

Electric circuits whose currents and voltages vary sinusoidally
with time—called alternating current (ac) circuits—are at the
heart of most analog applications. This chapter and the next
four are dedicated to ac circuits.

� Apply nodal analysis, mesh analysis, and other
analysis techniques, all in the phasor domain.

� Design simple RC phase-shift circuits.

� Design a dc power-supply circuit.

� Use Multisim to analyze ac circuits

CHAPTER 7
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Overview

From solar illumination to radio and cell-phone transmissions,
we are surrounded by electromagnetic (EM) waves all of
the time. EM waves are composed of sinusoidally varying
electric and magnetic fields, and the fundamental parameter
that distinguishes one EM wave from another is the wave’s
frequency f (or equivalently, its wavelength λ = c/f , where
c = 3 × 108 m/s is the velocity of light in a vacuum). The
frequency of red light, for example, is 4.3 × 1014 Hz, and one
of the frequencies assigned to cell-phone traffic is 1,900 MHz
(1.9×109 Hz). Both are EM waves—and so are X-rays, infrared
waves, and microwaves—but they oscillate sinusoidally at
different frequencies and interact with matter differently (see
Technology Brief 20 on the Electromagnetic Spectrum).

The term “ac” (alternating current) is associated with
electric circuits whose currents and voltages vary sinusoidally
with time, just like EM waves. In fact, ac circuits and EM
waves are not only similar, but they also are connected directly:
when flowing in a conductor, an ac current with an oscillation
frequency f radiates EM waves of the same frequency. The
radiated waves can couple signals from one part of the circuit
to another through the air space they share or the insulating
regions between them. The coupling may serve as an intentional
means of communication, as in the case of radio frequency
identification (RFID) circuits, or it may introduce unwelcome
signals that interfere with the intended operation of the circuit.
Mitigation of such undesirable consequences is part of a
subdiscipline of electrical engineering called electromagnetic
compatibility.

This and the next four chapters will be devoted to the study
of ac circuits, which are far more prevalent than dc circuits
and offer a much broader array of practical applications. In our
study, we will assume that all currents and voltages are confined
to the discrete elements in the circuit and to the connections
between them, allowing us to ignore EM-compatibility issues
altogether.

In Chapter 12, we will learn how to use the Laplace
transform technique to determine the response of a circuit
to any source with any realistic waveform, including ac
sources. In general, the solution consists of two components,
a transient component—in response to sudden changes, such
as the opening or closing of switches—and a steady state
component that mimics the time variation of the source. If (a)
all the sources in the circuit are ac sources and (b) our interest
is in only the steady state component (because the transient
component decays to approximately zero within a short time
after connecting the circuit to the ac source), we can use the
phasor domain technique (instead of the Laplace transform
technique) to analyze the circuit, because it is mathematically

simpler and easier to implement. In fact, the phasor domain
technique is a special case of the Laplace transform technique.

� The phasor domain technique—also known as the
frequency domain technique—applies to ac circuits only,
and provides a solution of only the steady state component
of the total solution. �

7-1 Sinusoidal Signals

The voltage between two points in a circuit (or the current
flowing through a branch) is said to have a sinusoidal waveform
if its time variation is given by a sinusoidal function. The term
sinusoid includes both sine and cosine functions. For example,
the expression

υ(t) = Vm cos ωt (7.1)

describes a sinusoidal voltageυ(t) that has an amplitudeVm and
an angular frequency ω. The amplitude defines the maximum
or peak value that υ(t) can reach, and −Vm is its lowest negative
value. The argument of the cosine function, ωt , is measured
either in degrees or in radians, with

π (rad) ≈ 3.1416 (rad) = 180◦. (7.2)

Since ωt is measured in radians, the unit for ω is (rad/s).
Figure 7-1(a) displays a plot of υ(t) as a function of ωt . The
familiar cosine function starts at its maximum value (at ωt =
0), decreases to zero at ωt = π/2, goes into negative territory
for half of a cycle, and completes its first cycle at ωt = 2π .
Occasionally, we may want to display a sinusoidal signal as a
function of t , instead of ωt .We note that the angular frequency ω

is related to the oscillation frequency (or simply the frequency)
f of the signal by

ω = 2πf (rad/s), (7.3)

with f measured in hertz (Hz), which is equivalent to
cycles/second. A sinusoidal voltage with a frequency of 100 Hz
makes 100 oscillations in 1 s, each of duration 1/100 = 0.01 s.
The duration of a cycle is its period T . Thus,

T = 1

f
(s). (7.4)

By combining Eqs. (7.1), (7.3), and (7.4), υ(t) can be rewritten
as

υ(t) = Vm cos
2πt

T
, (7.5)
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υ(t) versus ωt

υ(t)

4π3π2πππ/2
0 ωt

Vm

−Vm

υ(t) versus t

(a)

(b)

υ(t)

T/2 T 3T/2 2T
0 t

Vm

−Vm

Figure 7-1: The function υ(t) = Vm cos ωt plotted as a
function of (a) ωt and (b) t .

which is displayed in Fig. 7-1(b) as a function of t . We observe
that the cyclical pattern of the waveform repeats itself every T

seconds. That is,

υ(t) = υ(t + nT ) (7.6)

for any integer value of n.
Sinusoidal waveforms can be expressed in terms of either

sine or cosine functions.

� To avoid confusion, we adopt the cosine form as
our reference standard throughout this and followup
chapters. �

This means that we will always express voltages and currents in
terms of cosine functions, so if a voltage (or current) waveform
is given in terms of a sine function, we should first convert it
to a cosine form with a positive amplitude before proceeding
with our circuit analysis. Conversion from sine to cosine form
is realized through the application of Eq. (7.7a) of Table 7-1.
For example,

i(t) = 6 sin(ωt + 30◦)
= 6 cos(ωt + 30◦ − 90◦) = 6 cos(ωt − 60◦). (7.8)

Table 7-1: Useful trigonometric identities (additional
relations are given in Appendix D).

sin x = ± cos(x ∓ 90◦) (7.7a)
cos x = ± sin(x ± 90◦) (7.7b)
sin x = − sin(x ± 180◦) (7.7c)
cos x = − cos(x ± 180◦) (7.7d)
sin(−x) = − sin x (7.7e)
cos(−x) = cos x (7.7f)

sin(x ± y) = sin x cos y ± cos x sin y (7.7g)
cos(x ± y) = cos x cos y ∓ sin x sin y (7.7h)

2 sin x sin y = cos(x − y) − cos(x + y) (7.7i)
2 sin x cos y = sin(x + y) + sin(x − y) (7.7j)
2 cos x cos y = cos(x + y) + cos(x − y) (7.7k)

In addition to ωt , the argument of the cosine function contains
a constant angle of −60◦. A cosine-referenced sinusoidal
function generally takes the form

υ(t) = Vm cos(ωt + φ), (7.9)

where φ is called its phase angle. For i(t) of Eq. (7.8),
φ = −60◦.

The angle φ may assume any positive or negative value,
but we usually add or subtract multiples of 2π radians (or
equivalently, multiples of 360◦) so that the remainder is between
−180◦ and +180◦. The magnitude and sign (+ or −) of φ

determine, respectively, by how much and in what direction
the waveform of υ(t) is shifted along the time axis, relative
to the reference waveform corresponding to υ(t) with φ = 0.
Figure 7-2 displays three waveforms:

υ1(t) = Vm cos

(
2πt

T
− π

4

)
(lags by π/4), (7.10a)

υ2(t) = Vm cos
2πt

T
(reference waveform with φ = 0),

(7.10b)

υ3(t) = Vm cos

(
2πt

T
+ π

4

)
(leads by π/4). (7.10c)

We observe that waveform υ3(t), which is shifted backwards in
time relative to the reference waveform υ2(t), attains its peak
value before υ2(t) does. Consequently, waveform υ3(t) is said
to lead υ2(t) by a phase lead of π/4. Similarly, waveform
υ1(t) lags υ2(t) by a phase lag of π/4. A cosine function
with a negative phase angle φ takes longer to reach a specified
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ϕ = π/4 ϕ = −π/4

T
t

T
2

3T
2

υ3(t):  Leads reference wave
(occurs earlier in time)

υ2(t):  Reference wave  (ϕ = 0)
υ1(t):  Lags reference wave (occurs later in time)

Vm

υ

−Vm

∆t

Figure 7-2: Plots of υ(t) = Vm cos[(2πt/T ) + φ] for three different values of φ.

reference level (such as the peak value) than it takes the zero-
phase angle function to reach that level, signifying a phase lag.
When φ is positive, it signifies a phase lead. A phase angle of
2π corresponds to a time shift along the time axis equal to one
full period T . Proportionately, a phase angle of φ (in radians)
corresponds to a time shift �t given by

�t =
(

φ

2π

)
T . (7.11)

We generalize our discussion of phase lead and lag by stating
that:

� Given two sinusoidal functions with the same angular
frequency ω, and both expressed in standard cosine form
as

υ1(t) = V1 cos(ω + φ1)

and

υ2(t) = V2 cos(ω + φ2),

the relevant terminology is:

υ2 leads υ1 by (φ2 − φ1),

υ2 lags υ1 by (φ1 − φ2),

υ1 and υ2 are in phase if φ2 = φ1,

υ1 and υ2 are in phase-opposition if φ2 = φ1 ± 180◦.
(out of phase)

�

Example 7-1: Voltage Waveform

A sampling oscilloscope is used to measure a voltage signal
υ(t). The measurements reveal that υ(t) is periodic with an
amplitude of 10 V, its maxima are separated by 20 ms, and one
of its maxima occurs at t = 1.2 ms. Determine the functional
form of υ(t).

Solution: Given that Vm = 10 V and

T = 20 ms = 2 × 10−2 s,

υ(t) is given by

υ(t) = 10 cos

(
2πt

2 × 10−2 + φ

)
= 10 cos(100πt + φ) V.

Application of υ(t = 1.2 ms) = 10 V gives

10 = 10 cos(100π × 1.2 × 10−3 + φ),

which requires the argument of the cosine to be a multiple of
2π ,

0.12π + φ = 2nπ, n = 0, ±1, ±2, . . .

The smallest value of φ in the range [−180◦, 180◦] that satisfies
the preceding equation corresponds to n = 0, and is given by

φ = −0.12π = −21.6◦.

Hence,

υ(t) = 10 cos(100πt − 21.6◦) V.



“book” — 2015/5/4 — 7:17 — page 389 — #5

7-2 REVIEW OF COMPLEX ALGEBRA 389

Example 7-2: Phase Lead / Lag

Given the current waveforms

i1(t) = −8 cos(ωt − 30◦) A

and

i2(t) = 12 sin(ωt + 45◦) A,

does i1(t) lead i2(t), or the other way around, and by how much?

Solution: Standard cosine format requires that the sinu-
soidal functions be cosines and that the amplitudes have positive
values. Application of Eq. (7.7d) of Table 7-1 allows us to
remove the negative sign preceding the amplitude of i1(t),

i1(t) = −8 cos(ωt − 30◦) = 8 cos(ωt − 30◦ + 180◦)
= 8 cos(ωt + 150◦) A.

Application of Eq. (7.7a) to i2(t) leads to

i2(t) = 12 sin(ωt + 45◦) = 12 cos(ωt + 45◦ − 90◦)
= 12 cos(ωt − 45◦) A.

Hence, φ1 = 150◦, φ2 = −45◦, and

�φ = φ2 − φ1 = −195◦.

The concept of phase lead/lag requires that �φ be within the
range [−180◦, 180◦]. Addition of 360◦ to �φ converts it to
165◦, which means that i2 leads i1 by 165◦.

Concept Question 7-1: A sinusoidal waveform is 
characterized by three parameters. What are they, and 
what does each one of them specify? (See         )

Concept Question 7-2: Waveforms υ1(t) and υ2(t) have
the same angular frequency, but υ1(t) leads υ2(t). Will
the peak value of υ1(t) occur sooner or later than that of 
υ2(t)? Explain. (See         )

Exercise 7-1: Provide an expression for a 100 V, 60 Hz
voltage that exhibits a minimum at t = 0.

Answer: υ(t) = 100 cos(120πt  + 180◦) V. (See )

Exercise 7-2: Given two current waveforms:

i1(t) = 3 cos ωt

and

i2(t) = 3 sin(ωt + 36◦),

does i2(t) lead or lag i1(t), and by what phase angle?

Answer: i2(t) lags i1(t) by 54◦. (See                   )

7-2 Review of Complex Algebra

This section provides a review of complex algebra, in
preparation for the introduction of the phasor domain technique
in Section 7-3.

A complex number z may be written in the rectangular form

z = x + jy, (7.12)

where x and y are the real (Re) and imaginary (Im) parts of z,
respectively, and j = √−1. That is,

x = Re(z), y = Im(z). (7.13)

Alternatively, z may be written in polar form as

z = |z|ejθ = |z| θ (7.14)

where |z| is the magnitude of z, θ is its phase angle, and the
form θ is a useful shorthand representation commonly used
in numerical calculations. A phase angle may be expressed in
degrees, as in θ = 30◦, or in radians, as in θ = 0.52 rad.

By applying Euler’s identity,

ejθ = cos θ + j sin θ, (7.15)

we can convert z from polar form, as in Eq. (7.14), into
rectangular form, as in Eq. (7.12)),

z = |z|ejθ = |z| cos θ + j |z| sin θ, (7.16)
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θ

y z

x

|z|

Im(z)

Re(z)

x = |z| cos θ
y = |z| sin θ

θ = tan−1 (y/x)

+|z| = x2 + y2

Figure 7-3: Relation between rectangular and polar
representations of a complex number z = x + jy = |z|ejθ .

which leads to the relations

x = |z| cos θ, y = |z| sin θ,

|z| =
√

x2 + y2 , θ = tan−1(y/x).

(7.17)

(7.18)

The two forms of z are illustrated graphically in Fig. 7-3.
Because in the complex plane, a complex number assumes the
form of a vector, it is represented by a bold letter in this book.

When using Eq. (7.18), care should be taken to ensure that
θ is in the proper quadrant by noting the signs of x and y

individually, as illustrated in Fig. 7-4. Complex numbers z2 and
z4 point in opposite directions and their phase angles θ2 and θ4
differ by 180◦, despite the fact that (y/x) has the same value in

θ1 = tan−1      = 56.3o

z1 = 2 + j3

z4 = 2 − j3

θ4 = −θ1

θ2 = 180o − θ1

θ3 = −θ2

z3 = −2 − j3

z2 = −2 + j3

−1−2

−2

−3

−3

1 3

3

2 3
2

2

1 θ1
θ2

θ4θ3

Im(z)

Re(z)
−1

Figure 7-4: Complex numbers z1 to z4 have the same

magnitude |z| =
√

22 + 32 = 3.61, but their polar angles
depend on the polarities of their real and imaginary components.

both cases. Also note that, since |z| is a positive quantity, only
the positive root in Eq. (7.18) is applicable.

The complex conjugate of z, denoted with a star superscript
(or asterisk), is obtained by replacing j (wherever it appears)
with −j , so that

z∗ = (x + jy)∗ = x − jy = |z|e−jθ = |z| −θ . (7.19)

The magnitude |z| is equal to the positive square root of the
product of z and its complex conjugate:

|z| = √
z z∗ . (7.20)

We now highlight some of the properties of complex algebra
that we will likely encounter in future sections.

Equality: If two complex numbers z1 and z2 are given by

z1 = x1 + jy1 = |z1|ejθ1 , (7.21a)

z2 = x2 + jy2 = |z2|ejθ2 , (7.21b)

then z1 = z2 if and only if (iff) x1 = x2 and y1 = y2 or,
equivalently, |z1| = |z2| and θ1 = θ2.

Addition:

z1 + z2 = (x1 + x2) + j (y1 + y2). (7.22)

Multiplication:

z1z2 = (x1 + jy1)(x2 + jy2)

= (x1x2 − y1y2) + j (x1y2 + x2y1), (7.23a)

or

z1z2 = |z1|ejθ1 · |z2|ejθ2

= |z1||z2|ej (θ1+θ2)

= |z1||z2|[cos(θ1 + θ2) + j sin(θ1 + θ2)]. (7.23b)

Division: For z2 �= 0,

z1

z2
= x1 + jy1

x2 + jy2
= (x1 + jy1)

(x2 + jy2)
· (x2 − jy2)

(x2 − jy2)

= (x1x2 + y1y2) + j (x2y1 − x1y2)

x2
2 + y2

2

,

(7.24a)
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Table 7-2: Properties of complex numbers.

Euler’s Identity: ejθ = cos θ + j sin θ

sin θ = ejθ − e−jθ

2j
cos θ = ejθ + e−jθ

2

z = x + jy = |z|ejθ z∗ = x − jy = |z|e−jθ

x = Re(z) = |z| cos θ |z| = √
zz∗ = √

x2 + y2

y = Im(z) = |z| sin θ θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1(y/x) if x > 0,

tan−1(y/x) ± π if x < 0,

π/2 if x = 0 and y > 0,

−π/2 if x = 0 and y < 0.

zn = |z|nejnθ z1/2 = ±|z|1/2ejθ/2

z1 = x1 + jy1 z2 = x2 + jy2

z1 = z2 iff x1 = x2 and y1 = y2 z1 + z2 = (x1 + x2) + j (y1 + y2)

z1z2 = |z1||z2|ej (θ1+θ2)
z1

z2
= |z1|

|z2| ej (θ1−θ2)

−1 = ejπ = e−jπ = 1 ±180◦

j = ejπ/2 = 1 90◦ −j = e−jπ/2 = 1 −90◦
√

j = ±ejπ/4 = ± (1 + j)√
2

√−j = ±e−jπ/4 = ± (1 − j)√
2

or

z1

z2
= |z1|ejθ1

|z2|ejθ2
= |z1|

|z2|e
j (θ1−θ2)

= |z1|
|z2| [cos(θ1 − θ2) + j sin(θ1 − θ2)].

(7.24b)

Powers: For any positive integer n,

zn = (|z|ejθ )n

= |z|nejnθ = |z|n(cos nθ + j sin nθ), (7.25)

z1/2 = ±|z|1/2ejθ/2

= ±|z|1/2[cos(θ/2) + j sin(θ/2)]. (7.26)

Useful Relations:

−1 = ejπ = e−jπ = 1 180◦ , (7.27a)

j = ejπ/2 = 1 90◦ , (7.27b)

−j = −ejπ/2 = e−jπ/2 = 1 −90◦ , (7.27c)√
j = (ejπ/2)1/2 = ±ejπ/4 = ±(1 + j)√

2
, (7.27d)

√−j = ±e−jπ/4 = ±(1 − j)√
2

. (7.27e)

For quick reference, the preceding properties of complex
numbers are summarized in Table 7-2. Note that if a complex
number is given by (a + jb) and b = 1, it can be written either
as (a + j1) or simply as (a + j). Thus, j is synonymous with
j1.
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Figure 7-5: Complex numbers V and I in the complex plane
(Example 7-3).

Example 7-3: Working with Complex Numbers

Given two complex numbers

V = 3 − j4,

I = −(2 + j3).

(a) Express V and I in polar form, and find (b) VI, (c) VI∗, (d)
V/I, and (e)

√
I .

Solution: (a)

|V| = √
VV∗ = √

(3 − j4)(3 + j4) = √
9 + 16 = 5,

θV = tan−1(−4/3) = −53.1◦,

V = |V|ejθV = 5e−j53.1◦ = 5 −53.1◦ ,

|I| =
√

22 + 32 = √
13 = 3.61.

Since I = (−2 − j3) is in the third quadrant in the complex
plane (Fig. 7-5),

θI = −180◦ + tan−1 ( 3
2

) = −123.7◦,
I = 3.61 −123.7◦ .

Alternatively, whenever the real part of a complex number is
negative, we can factor out a (−1) multiplier and then use
Eq. (7.27a) to replace it with a phase angle of either +180◦
or −180◦, as needed. In the case of I, the process is as follows:

I = −2 − j3 = −(2 + j3) = e±j180◦ ·
√

22 + 32 ej tan−1(3/2)

= 3.61ej57.3◦
e±j180◦

.

Since our preference is to end up with a phase angle within
the range between −180◦ and +180◦, we will choose −180◦.
Hence,

I = 3.61e−j123.7◦
.

(b)

VI = (5 −53.1◦)(3.61 −123.7◦)
= (5 × 3.61) (−53.1◦ − 123.7◦) = 18.05 −176.8◦ .

(c)

VI∗ = 5e−j53.1◦ × 3.61ej123.7◦ = 18.05ej70.6◦
.

(d)

V
I

= 5e−j53.1◦

3.61e−j123.7◦ = 1.39ej70.6◦
.

(e)

√
I =

√
3.61e−j123.7◦

= ±√
3.61 e−j123.7◦/2 = ±1.90e−j61.85◦

.

Concept Question 7-3: If Z is a complex number that 
lies in the first quadrant in the complex plane, its 
complex conjugate Z∗ will lie in which quadrant? 
(See         )

Concept Question 7-4: If two complex numbers have the
same magnitude, are they necessarily equal to each other? 
(See         )

Exercise 7-3: Express the following complex functions
in polar form:

z1 = (4 − j3)2,

z2 = (4 − j3)1/2.

z2 = ±√
5 −18.4◦ .Answer:    z1 = 25 −73.7◦ ,

(See )

Exercise 7-4: Show that
√

2j = ±(1 + j). (See )
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Technology Brief 18
Touchscreens and Active Digitizers

Touchscreen is the common name given to a wide variety
of technologies that allow computer displays to directly
sense information from the user. In older systems, this
usually meant the display could detect and pinpoint where
a user touched the screen surface; newer systems can
detect multiple touch locations as well as the associated
touch pressures simultaneously, with very high resolution.
This has led to a surge of applications in mobile comput-
ing, cell phones, personal digital assistants (PDA), and
consumer appliances. Interactive touchscreens which de-
tect multiple touches and interact with styli are now com-
monly used in phones, tablet computers and e-readers.

Numerous technologies have been developed since
the invention of the electronic touch interface in 1971 by
Samuel C. Hurst. Some of the earlier technologies were
susceptible to dust, damage from repeat use, and poor
transparency. These issues largely have been resolved
over the years (even for older technologies) as experience
and advanced material selection have led to improved
devices. With the explosion of consumer interest in
portable, interactive electronics, newer technologies have
emerged that are more suitable for these applications.
Figure TF18-1 summarizes the general categories of
touchscreens in use today. Historically, touchscreens
were manufactured separately from displays and added
as an extra layer of the display.More recently, display com-
panies have begun to manufacture sensing technology
directly into the displays; some of the newer technologies
reflect this.

Resistive

Resistive touchscreens are perhaps the simplest to
understand. A thin, flexible membrane is separated from
a plastic base by insulating spacers. Both the thin
membrane and the plastic base are coated on the inside
with a transparent conductive film (indium tin oxide (ITO)
often is used). When the membrane is touched, the two
conductive surfaces come into contact. Detector circuits
at the edges of the screen can detect this change in
resistance between the two membranes and pinpoint the
location on the X–Y plane. Older designs of this type were
susceptible to membrane damage (from repeated flexing)
and suffered from poor transparency.

Capacitive

Older capacitive touchscreens employ a single thin,
transparent conductive film (usually indium tin oxide
(ITO)) on a plastic or glass base. The conductive film
is coated with another thin, transparent insulator for
protection. Since the human body stores charge, a finger
tip moved close to the surface of the film effectively forms
a capacitor where the film acts as one of the plates and
the finger as the other. The protective coating and the air
form the intervening dielectric insulator. This capacitive
coupling changes how a current flowing across the film
surface is distributed; by placing electrodes at the screen
corners and applying an ac electric signal, the location of
the finger capacitance can be calculated precisely. One
variant of this idea is to divide the sensing area into many
smaller squares (just like pixels on the display) and to
sense the change in capacitance across each of them
continuously and independently; this is commonly known
as self-capacitance sensing. A newer development,
found in many modern portable devices, is the use
of mutual capacitance sensing touchscreens, which
employ two sets of conductive lines, each on a different
layer. On one layer, the lines might run horizontally, while
on another layer below the first the lines run vertically. At
each point of overlap between the lines on the two layers,
a parallel plate capacitor is formed. If there are M lines
on the top layer and N lines on the bottom, there will be
M×N such nodes.Whenever a finger moves near a node,
the capacitance of the node changes. By monitoring the
capacitance of each node continuously, the touchscreen
can detect when touches occur and where. The principal
advantages of a touchscreen of this type are its ability
to detect many simultaneous touches and its ability to
detect very light ones. Capacitive technologies are much
more resistant to wear and tear (since they are not flexed)
than resistive touchscreen and are somewhat more trans-
parent (> 85 percent transparency) since they can have
fewer films and avoid air gaps. These types of screens
can be used to detect metal objects as well, so pens with
conductive tips can be used on writing interfaces.

Not all capacitive touch systems are integrated with
screens; a number of interactive media technologies
developed over the last 15 years integrate the touch
sensing technology into furniture, household objects, or
even countertops and overlay a display using nearby
projection equipment. Some interactive tables operate
this way. A completely different way to detect touch relies
on the measurement of acoustic energy on or near the
touchscreen. There are several ways to make use of
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Figure TF18-1: Touchscreen technologies: (a) resistive, (b) capacitive, (c) pressure/strain sensor, (d) acoustic, (e) infrared,
and (f) active digitizer.

acoustic energy to measure touch. One implementation
relies on transmission of high-frequency acoustic energy
across the surface of the display material.

Pressure
Touch also can be detected mechanically. Pressure
sensors can be placed at the corners of the display screen

or even the entire display assembly, so whenever the
screen is depressed, the four corners will experience
different stresses depending on the (X,Y) position of
the pressure point. Pressure screens benefit from high
resistance to wear and tear and no losses in transparency
(since there is no need to add layers over the display
screen).
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Acoustic
A completely different way to detect touch relies on the
transmission of high-frequency acoustic energy across
the surface of the display material. Bursts of 5 MHz tones
are launched by acoustic actuators from two corners of
the screen. Acoustic reflectors all along the edges of the
screen re-direct the incoming waves to the sensors. Any
time an object comes into contact with the screen, it
dampens or absorbs some fraction of the energy traveling
across the material. The exact (X,Y) position can be
calculated from the energy hitting the acoustic sensors.
The contact force can be calculated as well, because the
acoustic energy is dampened more or less depending on
how hard the screen is pressed.

Another approach is to listen, with very sensitive
acoustic transducers (i.e., microphones) to the char-
acteristic pressure signal (e.g., sound) made in the
touchscreen material when it is touched. By placing
several transducers around the edge of the screen, the
system can determine if a touch occurred and where.One
drawback is that motionless fingers cannot be detected.
However, this does provide an advantage in that resting
objects (i.e., your cheek) do not trigger the screen.
This method is sometimes known as acoustic pulse
recognition.

Infrared
One of the oldest and least used technologies is the
infrared touchscreen. This technology relies on infrared
emitters (usually infrared diodes) aligned along two
adjoining edges of the screen and infrared detectors
aligned across from the emitters at the other two edges.
The position of a touch event can be determined through
a process based on which light paths are interrupted.
The detection of multiple simultaneous touch events is
possible. Infrared screens are somewhat bulky, prone to
damage or interference from dust and debris, and need
special modifications to work in daylight.They largely have
been displaced by newer technologies.

Electromagnetic Resonance
Another technology in widespread use is the electromag-
netic resonance detection scheme used by many tablet
PCs. Strictly speaking, many tablet PC screens are not
touchscreens; they are called active digitizers because
they can detect the presence and location of the tablet
pen as it approaches the screen (even without contact).
In this scheme, a very thin wire grid is integrated within

the display screen (which usually is a flat-profile LCD
display). The pen itself contains a simple RLC resonator
(see Section 6-1) with no power supply. The wire grid
alternates between two modes (transmit and receive)
every ∼ 20 milliseconds. The grid essentially acts as an
antenna.During the transmit mode, an ac signal is applied
to the grid and part of that signal is emitted into the air
around the display. As the pen approaches the grid, some
energy from the grid travels across to the pen’s resonator
which begins to oscillate. In receive mode, the grid is used
to “listen” for ac signals at the resonator frequency; if those
signals are present, the grid can pinpoint where they are
across the screen. A tuning fork provides a good analogy.
Imagine a surface vibrating at a musical note; if a tuning
fork designed to vibrate at that note comes very close to
that surface, it will begin to oscillate at the same frequency.
Even if we were to stop the surface vibrations, the tuning
fork will continue to make a sound for a little while longer
(as the resonance dies down). In a similar way, the laptop
screen continuously transmits a signal and listens for
the pen’s electromagnetic resonance. Functions (such as
buttons and pressure information) can be added to the
pen by having the buttons change the capacitance value
of the LCR when pressed; in this way, the resonance
frequency will shift (see Section 6-2), and the shift can
be detected by the grid and interpreted as a button press.

Increased Integration

Mobile devices have largely driven the development of
advanced touch technologies in the last few years. Given
the constant pressure to miniaturize and integrate, a
number of companies have or are developing integrated
touch and display systems. Unlike the earlier-generation
technologies, the display and the touch sensor are
not manufactured separately and then integrated during
assembly. Rather, the touch sensor conductors (in the
case of capacitive sensing) are designed into the very
display itself, either into the conductive traces in/on the
pixels of the display or immediately over them. In other
designs, light-sensing pixels are manufactured into each
display pixel of a display, giving the display not only the
ability to produce images but also to sense nearby objects
that occlude light landing on the sensing pixels. Even
the integrated circuits are increasingly being integrated;
earlier-generation systems relied on stand-alone touch
controller IC chips that managed the sensor information
and communicated it to the application processor in
the mobile devices. There is a push to integrate this
functionality into some phone processors directly.
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7-3 Phasor Domain

In this chapter, we explore how currents and voltages defined in
the time domain are transformed into their counterparts in the
phasor domain (also called the frequency domain), and why
such a transformation facilitates the analysis of ac circuits.

The KVL and KCL equations characterizing an ac circuit
containing capacitors and inductors take the form of integro-
differential equations with forcing functions (representing the
real sources in the circuit) that vary sinusoidally with time.
The phasor technique allows us to transform the equations
from the time domain to the phasor domain, as a result of
which the integro-differential equations get converted into
linear equations with no sinusoidal functions. After solving for
the desired variable—such as a particular voltage or current—
in the phasor domain, conversion back to the time domain
provides the same solution that we would have obtained had
we solved the integro-differential equations entirely in the time
domain. The procedure involves multiple steps, but it avoids
the complexity of solving differential equations containing
sinusoidal functions.

7-3.1 Time-Domain/Phasor-Domain
Correspondence

Transformation from the time domain to the phasor domain
entails transforming all time-dependent quantities in the circuit,
which in effect transforms the entire circuit from the time
domain to an equivalent circuit in the phasor domain. The
quantities involved in the transformation include all currents
and voltages, all sources, and all capacitors and inductors. The
values of capacitors and inductors do not change per se, but
their i–υ relationships undergo a transformation because they
involve differentiation or integration with respect to t .

Any cosinusoidally time-varying function x(t), representing
a voltage or a current, can be expressed in the form

x(t) = Re[ X︸︷︷︸
phasor

ejωt ], (7.28)

where X is a time-independent function called the phasor
counterpart of x(t). Thus, x(t) is defined in the time domain,
while its counterpart X is defined in the phasor domain.

� To distinguish phasor quantities from their time-
domain counterparts, phasors are always represented by
bold letters in this book. �

In general, the phasor-domain quantity X is complex,
consisting of a magnitude |X| and a phase angle φ,

X = |X|ejφ. (7.29)

Using this expression in Eq. (7.28) gives

x(t) = Re[|X|ejφejωt ] = Re[|X|ej (ωt+φ)] = |X| cos(ωt+φ).

(7.30)
Application of the Re operator allows us to transform a function
from the phasor domain to the time domain. The reverse
operation, namely to specify the phasor-domain equivalent of a
time function, can be ascertained by comparing the two sides of
Eq. (7.30). Thus, for a voltage υ(t) with phasor counterpart V,
the correspondence between the two domains is as follows:

Time Domain Phasor Domain

υ(t) = V0 cos ωt V = V0 (7.31a)

υ(t) = V0 cos(ωt + φ) V = V0e
jφ. (7.31b)

If φ = −π/2,

υ(t) = V0 cos(ωt − π/2) V = V0e
−jπ/2. (7.32)

Since cos(ωt − π/2) = cos(π/2 − ωt) = sin ωt and

e−jπ/2 = cos(π/2) − j sin(π/2) = −j,

Eq. (7.32) reduces to

υ(t) = V0 sin ωt V = −jV0, (7.33)

which can be generalized to

υ(t) = V0 sin(ωt + φ) V = V0e
j (φ−π/2). (7.34)

Occasionally, voltage and current time functions may encounter
differentiation or integration. For example, consider a current
i(t) with a corresponding phasor I,

i(t) = Re[Iejωt ], (7.35)

where I may be complex but, by definition, not a function of
time. The derivative di/dt is given by

di

dt
= d

dt
[Re(Iejωt )] = Re

[
d

dt
(Iejωt )

]
= Re[jωI︸︷︷︸

phasor of di/dt

ejωt ],

(7.36)
where in the second step we interchanged the order of the two
operators, Re and d/dt , which is justified by the fact that the
two operators are independent of one another, meaning that
taking the real part of a quantity has no influence on taking its
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time derivative, and vice versa. We surmise from Eq. (7.36) that

di

dt
jωI, (7.37)

or:

� Differentiation of a time function i(t) in the time
domain is equivalent to multiplication of its phasor
counterpart I by jω in the phasor domain. �

Similarly,

∫
i dt =

∫
Re[Iejωt ] dt

= Re

[∫
Iejωt dt

]
= Re

[
I

jω︸︷︷︸
phasor of

∫
i dt

ejωt

]
, (7.38)

or ∫
i dt

I
jω

, (7.39)

which states that:

� Integration of i(t) in the time domain is equivalent to
dividing its phasor I by jω in the phasor domain. �

Table 7-3 provides a summary of some time functions and their
phasor-domain counterparts.

7-3.2 Impedance of Circuit Elements

Resistors

The υ–i relationship for a resistor R is

υR = RiR. (7.40)

If iR is a sinusoidal function of t , the same is true for υR. The
time-domain quantities υR and iR are related to their phasor-
domain counterparts by

υR = Re[VRejωt ] (7.41a)

and

Table 7-3: Time-domain sinusoidal functions x(t) and
their cosine-reference phasor-domain counterparts X, where
x(t) = Re [Xejωt ].

x(t) X

A cos ωt A

A cos(ωt + φ) Aejφ

−A cos(ωt + φ) Aej(φ±π)

A sin ωt Ae−jπ/2 = −jA

A sin(ωt + φ) Aej(φ−π/2)

−A sin(ωt + φ) Aej(φ+π/2)

d

dt
(x(t)) jωX

d

dt
[A cos(ωt + φ)] jωAejφ

∫
x(t) dt

1

jω
X∫

A cos(ωt + φ) dt
1

jω
Aejφ

iR = Re[IRejωt ]. (7.41b)

Inserting these expressions into Eq. (7.40) gives

Re[VRejωt ] = R Re[IRejωt ] = Re[RIRejωt ]. (7.42)

Upon combining both sides under the same real-part (Re)
operator, we have

Re[(VR − RIR)ejωt ] = 0. (7.43a)

Through a somewhat similar treatment that uses a sine
reference—rather than a cosine reference—to define sinusoidal
functions, we can obtain the result

Im[(VR − RIR)ejωt ] = 0, (7.43b)

which, for the sake of expediency, we simply state without
taking the steps to prove it. In view of Eqs. (7.43a) and (7.43b),
both the real and imaginary components of the quantity inside
the square bracket are zero. Hence, the quantity itself is zero,
and since ejωt �= 0, it follows that

VR − RIR = 0. (7.44)
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In the phasor domain:

� The impedance Z of a circuit element is defined as the
ratio of the phasor voltage across it to the phasor current
entering through its plus (+) terminal, �

Z = V
I

(	), (7.45)

and the unit of Z is the ohm (	). For a resistor, Eq. (7.44) gives

ZR = VR

IR
= R. (7.46)

Thus, for a resistor the impedance is entirely real, and the form
of the υ–i relationship is the same in both the time and phasor
domains.

Inductors

In the time domain, the voltageυL across an inductorL is related
to iL by

υL = L
diL

dt
. (7.47)

Phasors VL and IL are related to their time-domain counterparts
by

υL = Re[VLejωt ] (7.48a)

and

iL = Re[ILejωt ]. (7.48b)

Consequently,

Re[VLejωt ] = L
d

dt
[Re(ILejωt )] = Re[jωLILejωt ],

(7.49)
which leads to

VL = jωLIL. (7.50)

Hence, the impedance of an inductor L is

ZL = VL

IL
= jωL. (7.51)

According to Eq. (7.51), ZL is positive and entirely imaginary
(no real component); ZL → 0 as ω → 0 (dc); and ZL → ∞ as
ω → ∞. Consequently:

� In the phasor domain, an inductor behaves like a
short circuit at dc and like an open circuit at very high
frequencies. �

Capacitors

Since for a capacitor

iC = C
dυC

dt
, (7.52)

it follows that in the phasor domain,

IC = jωCVC (7.53)

and the impedance of a capacitor C is

ZC = VC

IC
= 1

jωC
. (7.54)

Because ZL and ZC are, respectively, directly and inversely
proportional to ω, ZL and ZC assume inverse roles as ω

approaches zero and ∞.

� In the phasor domain, a capacitor behaves like an
open circuit at dc and like a short circuit at very high
frequencies. �

We note that the impedance of a resistor is purely real,
that of an inductor is purely imaginary and positive, and
that of a capacitor is purely imaginary and negative (because
1/jωC = −j/ωC). Table 7-4 provides a summary of the υ–i

properties for R, L, and C.

Example 7-4: Phasor Quantities

Determine the phasor-domain counterparts of the following
quantities:

(a) υ1(t) = 10 cos(2 × 104t + 53◦) V,

(b) υ2(t) = −6 sin(3 × 103t − 15◦) V,

(c) L = 0.4 mH at 1 kHz,

(d) C = 2 μF at 1 MHz.
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Table 7-4: Summary of υ–i properties for R, L, and C.

Property R L C

υ–i υ = Ri υ = L
di

dt
i = C

dυ

dt

V–I V = RI V = jωLI V = I
jωC

Z R jωL
1

jωC

dc equivalent R
Short circuit Open circuit

High-frequency equivalent R
Open circuit Short circuit

Frequency response R

ω

|ZR|

ωL
ω

|ZL|

1/ωC
ω

|ZC|

Solution: (a) Since υ1(t) is already in cosine format,

V1 = 10ej53◦ = 10 53◦ V.

(b) To determine the phasor V2 corresponding to υ2(t), we
should either convert the expression for υ2(t) to standard cosine
format or apply the transformation for a sine function given in
Table 7-3. We choose the first option,

υ2(t) = −6 sin(3 × 103t − 15◦)

= −6 cos(3 × 103t − 15◦ − 90◦)

= −6 cos(3 × 103t − 105◦) V.

To convert the amplitude from −6 to +6, we use Eq. (7.7d) of
Table 7-1, namely

− cos(x) = cos(x ± 180◦).

We can either add or subtract 180◦ from the argument of the
cosine. Since the argument has a negative phase angle (−105◦),
it is more convenient to add 180◦. Hence,

υ2(t) = 6 cos(3 × 103t − 105◦ + 180◦)

= 6 cos(3 × 103t + 75◦) V,

and

V2 = 6ej75◦ = 6 75◦ V.

(c)

ZL = jωL = j2π × 103 × 0.4 × 10−3 = j2.5 	.

(d)

ZC = −j

ωC
= −j

2π × 106 × 2 × 10−6 = −j0.08 	.

Concept Question 7-5: Why is the phasor domain useful
for analyzing ac circuits? (See         )

Concept Question 7-6: Differentiation in the time 
domain corresponds to what mathematical operation in 
the phasor domain? (See         )

Concept Question 7-7: The unit for inductance is the
henry (H). What is the unit for the impedance ZL of an 
inductor? (See         )

Concept Question 7-8:What type of circuit is equivalent 
to the behavior of (a) an inductor at dc and (b) a capacitor 
at very high frequencies? (See         )
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Exercise 7-5: Determine the phasor counterparts of the
following waveforms:

(a) i1(t) = 2 sin(6 × 103t − 30◦) A,

(b) i2(t) = −4 sin(1000t + 136◦) A

Answer:     (a) I1 = 2 −120◦   A,     (b) I2 = 4 −134◦    A.
(See                   )

Exercise 7-6: Obtain the time-domain waveforms (in
standard cosine format) corresponding to the following
phasors at angular frequency ω = 3 × 104 rad/s:

(a) V1 = (−3 + j4) V

(b) V2 = (3 − j4) V

Answer: (a) υ1(t) = 5 cos(3 × 104t + 126.87◦) V,
(b) υ2(t) = 5 cos(3 × 104t − 53.13◦) V. (See                    )

Exercise 7-7:At ω = 106 rad/s, the phasor voltage across
and current through a certain element are given by
V = 4 −20◦ V and I = 2 70◦ A. What type of element
is it?

Answer: Capacitor with C = 0.5 μF. (See                   )

7-4 Phasor-Domain Analysis

In the time domain, Kirchhoff’s voltage law states that the
algebraic sum of all voltages υ1 to υn around a closed path
containing n elements is zero,

υ1(t) + υ2(t) + · · · + υn(t) = 0. (7.55)

If V1 to Vn are respectively the phasor-domain counterparts of
υ1 to υn, then

Re[V1e
jωt ] + Re[V2e

jωt ] + · · · + Re[Vne
jωt ] = 0, (7.56)

or equivalently,

Re[(V1 + V2 + · · · + Vn)e
jωt ] = 0. (7.57)

Since ejωt �= 0, it follows that

Re[V1 + V2 + · · · + Vn] = 0. (7.58a)

Had we used a sine convention—instead of a cosine
convention—we would have arrived at the result

Im[V1 + V2 + · · · + Vn] = 0. (7.58b)

C

Ri

υs(t)
+
_

Figure 7-6: RC circuit connected to an ac source.

The combination of Eqs. (7.58a)(a) and (b) asserts that

V1 + V2 + · · · + Vn = 0, (7.58c)

which states that KVL is equally applicable in the phasor
domain.

Similarly, KCL at a node leads to

I1 + I2 + · · · + In = 0, (7.59)

where I1 to In are the phasor counterparts of i1 to in.

� The fact that KCL and KVL are valid in the phasor
domain is highly significant, because it implies that
the analysis tools we developed earlier on the basis of
these two laws also are valid in the phasor domain.
These include the nodal and mesh analysis methods, the
Thévenin and Norton techniques, and several others. �

Revisiting these tools and learning to apply them to ac circuits
is the subject of future sections in this chapter. However, we
will now introduce the basic elements of the phasor analysis
process through a simple example.

The phasor analysis method consists of five steps. To assist
us in presenting it, we use the RC circuit shown in Fig. 7-6. The
voltage source is given by

υs = 12 sin(ωt − 45◦) V, (7.60)

with ω = 103 rad/s, R = √
3 k	, and C = 1 μF. Application

of KVL generates the following loop equation:

Ri + 1

C

∫
i dt = υs (time domain). (7.61)

Our goal is to obtain a solution for i(t). In general, i(t) consists
of a transient response, obtained by solving Eq. (7.61) with
υs set equal to zero (as we had done previously in Chapters 5
and 6), and a steady-state response that involves the sinusoidal
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function υs(t). Our interest at present is in only the sinusoidal
response, which we can obtain by solving Eq. (7.61) in the time
domain, but the method of solution is somewhat cumbersome—
even for such a simple circuit—on account of the sinusoidal
voltage source.Alternatively, we can obtain the desired solution
by applying the phasor technique, which avoids dealing with
sine and cosine functions altogether.

Step 1: Adopt cosine reference

All voltages and currents with known sinusoidal functions
should be expressed in the standard cosine format (Section 7-1).
For our RC circuit, υs(t) is the only time-varying quantity with
an explicit expression, and since υs(t) is given in terms of a
sine function, we need to convert it into a cosine by applying
Eq. (7.7a) of Table 7-1:

υs(t) = 12 sin(ωt − 45◦)
= 12 cos(ωt − 45◦ − 90◦) = 12 cos(ωt − 135◦) V.

(7.62)

In accordance with Table 7-3, the phasor equivalent of υs(t) is

Vs = 12e−j135◦
V. (7.63)

Step 2: Transform circuit to phasor domain

The current i(t) in Eq. (7.61) is related to its phasor counterpart I
by

i(t) = Re[Iejωt ]. (7.64)

As yet, we do not have an explicit expression for either i(t)

or I, but we will obtain those expressions later on in Steps 4
and 5. Step 2 in Fig. 7-7 shows the RC circuit in the phasor
domain, with loop current I, impedance ZR = R representing
the resistance and impedance ZC = 1/jωC representing the
capacitor. The voltage source is represented by its phasor Vs.

Step 3: Cast KCL and/or KVL equations in phasor domain

For the circuit in Step 2 of Fig. 7-7, its loop equation is given
by

ZRI + ZCI = Vs, (7.65)

which is equivalent to(
R + 1

jωC

)
I = 12e−j135◦

. (7.66)

This equation also could have been obtained by transforming
Eq. (7.61) from the time domain to the phasor domain, which
entails replacing i with I,

∫
i dt with I/jω, and υs with Vs.

C

i R

+
−~ υs(t)

+
_

1
jωC

R

Vs = 12e−j135o (V)

Vs

I

Step 3
Cast Equations in

Phasor Form

(Phasor Domain)

Step 4
Solve for Unknown Variable

Step 1
Adopt Cosine Reference

(Time Domain)

Step 5
Transform Solution

Back to Time Domain

Step 2
Transfer to Phasor Domain

i            I
υ           V
R          ZR = R
L           ZL = jωL
C          ZC = 1/jωC

1
jωCI (R +            ) = Vs

Vs

R + 1
jωC

I = 

i(t) = Re[Ie jωt]
      = 6 cos(ωt −105o)
         (mA)

υs(t) = 12 sin(ωt − 45o) 
(V)

+
_

Figure 7-7: Five-step procedure for analyzing ac circuits using
the phasor-domain technique.

Step 4: Solve for unknown variable

Solving Eq. (7.66) for I gives

I = 12e−j135◦

R + 1
jωC

= j12ωCe−j135◦

1 + jωRC
. (7.67)
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Using the specified values, namely R = √
3 k	, C = 1 μF,

and ω = 103 rad/s, Eq. (7.67) becomes

I = j12 × 103 × 10−6e−j135◦

1 + j103 × √
3 × 103 × 10−6

= j12e−j135◦

1 + j
√

3
mA.

In preparation for the next step, we should convert the
expression for I into polar form (Aejθ , where A is a positive real
number) because it is easier to multiply or divide two complex
numbers using the polar form. To that end, we should replace j

in the numerator with ejπ/2 and convert the denominator into
polar form:

1 + j
√

3 = √
1 + 3 ejφ = 2ejφ,

where

φ = tan−1

(√
3

1

)
= 60◦.

Hence,

I = 12e−j135◦ · ej90◦

2ej60◦ = 6ej (−135◦+90◦−60◦) = 6e−j105◦
mA.

Step 5: Transform solution back to time domain

To return to the time domain, we apply the fundamental relation
between a sinusoidal function and its phasor counterpart,
namely

i(t) = Re[Iejωt ] = Re[6e−j105◦
ejωt ] = 6 cos(ωt−105◦) mA.

This concludes our demonstration of the five-step procedure of
the phasor-domain analysis technique. The procedure is equally
applicable for solving any linear ac circuit.

Example 7-5: RL Circuit

The voltage source of the circuit shown in Fig. 7-8(a) is given
by

υs(t) = 15 sin(4 × 104t − 30◦) V.

Also, R = 3 	 and L = 0.1 mH. Obtain an expression for the
voltage across the inductor.

Solution:

Step 1: Convert υs(t) to the cosine reference.

υs(t) = 15 sin(4 × 104t − 30◦)

= 15 cos(4 × 104t − 30◦ − 90◦)

= 15 cos(4 × 104t − 120◦) V,

and its corresponding phasor Vs is given by

Vs = 15e−j120◦
V.

L

iR

+
−~ υL

Time domain

Phasor domain

(a)

(b)

+
_Vs

I

jωL

R

VL

υs(t)
+
_

Figure 7-8: RL circuit of Example 7-5.

Step 2: Transform circuit to the phasor domain.

Phasor-domain circuit is shown in Fig. 7-8(b), in which
R remains R, L becomes jωL, i(t) becomes I, and υs(t)

becomes Vs.

Step 3: Cast KVL in phasor domain.

RI + jωLI = Vs.

Step 4: Solve for unknown variable.

I = Vs

R + jωL
= 15e−j120◦

3 + j4 × 104 × 10−4

= 15e−j120◦

3 + j4
= 15e−j120◦

5ej53.1◦ = 3e−j173.1◦
A.

The phasor voltage across the inductor is related to I by

VL = jωLI = j4 × 104 × 10−4 × 3e−j173.1◦

= j12e−j173.1◦

= 12e−j173.1◦ · ej90◦ = 12e−j83.1◦
V,

where we replaced j with ej90◦
.
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Step 5: Transform solution to the time domain.

The corresponding time-domain voltage is obtained by
multiplying VL by ejωt and then taking the real part:

υL(t) = Re[VLejωt ] = Re[12e−j83.1◦
ej4×104t ]

= 12 cos(4 × 104t − 83.1◦) V.

Exercise 7-8: Repeat the analysis of the circuit in
Example 7-4 for υs(t) = 20 cos(2 × 103t + 60◦) V,
R = 6 	, and L = 4 mH.

Answer: υL(t) = 16 cos(2 × 103t + 96.9◦) V. (See                 )

7-5 Impedance Transformations
Voltage division, current division, and the Y–� transformation
are among the many analysis tools we developed in Chapter 2
in connection with circuits composed solely of sources and
resistors. All of these tools are based on two fundamental laws:
KCL and KVL. Having established in the preceding section
that KCL and KVL also are valid in the phasor domain, it
follows that these simplification and transformation techniques
can be used in the phasor domain as well. The fundamental
difference between the two cases is that in Chapter 2 we dealt
with resistors, and with voltages and currents expressed in the
time domain, whereas in the phasor domain the circuit quantities
are impedances and phasors. Thus, once an ac circuit has been
transformed into the phasor domain, we can apply the same
techniques of Chapters 2 and 3, but we do so using complex
algebra.

In this and the next section, we illustrate how impedance
and source transformations are executed in the phasor domain.
Before we do so, however, we should expand our definition of
impedance to encompass more than the impedance of a single
element. The three passive elements, R, L, and C, are measured
in ohms, henrys, and farads. Their corresponding impedances
ZR, ZL, and ZC are all measured in ohms, and are given by

ZR = R, ZL = jωL, ZC = −j

ωC
. (7.68)

Consider the three series combinations shown in Fig. 7-9.
Application of KVL to the circuits on the left-hand side and
to their counterparts leads to

Z1 = ZR1 + ZL1 = R1 + jωL1,

Z2 = ZR2 + ZC2 = R2 − j

ωC2
,

and

Z3 = ZL3 + ZC3 = j

(
ωL3 − 1

ωC3

)
.

From these three simple examples, we observe that an
impedance Z is, in general, a complex quantity composed of
a real part and an imaginary part. We usually use the symbol R

to represent its real part and we call it its resistance, and we use
the symbol X to represent its imaginary part and we call it its
reactance. Thus,

Z = R + jX. (7.69)

Impedances Z1 and Z2 have reactances with opposite polarities.
When X is positive, as in Z1, we call Z an inductive impedance,
and when X is negative, we call it a capacitive impedance.
Impedance Z2 is capacitive. Impedance Z3 is purely imaginary,
and it may be inductive or capacitive depending on how the
magnitude of ωL compares with that of 1/ωC.

Occasionally, we may need to express Z in polar form

Z = |Z|ejθ , (7.70)

where its magnitude |Z| and phase angle θ are related to
components R and X of the rectangular form by

|Z| = +√
R2 + X2 , and θ = tan−1

(
X

R

)
. (7.71)

The inverse relationships are given by

R = Re[Z] = Re[|Z|ejθ ] = |Z| cos θ (7.72a)

and

X = Im[Z] = Im[|Z|ejθ ] = |Z| sin θ. (7.72b)

In Chapter 2, we defined the conductance G as the reciprocal
of R, namely G = 1/R. The phasor analogue of G is the
admittance Y, defined as

Y = 1

Z
= G + jB, (7.73)

where G = Re[Y] is called the conductance of Y and
B = Im[Y] is called its susceptance. The unit for Y, G, and B

is the siemen (S).
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(a) RL

+
_V

I R1 jωL1

+
_V

I

Z1 = R1 + jωL1

(b) RC

+
_V

I R2 −j/ωC2

+
_V

I

Z2 = R2 − 
j

ωC2

(c) LC

+
_V

I −j/ωC3

+
_V

I

Z3 = j
1

ωC3(ωL3 −      )
jωL3

Figure 7-9: Three different, two-element, series combinations.

7-5.1 Impedances in Series and in Parallel

The three in-series examples of Fig. 7-9 consisted each of only
two impedances. By extension, we can assert that:

� N impedances connected in series (sharing the same
phasor current) can be combined into a single equivalent
impedance Zeq whose value is equal to the algebraic sum
of the individual impedances. �

Zeq =
N∑

i=1

Zi (impedances in series). (7.74)

The phasor voltage across any individual impedance Zi is a
proportionate fraction (Zi/Zeq) of the phasor voltage across
the entire group.

+
_Vs

VsV1 = 

Is Voltage Division

Z1
Z1 + Z2( )

VsV2 = 
Z2

Z1 + Z2( )

Z1

Z2

Figure 7-10: Voltage division among two impedances in series.

This is a statement of voltage division, which for the two-
impedance circuit of Fig. 7-10, assumes the form

V1 =
(

Z1

Z1 + Z2

)
Vs, V2 =

(
Z2

Z1 + Z2

)
Vs. (7.75)
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IsI1 = 
Y1

Y1 + Y2( ) IsI2 = 
Y2

Y1 + Y2( )

+
_Vs

Is

I1 I2

Y1 Y2

Current Division

Figure 7-11: Current division among two admittances in
parallel.

Admittance Y is the inverse of impedance Z. That is,
Y = 1/Z. Hence,

� N admittances connected in parallel between a pair of
nodes, all sharing the same voltage, can be combined into
a single, equivalent admittance Yeq, whose value is equal
to the algebraic sum of the individual admittances. �

Yeq =
N∑

i=1

Yi (admittances in parallel) (7.76a)

or, equivalently,

Zeq =
[

N∑
i=1

1

Zi

]−1

. (7.76b)

The phasor current flowing through any individual admit-
tance Yi is a proportionate fraction (Yi/Yeq) of the phasor
current flowing through the entire group.

The current division analogue of Eq. (7.75), defining how
current splits up among two admittances connected in parallel
(Fig. 7-11), is

I1 =
(

Y1

Y1 + Y2

)
Is, I2 =

(
Y2

Y1 + Y2

)
Is. (7.77)

Since Z1 = 1/Y1 and Z2 = 1/Y2, Eq. (7.77) can be rewritten
in terms of impedances as

I1 =
(

Z2

Z1 + Z2

)
Is, I2 =

(
Z1

Z1 + Z2

)
Is. (7.78)

Example 7-6: Input Impedance

The circuit in Fig. 7-12(a) is connected to a source given by

υs(t) = 16 cos 106t V.

Determine (a) the input impedance of the circuit, given that
R1 = 2 k	, R2 = 4 k	, L = 3 mH, and C = 1 nF, and (b)
the voltage υ2(t) across R2.

(a) Time domain

R1

R2

C

L

ZL = jωL

ZR2
 = R2

Z1 = R1 − 
j

ωC

υs(t) υ2(t)

(b) Phasor domain

ZiVs V2
+
_ ZL

Z1

ZR2

Z2 = ZL || ZR2

Zi = Z1 + Z2

(c) Combining impedances

ZiVs V2
+
_ Z2

Z1

+
_

Figure 7-12: Circuit for Example 7-6.
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Solution: (a) The phasor-domain equivalent circuit is shown
in Fig. 7-12(b), where

Vs = 16,

Z1 = R1 − j

ωC
= 2 × 103 − j

106 × 10−9 = (2 − j1) k	,

ZL = jωL = j × 106 × 3 × 10−3 = j3 k	,

and

ZR2 = R2 = 4 k	.

The parallel combination of ZL and ZR2 is denoted Z2 in
Fig. 7-12(c), and it is given by

Z2 = ZL ‖ ZR2

= ZLZR2

ZL + ZR2

= j3 × 103 × 4 × 103

(4 + j3) × 103 = j12 × 103

4 + j3
.

A useful “trick” for converting the expression for Z2 into the
form (a + jb) is to multiply the numerator and denominator by
the complex conjugate of the denominator:

Z2 = j12 × 103

4 + j3
× 4 − j3

4 − j3

= 36 + j48

16 + 9
× 103 = (1.44 + j1.92) k	.

The input impedance Zi is equal to the sum of Z1 and Z2,

Zi = Z1 + Z2 = (2 − j1 + 1.44 + j1.92) × 103

= (3.44 + j0.92) k	.

(b) By voltage division,

V2 = Z2Vs

Z1 + Z2
= (1.44 + j1.92) × 103 × 16

(3.44 + j0.92) × 103 = 10.8ej38.2◦
V.

Transforming V2 to its time-domain counterpart leads to

υ2(t) = Re[V2e
jωt ]

= Re[10.8ej38.2◦
ej106t ] = 10.8 cos(106t + 38.2◦) V.

Example 7-7: Current Division

The circuit in Fig. 7-13(a) is connected to a source

υs(t) = 4 sin(107t + 15◦) V.

(a) Time domain

R1

R2

i2
i

C

L

ZC = − 
j

ωC

Za = R2 +  jωL

Zb = ZC || Za

υs(t) +
−~

(b) Phasor domain

YiVs

I

I

I1 I2+
_

+
_

ZC

ZR1

ZR1

(c) Combining impedances

YiVs
+
_

Za

Zb

Figure 7-13: Circuit for Example 7-7.

Determine (a) the input admittance Yi, given that R1 = 10 	,
R2 = 30 	, L = 2 μH, and C = 10 nF, and (b) the current
i2(t) flowing through R2.

Solution: (a) We start by converting υs(t) to cosine format:

υs(t) = 4 sin(107t + 15◦)

= 4 cos(107t + 15◦ − 90◦) = 4 cos(107t − 75◦) V.

The corresponding phasor voltage is

Vs = 4e−j75◦
V,

and the impedances shown in Fig. 7-13(b) are given by

ZR1 = R1 = 10 	,

ZC = −j

ωC
= −j

107 × 10−8 = −j10 	,
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and

Za = R2 + jωL = 30 + j107 × 2 × 10−6 = (30 + j20) 	.

In Fig. 7-13(c), Zb represents the parallel combination of ZC
and Za ,

Zb = ZC ‖ Za

= (−j10)(30 + j20)

−j10 + 30 + j20

= 20 − j30

3 + j1
= (20 − j30)

(3 + j1)

(3 − j1)

(3 − j1)
= (3 − j11) 	.

The input impedance is

Zi = ZR1 + Zb = 10 + 3 − j11 = (13 − j11) 	,

and its reciprocal is

Yi = 1

Zi
= 1

13 − j11
× 13 + j11

13 + j11

= 13 + j11

169 + 121

= (4.5 + j3.8) × 10−2 = 5.89 × 10−2e−j40.2◦
S.

(b) The current I is given by

I = VsYi = (4e−j75◦
)(5.89×10−2e−j40.2◦

) = 0.235e−j34.8◦
A.

By current division in Fig. 7-13(b),

I2 = ZC

Za + ZC
I

= −j10

30 + j20 − j10
× 0.235e−j34.8◦

= 2.35e−j34.8◦ · e−j90◦

31.6ej18.4◦ = 7.4 × 10−2e−j143.2◦
A.

The corresponding current in the time domain is

i2(t) = Re[I2e
jωt ] = Re[7.4 × 10−2e−j143.2◦

ej107t ]
= 7.4 × 10−2 cos(107t − 143.2◦) A.

Concept Question 7-9: The rule for adding the
capacitances of two in-series capacitors is different from
that for adding the resistances of two in-series resistors,
but the rule for adding the impedances of those two in-
series capacitors is the same as the rule for adding two 
in-series resistors. Does this pose a contradic-
tion? Explain. (See         )

Concept Question 7-10: Is it possible to construct a
circuit composed solely of capacitors and inductors such
that the impedance of the overall combination has a 
non-zero real part? Explain. (See         )

Exercise 7-9: Determine the input impedance at
ω = 105 rad/s for each of the circuits in Fig. E7.9.

(a)

(b)

2 μF

0.1 mH
Zi

2 μF 0.1 mHZi

Figure E7.9

Answer: (a) Zi = j5 	, (b) Zi = −j10 	. (See )

7-5.2 Y–� Transformation

The Y–� transformation outlined in Section 2-4 allows us to
replace a Y circuit connected to three nodes with a � circuit,
or vice versa, without altering the voltages at the three nodes
or the currents entering them. The same principle applies to
impedances, as do the relationships between impedances Z1
to Z3 of the Y circuit (Fig. 7-14) and impedances Za to Zc of
the � circuit.

� →Y transformation:

Z1 = ZbZc

Za + Zb + Zc
, (7.79a)

Z2 = ZaZc

Za + Zb + Zc
, (7.79b)
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Z1 Z2

Z3

1 2

3

c

(a) Y circuit

Zc1 2

3

Zb Za

(b) ∆ circuit

Figure 7-14: Y–� equivalent circuits.

Z3 = ZaZb

Za + Zb + Zc
. (7.79c)

Y→ � transformation:

Za = Z1Z2 + Z2Z3 + Z1Z3

Z1
, (7.80a)

Zb = Z1Z2 + Z2Z3 + Z1Z3

Z2
, (7.80b)

Zc = Z1Z2 + Z2Z3 + Z1Z3

Z3
. (7.80c)

Balanced circuits:

If the Y circuit is balanced (all of its impedances are equal), so
will be the � circuit, and vice versa. Accordingly:

Z1 = Z2 = Z3 = Za

3
, if Za = Zb = Zc, (7.81a)

Za = Zb = Zc = 3Z1, if Z1 = Z2 = Z3. (7.81b)

Example 7-8: Applying Y–� Transformation

(a) Simplify the circuit in Fig. 7-15(a) by applying the Y–� 
transformation so as to determine the current I. (b) Determine 
the corresponding i(t), given that the oscillation frequency of 
the voltage source is 1 MHz.

Solution: (a) The � circuit connected to nodes 1, 3, and 4 
can be replaced with a Y circuit, as shown in Fig. 7-15(b), 
with impedances

Z1 = ZbZc

Za + Zb + Zc

= −j6 × 12

24 − j12 − j6 + 12
= −j72

36 − j18
= (0.8 − j1.6) 	,

Z2 = ZaZc

Za + Zb + Zc
= (24 − j12) × 12

36 − j18
= 8 	,

and

Z3 = ZbZa

Za + Zb + Zc
= −j6(24 − j12)

36 − j18
= −j4 	.

In Fig. 7-15(c), Zf represents the series combination of Z3
and Zd,

Zf = Z3 + Zd = −j4 + j2 = −j2 	.

Similarly,

Zg = Z2 + Ze = (8 + j6) 	.

Impedances Zf and Zg are connected in parallel, and their
combination is in series with Z0 and Z1. Hence,

I = Vs

Z0 + Z1 + (Zf ‖ Zg)

= 16ej30◦

2.4 + (0.8 − j1.6) + −j2 × (8 + j6)
−j2 + 8 + j6

.

After a few steps of complex algebra, we obtain the result

I = 3.06 76.55◦ A.

(b)

i(t) = Re[Iejωt ] = Re[3.06ej76.55◦
ej2π×106t ]

= 3.06 cos(2π × 106t + 76.55◦) A.
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Z0 = 2.4 Ω

Zc = 12 ΩZb = −j6 Ω

Za = (24 − j12) Ω
Zd = j2 Ω Ze = j6 Ω

−j12 Ω24 Ω

1

2

3 4

I

(a)

+
_Vs

Vs Vs

(b)

123

Z0 = 2.4 Ω

Z1 = (0.8 − j1.6) Ω

Z3 = −j4 Ω Z2 = 8 Ω

Zd = j2 Ω Ze = j6 Ω

I 1

2

3 4

c

+
_

(c)

Vs = 16   30o  (V)

Vs = 16   30o  (V)

Vs = 16   30o  (V)

Z0 = 2.4 Ω

Z1 = (0.8 − j1.6) Ω

Zf = Z3 + Zd
     = −j2 Ω

Zg = Z2 + Ze
     = (8 + j6) Ω

I 1

4

c+
_

Figure 7-15: Example 7-8 circuit evolution.

Exercise 7-10: Convert the Y-impedance circuit in
Fig. E7.10 into a �-impedance circuit.

j5 Ω

j5 Ω

1

2 3

−j10 Ω

Figure E7.10

Answer:

−j15 Ω

−j15 Ωj7.5 Ω

1

2 3

(See              )
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Voltage source

Current source

(a)

(b)

V12Vs

I

External
circuit

+
-

1

2

+
_

V12Is

Is I

External
circuit

1

2

Zs

Zs

Figure 7-16: Source-transformation equivalency.

7-6 Equivalent Circuits

Having examined in the preceding section how phasor-
domain circuits can be simplified by applying impedance
transformations, we now extend our review of the rules of circuit
equivalency to circuits containing voltage and current sources.

7-6.1 Source Transformation

Section 2-3.4 provides an outline of the source-transformation
principle as it applies to resistive circuits. Its phasor-domain
analogue is diagrammed in Fig. 7-16 from the vantage point of
the external circuit.

� A voltage source Vs in series with a source
impedance Zs is equivalent to the combination of a current
source Is = Vs/Zs, in parallel with a shunt impedance Zs.
The direction of Is is the same as the arrow from the (−)
terminal to the (+) terminal of Vs. �

Equivalence implies that both input circuits would deliver
the same current I and voltage V12 to the external circuit.

7-6.2 Thévenin Equivalent Circuit

When restated for the phasor domain, Thévenin’s theorem of
Section 3-5.1 becomes:

(a)

VTh = Voc

ZTh = Zeq

IL

Actual
circuit

VTh

IL

+
-
+
_

+

−

Actual
circuit Voc

Zeq
Actual circuit with
independent sources
deactivated

ZL

ZTh

ZL

Thevenin equivalent'(b)

(c)

(d)

Figure 7-17: Thévenin-equivalent method for a circuit with no
dependent sources.

�A linear circuit can be represented at its output terminals
by an equivalent circuit consisting of a series combination
of a voltage source VTh and an impedance ZTh, where VTh
is the open-circuit voltage at those terminals (no load)
and ZTh is the equivalent impedance between the same
terminals when all independent sources in the circuit have
been deactivated. �

Equivalence implies that if a load ZL is connected at the output
terminals of any actual circuit (as portrayed in Fig. 7-17(a))
thereby inducing a current IL to flow through it, the Thévenin
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ZTh = Vex /Iex

ZTh = Voc /Isc

(b)

(a)

Actual
circuit

+

−
Voc

IscActual
circuit

Iex

Vex
+
_

Circuit with only
independent 
sources deactivated

Figure 7-18: The (a) open-circuit/short-circuit method
and (b) the external-source method are both suitable for
determining ZTh, whether or not the circuit contains dependent
sources.

equivalent circuit (Fig. 7-17(b)) would deliver the same
current IL when connected to the same load impedance ZL. For
the equivalence to hold, the voltage VTh and impedance ZTh of
the Thévenin circuit have to be related to the actual circuit by
(Figs. 7-17(c) and (d)):

VTh = Voc (7.82a)

and

ZTh = Zeq. (7.82b)

Application of Eq. (7.82a) to determine VTh by calculating
or measuring the open-circuit voltage Voc is always a valid
approach, whether or not the actual circuit contains dependent
sources. That is not so for Eq. (7.82b). The equivalent-
impedance method cannot be used to determine ZTh if the
circuit contains dependent sources. Alternative approaches
include the following.

Open-circuit / short-circuit method

ZTh = Voc

Isc
, (7.83)

where Isc is the short-circuit current at the circuit’s output
terminals (Fig. 7-18(a)).

External-source method

ZTh = Vex

Iex
, (7.84)

where Iex is the current generated by an external source Vex
connected at the circuit’s terminals (as shown in Fig. 7-18(b))
after deactivating all independent sources in the circuit.

For the sake of completeness, we should remind the reader
that a Thévenin equivalent circuit always can be transformed
into a Norton equivalent circuit—or vice versa—by applying
the source-transformation method of Section 7-6.1.

Example 7-9: Thévenin Circuit

The circuit shown in Fig. 7-19(a) contains a sinusoidal source
given by

υs(t) = 10 cos 105t V.

Determine the Thévenin equivalent circuit at terminals (a, b).

Solution:

Step 1: The phasor counterpart of υs(t) is

Vs = 10 V.

Figure 7-19(b) displays the circuit in the phasor domain, in
addition to having replaced the series combination (Vs, Rs)with
the parallel combination (Is, Rs), where

Is = Vs

Rs
= 10

5
= 2 A.

Step 2: Combining Rs with Z1 in parallel gives

Z′
1 = Rs ‖ Z1 = 5(6 + j8)

5 + 6 + j8
= (3.51 + j1.08) 	.

Step 3: Converting back to a voltage source in series with Z′
1

leads to the circuit in Fig. 7-19(d), with

V′
s = IsZ′

1 = 2(3.51 + j1.08) = (7.02 + j2.16) V.
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(e) Zs = Z1 + Z2

Zs = 6.51 + j5.08

Z3

a

b

Vs
+
_

υTh(t) 7.6 cos (105t − 31.61o) V

RTh = 8.42 Ω CTh = 6.29 μF a

b

+
_

(f) Thevenin equivalent

(a) υs(t) = 10 cos 105t (V)

υs(t)

R2 = 3 Ω

L1 = 0.08 mH

R3 = 2 Ω

C = 1 μF

a

b

Rs = 5 Ω R1 = 6 Ω

L2 = 4    10−5 H

(b) Is = Vs /Rs = 10/5 = 2 A

Z2 = 3 + j4

Z1 = 6 + j8 Z3 = 2 − j10

a

b

Is = 2 A

Is = 2 A

Rs = 5

(c) Z1 = Rs || Z1

Z2 = 3 + j4

Z1 = 3.51 + j1.08 Z3 = 2 − j10

a

b

Z2 = 3 + j4Z1 = 3.51 + j1.08

Z3 = 2 − j10

a

b

Vs
+
_

(d) Vs = IsZ1 = (7.02 + j2.16) V

6
7

8
6

7
8

6
7

8
6

7
8

678 678

'

+
_

Figure 7-19: Using source transformation to simplify the circuit of Example 7-9. (All impedances are in ohms.)

Step 4: Combining Z′
1 with Z2 in series leads to the circuit in

Fig. 7-19(e), where

Z′
s = Z′

1 + Z2

= (3.51 + j1.08) + (3 + j4) = (6.51 + j5.08) 	.

Step 5: Application of voltage division provides

VTh = Voc = V′
sZ3

Z′
s + Z3

= (7.02 + j2.16)(2 − j10)

(6.51 + j5.08) + (2 − j10)

= 7.6 −31.61◦ V.
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Hence,

υTh(t) = Re[VThe
jωt ] = Re[7.6e−j31.61◦

ej105t ]
= 7.6 cos(105t − 31.61◦) V.

Step 6: Suppressing the source V′
s in Fig. 7-19(e) reduces the

circuit at terminals (a, b) to Z′
s in parallel with Z3, leading to

ZTh = Z′
s ‖ Z3

= (6.51 + j5.08)(2 − j10)

(6.51 + j5.08) + (2 − j10)
= (8.42 − j1.59) 	.

Step 7: The impedance ZTh is capacitive because the sign of
the imaginary component is negative. Hence, it is equivalent to

ZTh = RTh − j

ωCTh
.

Matching the two expressions gives

RTh = 8.42 	, CTh = 1

1.59ω
= 6.29 μF.

The time-domain Thévenin equivalent circuit is shown in
Fig. 7-19(f).

Concept Question 7-11: In the phasor domain, is the
Thévenin equivalent method valid for circuits containing
dependent sources? If yes, what methods are amenable 
to finding ZTh of such circuits? (See         )

Concept Question 7-12: If ZTh of a certain circuit is
purely imaginary, what would be your expectation about 
whether or not the circuit contains resistors? (See         )

Exercise 7-11: Determine VTh and ZTh for the circuit in
Fig. E7.11 at terminals (a, b).

+
_ Z2

Z1
aI

5I
b

5 Ω

(10 + j30) Ω

10 V

Figure E7.11

Answer:    VTh = 6 −36.9◦   V,      ZTh = (2.6 + j1.8) 	.
(See                   )

7-7 Phasor Diagrams

Consider the following sinusoidal signal υs(t) and its phasor
counterpart Vs:

υs(t) = V0 cos(ωt + φ) Vs = V0 φ. (7.85)

The time-domain voltage υs(t) is characterized by three
attributes: the amplitude V0, the angular frequency ω, and
the phase angle φ. In contrast, its counterpart in the phasor
domain Vs is specified by only two attributes, V0 and φ. This
may suggest that ω becomes irrelevant when we analyze a
circuit in the phasor domain, but that certainly is not true if the
circuit contains capacitors and/or inductors. Whereas ω does
not appear explicitly in the expressions for phasor currents
and voltages, it is integral to the definitions of the capacitor
impedance ZC and inductor impedance ZL, which in turn define
the I–V relationships for those two elements as

ZC = VC

IC
= 1

jωC
= 1

ωC
−90◦ (7.86a)

and

ZL = VL

IL
= jωL = ωL 90◦. (7.86b)

In fact, the value of ω (relative to the values of L of C) can
drastically change the behavior of a circuit:

� At dc, ZC → ∞ (open circuit) and ZL → 0 (short
circuit); and conversely, as ω → ∞, ZC → 0 and
ZL → ∞. �

A phasor diagram is a useful graphical tool for examining
the relationships among the various currents and voltages in a
circuit. Before considering multielement circuits, however, we
will start by examining the phasor diagrams for R, L and C,
individually. Figure 7-20 displays the phasor diagrams for I
and V for all three elements, with V chosen as a reference by
selecting its phase angle to be zero. Each phasor quantity is
displayed in the complex plane in terms of its magnitude and
phase angle. For the resistor, VR and IR always line up along
the same direction because they are always in-phase. Since VR
was chosen to be purely real, so is IR.

Next, we consider the capacitor. In view of Eq. (7.86a),

IC = VC

ZC
= jωCVC = ωCVC 90◦, (7.87a)
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Resistor

Inductor

IR =         (independent of ω)VR
R

(inversely proportional to ω)

Capacitor

IC = jωC VC
VC

IC VC

IC

C

90o

(directly proportional to ω)

VL
IL

IL = 

−90o

VL

IL

L

−jVL
ωL

VRIR

VR

IR

R

Im

Im

Im

Re

Re

Re

Figure 7-20: Phasor diagrams for R, L, and C.

which positions the vector IC ahead of VC by 90◦. Hence:

� IC leads VC by 90◦. �

For the inductor,

IL = VL

jωL
= −jVL

ωL
= VL

ωL
−90◦. (7.87b)

Consequently,

� IL lags VL by 90◦. �

For individual elements, the relationship between I and V is
straightforward; given the position of either one of them in the
complex plane, we can place the other one in accordance with
the phase-angle shift appropriate to that element.

� For a multielement circuit, we can draw either a relative
phasor diagram or an absolute phasor diagram. For the
relative phasor diagram, we usually choose a specific
current or voltage and designate it as our reference phasor
by arbitrarily assigning it a phase angle of 0◦. �

The goal then is to use the phasor diagram to examine the
relationships between and among the various currents and
voltages in the circuit—which includes their magnitudes and
relative phase angles—rather than to establish their absolute
phase angles. In principle, it does not matter much which
specific phasor voltage or current is selected as the reference, but
in practice, we usually choose a phasor current or voltage that is
common to lots of elements in the circuit. By way of illustration,
Example 7-10 examines a series RLC circuit by displaying its
phasor diagram twice, once using the current flowing through
the loop as reference, and a second time with the voltage source
as reference. The former results in a relative phasor diagram,
whereas the latter results in an absolute phasor diagram.

Example 7-10: Relative versus Absolute Phasor
Diagrams

The circuit in Fig. 7-21(a) is driven by a voltage source given
by

υs(t) = 20 cos(500t + 30◦) V.

Generate: (a) a relative phasor diagram by selecting the phasor
current I as a reference, and (b) an absolute phasor diagram.

Solution: Figure 7-21(b) displays the phasor-domain circuit
with its RLC elements represented by their respective
impedances.

(a) Relative Phasor Diagram

Selecting I as the reference phasor means that we assign it an
unknown magnitude I0 and a phase angle of 0◦:

I = I0 0◦.
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(b) Phasor domain

(c) Relative phasor diagram where all phase angles are relative
to that of I.

(d) Absolute phasor diagram

ZR = 8 Ω

ZC = −j8 Ω

ZL = j2 Ω

VR

VL

VC

I

Vs
+
_

VL = 2I0

VR = 8I0I = I0

I

90o

Vs = 10I0 −36.87o

VC = 8I0

VL + VC

VL + VC

−90o

36.87o

VL = 4 156.87o

VC = 16 −23.13o

VR = 16 66.87o

Vs = 20 30o

66.87o

30o

−23.13o
−2−4−6−8−10−12 2 6 8 10 12 14 16 18 20

12
14
16

−6

−4

2
4
6
8

−2

10

4

(a) Time domain

iR = 8 Ω

C = 0.25 mF

L = 4 mH

υs(t) +
−~

−6I0

−7I0

−8I0

−5I0

−4I0

−3I0

−2I0

2I0

4I0

−I0

+
_

Relative Phasor Diagram

Absolute Phasor Diagram

ω

Im

Re

Im

Re

Figure 7-21: Circuit and phasor diagrams for Example 7-10. The true phase angle of I is 66.87◦, so if the relative phasor diagram in (c)
were to be rotated counterclockwise by that angle and the scale adjusted to incorporate the fact I0 = 2, the diagram would coincide with
the absolute phasor diagram in (d).

Because the true phase angle of I actually may not be zero, the
vectors we will draw in the complex plane of the relative phasor
diagram all will be shifted in orientation by exactly the same

amount (namely by the true phase angle of I) so even though
they may not have the correct orientations, they all will bear the
correct relative orientations to one another.
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We deduce from the functional form of υs(t) that ω = 500
rad/s. In terms of I, the voltages across R, C, and L are

VR = RI = 8I0 0◦,

VC = I
jωC

= −jI0

500 × 2.5 × 10−4 = −j8I0 = 8I0 −90◦,

and

VL = jωLI = j500 × 4 × 10−3I0 = j2I0 = 2I0 90◦,

and the sum of all three gives

Vs = VR + VC + VL

= 8I0 − j8I0 + j2I0

= (8 − j6)I0 =
√

82 + 62 I0e
jφ = 10I0 φ,

with

φ = − tan−1 6

8
= −36.87◦.

Figure 7-21(c) displays the relative phasor diagram of the RLC
circuit with I as a reference; the magnitudes of VR, VC, VL,
and Vs are all measured in units of I0, and their orientations are
relative to that of I.

(b) Absolute Phasor Diagram

The phasor counterpart of υs(t) is

Vs = 20 30◦ V,

and the application of KVL around the loop leads to

I = Vs

R + jωL − j

ωC

= 20ej30◦

8 + j2 − j8
= 20ej30◦

8 − j6
= 20ej30◦

10e−j36.87◦ = 2ej66.87◦
A,

which states that the true phase angle of I is 66.87◦. Given I, we
easily can calculate VR, VC, and VL. The phasor diagram shown
in Fig. 7-21(d) is identical to that in Fig. 7-21(c), except that
all vectors have been rotated in a counterclockwise direction by
66.87◦.

Concept Question 7-13: For a capacitor, what is the 
phase angle of its phasor current, relative to that of its 
phasor voltage? (See         )

Concept Question 7-14:What is the difference between a
relative phasor diagram and an absolute phasor diagram? 
(See         )

Exercise 7-12: Establish the relative phasor diagram for
the circuit in Fig. E7.12 with V as the reference phasor.

Figure E7.12

Y1 = 0.4 S Y2 = j0.6 S

V

I1 I2

I0 = 1        A0�

Answer:

I2 = j0.6V

I1 = 0.4V V

I0 = I1 + I2 

56.3o

Im

Re

(See              )

7-8 Phase-Shift Circuits

In certain communication and signal-processing applications,
we often need to shift the phase of an ac signal by adding (or
subtracting) a phase angle of a specified value, φ. Thus, if the
input voltage in Fig. 7-22 is

υin(t) = V1 cos ωt, (7.88)

Phase-shift
circuit

υout(t) = V2 cos(ωt + ϕ)υin(t) = V1 cos ωt

+

_

+

_

Figure 7-22: The phase-shift circuit changes the phase of the
input signal by φ.
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the function of the phase-shift circuit is to provide an output
voltage given by

υout(t) = V2 cos(ωt + φ). (7.89)

The amplitude V2 of the output voltage is related to V1 (the
amplitude of the input voltage) and to the configuration of
the phase-shift circuit. RC circuits can be designed as phase
shifters, with any specified positive or negative value of φ:

{
υout leads υin if 0 ≤ φ ≤ 180◦,
υout lags υin if − 180◦ ≤ φ ≤ 0.

To illustrate the process, let us consider the simple RC circuit
shown in Fig. 7-23(a). The input signal is given by

υin(t) = 10 cos 106t V,

and the element values are R = 2 	 and C = 0.2 μF. At
ω = 106 rad/s, the capacitor impedance is

ZC = −j

ωC
= −j

106 × 0.2 × 10−6 = −j5 	.

By voltage division in the phasor domain (Fig. 7-23(b)),

Vout1 = VinR

R − j

ωC

= ωRC√
1 + ω2R2C2

Vin φ1, (7.90a)

Vout2 =
Vin

(−j

ωC

)

R − j

ωC

= 1√
1 + ω2R2C2

Vin φ2, (7.90b)

and the phase angles φ1 and φ2 are given by

φ1 = tan−1
(

1

ωRC

)
(7.91a)

and

φ2 = φ1 − 90◦ = tan−1
(

1

ωRC

)
− 90◦. (7.91b)

For ω = 106 rad/s, R = 2 	, C = 0.2 μF, and Vin = 10 V,

Vout1 = 3.71 68.2◦ = (1.38 + j3.45) V

and

Vout2 = 9.28 −21.8◦ = (8.62 − j3.45) V.

The phase angle φ1 associated with Vout1 is 68.2◦, and the
angle φ2 associated with Vout2 is −21.8◦. As shown in the
complex plane of Fig. 7-23(c), the angular separation between
Vout1 and Vout2 is exactly 90◦. Also, if we were to add Vout1
and Vout2 in the complex plane, their imaginary parts would
cancel out and their real parts would add up to 10 V (the
amplitude of Vin).

In the time domain,

υout1(t) = Re[Vout1e
jωt ] = 3.716 cos(106t + 68.2◦) V

(7.92)

and

υout2(t) = Re[Vout2e
jωt ] = 9.285 cos(106t − 21.8◦) V.

(7.93)

Figure 7-23(a) provides a comparison of the waveform of the
input signal υin(t) with that of υout2(t), the voltage across the
capacitor. We note that because υout2 lags υin, it always crosses
the time axis later than υin by a time delay �t . If we denote t0
as the time when υin(t) crosses the time axis and t2 as the time
when υout2(t) does, then

ωt0 = 106t0 = π

2

and
ωt2 + φ2 = 106t2 + φ2 = 

π
2

,

with

φ2 = −21.8◦ ×
( π

180◦
)

= −0.38 radians.

Now that all quantities are in the same units, we can determine
the time delay from

�t2 = t2 − t0 = −φ2 × 10−6 = −(−0.38)× 10−6 = 0.38 μs.

By the same argument, υout1 leads υin by 68.2◦, and it crosses
the time axis sooner than does υin(t) by

�t1 = 68.2◦ × π

180◦ × 10−6 = 1.19 μs.

From the foregoing analysis, we conclude that for the simple
RC circuit, we can use υout1 as our output if we want to add
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υin(t)

υa = υin(t)

υb = υout2(t)

υout1

i a

b

R

C υout2

t0

t2

∆t

+

_

+

_

+
−~ Lags input by

∆t2 = 0.38 μs

(a) Time-domain waveforms

(c) Phasors Vin , Vout1 , and Vout2 in the complex plane(b) Phasor-domain circuit

Vout1

Vin

I

Vout2

+

_

+

_
R = 2 Ω

ZC = −j5 Ω

+
_

Vout1

Vout2

Vin

−3.45 V
−5 V

3.45 V

8.62 V

5 V

ϕ1

ϕ2

Input

υout2

Leads input by ∆t1 = 1.19 μs
υout1 (not displayed)

Im

Re

Figure 7-23: RC phase-shift circuit: the phase of υout1 (across R) leads the phase of υin(t), whereas the phase of υout2 (across C) lags
the phase of υin(t).

a positive phase angle to the input υin, and we can use υout2
as our output if we want to add a negative phase angle to υin.
Moreover, by adjusting the values of R and C (at a specific value
of ω), we can change φ1 to any value between 0 and 90◦, and
similarly, we can change φ2 to any value between 0 and −90◦
(but not independently); as was noted earlier in connection with

Fig. 7-23(c), the absolute values of φ1 and φ2 always add up to
90◦. Another consideration that we should be aware of is that
the magnitudes of υout1 and υout2 are linked to the magnitudes
of φ1 and φ2 through the choices we make for R, C, and ω. For
example, as φ1 approaches 90◦, υout1 approaches zero, so we
can indeed phase-shift the input signal by an angle close to 90◦,
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υs

υ1 υ2 υ3

υoutRRR

C C C

Stage 1 Stage 2 Stage 3

+
_

+
_

Figure 7-24: Three-stage, cascaded, RC phase-shifter
(Example 7-11).

but the magnitude of the output signal will be too small to be
useful. To overcome this limitation or to introduce phase-shift
angles greater than 90◦, we can use circuits with more than two
elements, such as the cascaded circuit of Example 7-11.

� To generate a phase lead at the output, the cascading
arrangement should be as that shown in Fig. 7-24, but to
generate a phase lag, the locations of R and C should be
interchanged. �

Example 7-11: Cascaded Phase-Shifter

The circuit in Fig. 7-24 uses a 3-stage cascaded phase-shifter
to produce an output signal υout(t) whose phase is 120◦ ahead
of the input signal υs(t). If ω = 103 (rad/s) and C = 1 μF,
determine R and the ratio of the amplitude of υout to that of υs.

Solution: Application of nodal analysis at nodes V1 and V2
in the phasor domain gives

V1 − Vs

ZC
+ V1

R
+ V1 − V2

ZC
= 0 (7.94)

and
V2 − V1

ZC
+ V2

R
+ V2

R + ZC
= 0, (7.95)

where ZC = 1/jωC. Moreover, through voltage division, V3 is
related to V2 by

V3 =
(

R

R + ZC

)
V2. (7.96)

Simultaneous solution of Eqs. (7.94) and (7.95), followed by
several steps of algebra, leads to the expressions

V1

Vs
= x[(x2 − 1) − j3x]

(x3 − 5x) + j (1 − 6x2)
, (7.97)

V2

Vs
= x2(x − j1)

(x3 − 5x) + j (1 − 6x2)
, (7.98)

and

V3

Vs
= x3

(x3 − 5x) + j (1 − 6x2)
, (7.99)

where

x = ωRC. (7.100)

The magnitude and phase of V3 (both relative to those of Vs)
are

∣∣∣∣V3

Vs

∣∣∣∣ = x3

[(x3 − 5x)2 + (1 − 6x2)2]1/2 , (7.101a)

and

φ3 = − tan−1
(

1 − 6x2

x3 − 5x

)
. (7.101b)

To satisfy the stated requirement, we set φ3 = 120◦ and solve
for x:

tan 120◦ = −1.732 = −
(

1 − 6x2

x3 − 5x

)
,

which leads to

x = 1.1815. (7.102)

Given that ω = 103 rad/s and C = 1 μF, it follows that

R = x

ωC
= 1.1815

103 × 10−6 = 1.1815 k	 ≈ 1.2 k	.

With x = 1.1815, Eq. (7.101a) gives

∣∣∣∣V3

Vs

∣∣∣∣ = 0.194.

Note that:

• The use of multiple stages allowed us to shift the phase by
more than 90◦.

• However, the magnitude of the output voltage is about 20%
of that of the input.
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Concept Question 7-15: Describe the function of a
phase-shift circuit in terms of time delay or time advance 
of the waveform. (See         )

Concept Question 7-16: When is it necessary to use
multiple stages to achieve the desired phase shift?
(See         )

Exercise 7-13: Repeat Example 7-11, but use only two
stages of RC phase shifters.

Answer: R ≈ 2.2 k	; |Vout/Vs| =  0.63. (See                    )

Exercise 7-14: Design a two-stage RC phase shifter that
provides a phase shift of negative 120◦ at ω = 104 rad/s.
Assume C = 1 μF.

Answer: R ≈ 220 	. (See                  )

7-9 Phasor-Domain Analysis
Techniques

The analysis techniques introduced in Chapter 3 in connection
with resistive circuits are all equally applicable for analyzing ac
circuits in the phasor domain. The only fundamental difference
is that after transferring the circuit from the time domain to the
phasor domain, the operations conducted in the phasor domain
involve the use of complex algebra, as opposed to just real
numbers. Otherwise, the circuit laws and methods of solution
are identical.

At this stage, instead of repeating the details of these
various techniques, a more effective approach is to illustrate
their implementation procedures through concrete examples.
Examples 7-12 through 7-16 are designed to do just that.

Example 7-12: Nodal Analysis

Apply the nodal-analysis method to determine iL(t) in the
circuit of Fig. 7-25(a). The sources are given by:

υs1(t) = 12 cos 103t V,

υs2(t) = 6 sin 103t V.

Solution: We first demonstrate how to solve this problem
using the standard nodal-analysis method (Section 3-2), and
then we solve it again by applying the by-inspection method
(Section 3-4).

V1
V2I4

I5 I6

IL

I2

I3

I7
V3

R1

R2 R5

C

R3

I9

I1 I8

2 Ω3 Ω R4 R62 Ω

2 Ω2 Ω

2 Ω

−j6 V−j4 Ω j1 Ω

12 V

+
_

+_

iL

R1

υs1

Vs1

Vs2

υs2

R2 R5

C L

R3

2 Ω3 Ω R4 R62 Ω
2 Ω2 Ω

2 Ω

0.25 mF
1 mH

+
_

+_

Figure 7-25: Circuit for Example 7-12 in (a) the time domain
and (b) the phasor domain.

Nodal-analysis method

Our first step is to transform the given circuit to the phasor
domain. Accordingly,

ZC = 1

jωC
= −j

103 × 0.25 × 10−3 = −j4 	,

ZL = jωL = j103 × 10−3 = j1 	,

υs1 = 12 cos 103t Vs1 = 12 V,

and

υs2 = 6 sin 103t Vs2 = −j6 V,

where for Vs2 we used the property given in Table 7-2, namely
that the phasor counterpart of sin ωt is −j . Using these values,
we generate the phasor-domain circuit given in Fig. 7-25(b) in
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which we selected one of the extraordinary nodes as a ground
node and assigned phasor voltages V1 to V3 to the other three.

Our plan is to write the voltage node equations at nodes 1 to
3, solve them simultaneously to find V1 to V3, and then use the
value of V2 to obtain IL. The final step will involve transforming
IL to the time domain to obtain iL(t).

At node 1, KCL requires that

I1 + I2 + I3 = 0. (7.103)

In terms of node voltages V1 to V3,

I1 = V1 − V3

R3
= V1 − V3

2
,

I2 = V1 − V2 + Vs1

R2
= V1 − V2 + 12

2
,

and

I3 = V1

R1 + ZC
= V1

3 − j4
.

Inserting the expressions for I1 to I3 in Eq. (7.103) and then
rearranging the terms leads to

(
1

2
+ 1

2
+ 1

3 − j4

)
V1 − 1

2
V2 − 1

2
V3 = −6. (7.104)

The coefficient of V1 can be simplified as follows:

1

2
+ 1

2
+ 1

3 − j4
= 1 + 1

3 − j4

= 3 − j4 + 1

3 − j4

= 4 − j4

3 − j4
× 3 + j4

3 + j4

= (12 + 16) + j (16 − 12)

9 + 16
= 1.12 + j0.16.

(7.105)

Inserting Eq. (7.105) in Eq. (7.104) and multiplying all terms
by 2 leads to the following simplified algebraic equation for
node 1:

(2.24 + j0.32)V1 − V2 − V3 = −12 (node 1). (7.106)

Similarly, at node 2,

V2 − V1 − 12

2
+ V2

2 + j1
+ V2 − V3

2
= 0,

which can be simplified to

−V1 + (2.8 − j0.4)V2 − V3 = 12 (node 2), (7.107)

and at node 3,

V3 − V2

2
+ V3 − V1

2
+ V3 + j6

2
= 0,

or

−V1 − V2 + 3V3 = −j6 (node 3). (7.108)

Equations (7.106) to (7.108) now are ready to be cast in matrix
form:

⎡
⎣(2.24 + j0.32) −1 −1

−1 (2.8 − j0.4) −1
−1 −1 3

⎤
⎦
⎡
⎣V1

V2
V3

⎤
⎦ =

⎡
⎣−12

12
−j6

⎤
⎦ .

(7.109) 
Matrix inversion, either manually or by MATLAB or MathScript 
software, provides the solution:

V1 = −(4.72 + j0.88) V, (7.110a)

V2 = (2.46 − j0.89) V, (7.110b)

and

V3 = −(0.76 + j2.59) V. (7.110c)

Hence,

IL = V2

2 + j1
= 2.46 − j0.89

2 + j1
= 0.81−j0.85 = 1.17e−j46.5◦

A,

and its corresponding time-domain counterpart is

iL(t) = Re[ILej1000t ]
= Re[1.17e−j46.4◦

ej1000t ] = 1.17 cos(1000t − 46.5◦) A.

(7.111)
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V1
V2

IL

V3

Y1

YC YL

Y5

Y3

Y4

Y6

j     S

S
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1
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1
2
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= Y   = (0.4 + j0.2) S= Y  = (0.12+ j0.16) S

−j3 A
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Figure 7-26: Equivalent of the circuit in Fig. 7-25, after source transformation of voltage sources into current sources and replacement of
passive elements with their equivalent admittances.

By-inspection method

Implementation of the nodal-analysis by-inspection method
requires that the circuit contain no dependent sources and
that all independent sources in the circuit be current sources.
The first condition is valid for the circuit in Fig. 7-25(b),
but the second one is not. However, both voltage sources
in Fig. 7-25(b) have in-series resistors associated with them,
so we easily can transform them into current sources. The
resultant circuit is shown in Fig. 7-26, in which not only
have the voltage sources been replaced with equivalent current
sources, but all impedances have also been replaced with their
equivalent admittances (Y = 1/Z). For the 3-node case, the
phasor-domain equivalent of Eq. (3.25) is given by

⎡
⎣Y11 Y12 Y13

Y21 Y22 Y23
Y31 Y32 Y33

⎤
⎦
⎡
⎣V1

V2
V3

⎤
⎦ =

⎡
⎣It1

It2

It3

⎤
⎦ , (7.112)

where

Ykk = sum of all admittances connected to node k

Yk
 = Y
k = negative of admittance(s) connecting
nodes k and 
, with k �= 


Vk = unknown phasor voltage at node k

Itk = total of phasor current sources entering node k (a
negative sign applies to a current source leaving
the node).

For the circuit in Fig. 7-26,

Y11 = Y′ + Y2 + Y3 = (Y′ + 0.5 + 0.5) S, (7.113)

where Y′ is the sum of Y1 and YC. The rule for adding two in-
series admittances is the same as that for adding two in-parallel
impedances:

Y′ = Y1 ‖ YC =
1
3 × j 1

4
1
3 + j 1

4

= (0.12 + j0.16) S.

Hence,

Y11 = (1.12 + j0.16) S.

Similarly,

Y22 = Y′′ + 0.5 + 0.5

= (Y4 ‖ YL) + 1 = 0.5 × (−j1)

0.5 − j1
+ 1 = (1.4 − j0.2) S,

Y33 = 0.5 + 0.5 + 0.5 = 1.5 S.

Also, Y12 = Y21 = Y13 = Y31 = Y23 = Y32 = −0.5 S,
It1 = −6 A, It2 = 6 A, and It3 = −j3 A. Entering the values
of all of these quantities in Eq. (7.112) gives

⎡
⎣(1.12 + j0.16) −0.5 −0.5

−0.5 (1.4 − j0.2) −0.5
−0.5 −0.5 1.5

⎤
⎦
⎡
⎣V1

V2
V3

⎤
⎦ =

⎡
⎣ −6

6
−j3

⎤
⎦ .

(7.114)
Multiplication of both sides of Eq. (7.114) by a factor of 2
would produce exactly the matrix equation given by Eq. (7.109),
as expected. Consequently, the final expression for iL(t) is
identical to that given by Eq. (7.111).
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Technology Brief 19
Crystal Oscillators

Circuits that produce well-defined ac oscillations are
fundamental to many applications: frequency generators
for radio transmitters, filters for radio receivers, and
processor clocks, among many. An oscillator is a
circuit that takes a dc input and produces an ac
output at a desired frequency. Temperature stability, long
lifetime, and little frequency drift over time are important
considerations when designing oscillators.

A circuit consisting of an inductor and a capacitor will
resonate at a specific natural frequency ω0 = 1/

√
LC . In

such a circuit, energy is stored in the capacitor’s electric
field and the inductor’s magnetic field. Once energy is
introduced into the circuit (for example, by applying an
initial voltage to the capacitor), it will begin to flow back
and forth (oscillate) between the two components; this
constant conversion gives rise to oscillations in voltage
and current at the resonant frequency. In an ideal circuit
with no dissipation (no resistor), the oscillations will
continue at this one frequency forever.

Making oscillating circuits from individual inductor and
capacitor components, however, is relatively impracti-
cal and yields devices with poor reproducibility, high
temperature drift (i.e., the resonant frequency changes
with the temperature surrounding the circuit), and poor
overall lifetime. Since the early part of the 20th century,
resonators have been made in a completely different way,
namely by using tiny, mechanically resonating pieces of
quartz glass.

Quartz Crystals and Piezoelectricity

In 1880, the Curie brothers demonstrated that certain
crystals—such as quartz, topaz, and tourmaline—
become electrically polarized when subjected to mechan-
ical stress. That is, such a crystal exhibits a voltage
across it if compressed, and a voltage of opposite
polarity if stretched. The converse property, namely
that if a voltage is applied across a crystal it will
change its shape (compress or stretch), was predicted
a year later by Gabriel Lippman (who received the
1908 Nobel Prize in physics for producing the first
color photographic plate). Collectively, these bidirectional
properties of crystals are known as piezoelectricity.
Piezoelectric crystals are used in microphones to convert
mechanical vibrations of the crystal surface, caused by
acoustic waves, into electrical signals, and the converse is

used in loudspeakers.Piezoelectricity can also be applied
to make a quartz crystal resonate. If a voltage of the
proper polarity is applied across one of the principal axes
of the crystal, it will shrink along the direction of that axis.
Upon removing the voltage, the crystal will try to restore
its shape to its original unstressed state by stretching
itself, but its stored compression energy is sufficient to
allow it to stretch beyond the unstressed state, thereby
generating a voltage whose polarity is opposite of that
of the original voltage that was used to compress it. This
induced voltage will cause it to shrink, and the process will
continue back and forth until the energy initially introduced
by the external voltage source is totally dissipated. The
behavior of the crystal is akin to an underdamped RLC
circuit.

In addition to crystals, some metals and ceramics
are also used for making oscillators. Because the
resonant frequency can be chosen by specifying the
type of material and its shape, such oscillators are
easy to manufacture in large quantities, and their
oscillation frequencies can be designed with a high
degree of precision. Moreover, quartz crystals have good
temperature performance, which means that they can
be used in many applications without the need for
temperature compensation, including in clocks, radios,
and cellphones.

(a)

(b)

X1

υcrystal
+ _

RS = 50 Ω

υout

LS = 80 mH
CS = 1.3 fF
CO = 4.5 pF

CO

CSRS LS

+ _

Figure TF19-1: (a) Quartz crystal circuit symbol and (b)
equivalent circuit. Values given are for a 5 MHz crystal.
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X1

Positive feedback

Negative feedback

+

_

_

+

VCC
_ υout

+VCC

gain

FigureTF19-2: Schematic block diagram of an oscillator
circuit.An oscillator is wired into the positive feedback path,
while a negative feedback path is used to control gain.

Crystal Equivalent Circuit and Oscillator
Design

The electrical behavior of a quartz crystal can be modeled
as a series RLC circuit (LS, CS, RS) in parallel with a shunt
capacitor (CO). The RLC circuit models the fundamental
oscillator behavior with dissipation. The shunt capacitor
is mostly due to the capacitance between the two plates
that actuate the quartz crystal. Figure TF19-1 shows the
circuit symbol, the equivalent circuit with sample values

Figure TF19-3: Schematic (left) and photo (right) of a
tiny atomic physics package used in a chip-scale atomic
clock. (Courtesy of Clark Nguyen, U.C. Berkeley, and John
Kitching, National Institutes of Standards and Technology.

for a commercial 12 MHz crystal along with expressions
and values for the resonant frequencies and Q.

The crystal is, of course, not sufficient to produce a
continuous oscillating waveform; we need to excite the
circuit and keep it running. A common way to do this
is to insert the crystal in the positive feedback path of
an amplifier (Fig. TF19-2). The amplifier, of course, is
supplied with dc power (V+

CC and V−
CC). Note that no

input signal is applied to the circuit. Initially, the output
generates no oscillations; however, any noise at vout that
is at the resonant frequency of X1 will be fed back to
the input and amplified.This positive feedback will quickly
ramp up the output so that it is oscillating at the resonant
frequency of the crystal. A negative feedback loop is also
commonly used to control the overall gain and prevent
the circuit from clipping the signal against the op amp’s
supply voltages V+

CC and V−
CC.

In order to oscillate continuously, a circuit must meet
the following two Barkhausen criteria: (1) The gain of
the circuit must be greater than 1. (This makes sense, for
otherwise the signal will neither get amplified nor establish
a resonating condition.) (2) The phase shift from the input
to the output, then across the feedback loop to the input
must be 0. (This also makes sense, since if there is non-
zero phase shift, the signals will destructively interfere and
the oscillator will not be able to start up.)

Advances in Resonators and Clocks

As good as quartz resonators are, even the best among
them will drift in frequency by 0.01 ppm per year as a
result of aging of the crystal. If the oscillator is being used
to keep time (as in your digital watch), this dictates how
many seconds (or fractions thereof) the clock will lose
per year. Put differently, this drift puts a hard limit on
how long a clock can run without calibration. The same
phenomenon limits how well independent clocks can stay
synchronized with each other. Atomic clocks provide an
extra level of precision by basing their oscillations on
atomic transitions; these clocks are accurate to about
10−9 seconds per day. Recently, a chip-scale version
of an atomic clock (Fig. TF19-3) was demonstrated by
the National Institute for Standards and Technology
(NIST); it consumes 75 mW and was the size of a grain of
rice (10 mm3). Other recent efforts for making oscillators
for communication have focused on replacing the quartz
crystal with a type of micromechanical resonator.
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Exercise 7-15: Write down the node-voltage matrix
equation for the circuit in Fig. E7.15.

2 A −j4 S
(2 + j2) S

4         (A)60o

V1 V2

Figure E7.15

Answer:[
(2 + j2) −(2 + j2)

−(2 + j2) (2 − j2)

] [
V1
V2

]
=
[

2 − 4ej60◦

4ej60◦

]
.

(See )

Example 7-13: Circuit with a Supernode

The circuit in Fig. 7-27, which is already in the phasor domain,
contains two independent voltage sources, both oscillating at an
angular frequency ω = 2×103 rad/s, and both characterized by
a phase angle of 0◦. Determine iL(t).

Solution: Because nodes V1 and V2 are connected by a
voltage source, their combination constitutes a supernode.
When we apply KCL to a supernode, we simply sum all the
currents leaving both of its nodes as if the two nodes are one,

I1 + I2 + I3 + I4 = 0,

V2

L j4

V1

Vs1
 = 4 V

Vs2
 = 29 V

+
_

I1 I2

IL

I3

I4

I1
2

+_

4 Ω

2 Ω

Figure 7-27: Phasor-domain circuit containing a supernode
and a dependent source (Example 7-13).

or
V1 − 4

2
+ V1

j4
+ V2

4
+ I1

2
= 0, (7.115)

and we also incorporate the auxiliary equation relating the two
nodes, namely

V2 − V1 = 29. (7.116)

From the circuit, the current I1 in Eq. (7.115) is given by

I1 = V1 − 4

2
. (7.117)

Using Eqs. (7.116) and (7.117) in Eq. (7.115) and then solving
for V1 leads to

V1 = −(4 + j1) V,

which in turn gives

IL = V1

j4
= − (4 + j1)

j4
= (−0.25 + j1) = 1.03 104◦ A.

With ω = 2×103 rad/s, the inductor current in the time domain
is given by

iL(t) = Re[ILejωt ] = Re[1.03ej104◦
ej2×103t ]

= 1.03 cos(2 × 103t + 104◦) A.

Example 7-14: Mesh Analysis

Apply the mesh-analysis method to determine iL(t) in the 
circuit of Fig. 7-28, given that ω = 1000 rad/s.

Solution: The circuit shown in Fig. 7-28 has mesh currents 
I1 to I3. Since the circuit has no dependent sources and no 
independent current sources, it is suitable for application of the 
mesh-analysis by-inspection method. For a three-loop circuit, 
the phasor-domain parallel of Eq. (3.28) assumes the form:⎡

⎣Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣Vt1

Vt2

Vt3

⎤
⎦ , (7.118)

where

Zkk = sum of all impedances in loop k

Zk
 = Z
k = negative of impedance(s) shared by loop
k and 
, with k �= 


Ik = unknown phasor current of loop k

Vtk = total of phasor voltage sources contained in loop
k, with the polarity defined as positive if Ik flows
from (−) to (+) through the source.
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2 Ω3 Ω

2 Ω2 Ω

2 Ω

−j6 V−j4 Ω

IL

2 Ω

j1 Ω

12 V

+
_

+_

I1

I3

I2

Figure 7-28: Circuit for Example 7-14.

In view of these definitions, the matrix equation for the circuit
in Fig. 7-28 is given by⎡
⎣ (7 − j3) − (2 + j1) −2

−(2 + j1) (6 + j1) −2
−2 −2 6

⎤
⎦
⎡
⎣I1

I2
I3

⎤
⎦ =

⎡
⎣ 12

j6
−12

⎤
⎦ . (7.119)

Matrix inversion leads to

I1 = (0.43 + j0.86) A,

I2 = (−0.38 + j1.71) A,

and

I3 = (−1.98 + j0.86) A.

The current IL through the inductor is given by

IL = I1 − I2 = (0.43 + j0.86) − (−0.38 + j1.71)

= 0.81 − j0.85 = 1.17e−j46.5◦
A, (7.120)

and its time-domain counterpart is

iL(t) = Re[ILejωt ] = Re[1.17e−j46.5◦
ej1000t ]

= 1.17 cos(1000t − 46.5◦) A. (7.121)

Exercise 7-16: Write down the mesh-current matrix
equation for the circuit in Fig. E7.16.

12 V j6 V
3 Ω

2 Ω 4 Ω

j6 Ω

+
_

+
_I1 I2

Figure E7.16

Answer:[
(5 + j6) −(3 + j6)

−(3 + j6) (7 + j6)

] [
I1
I2

]
=
[

12
−j6

]
.

(See )

Example 7-15: Source Superposition

The circuit in Fig. 7-29(a) contains two independent sources.
Apply the source-superposition method to demonstrate that IL
is given by the same expression obtained in Example 7-14,
namely Eq. (7.120).

Solution: With the source-superposition method, we acti-
vate one independent source at a time.

Source 1 Alone: In part (b) of Fig. 7-29, only the 12 V source
is active, and the other source has been replaced with a short
circuit. The loop currents are designated I′

1 through I′
3, and the

corresponding current through the inductor is I′
L. Application

of the mesh-current by-inspection method gives the matrix
equation⎡
⎣ (7 − j3) −(2 + j1) −2

−(2 + j1) (6 + j1) −2
−2 −2 6

⎤
⎦
⎡
⎣I′

1
I′

2
I′

3

⎤
⎦ =

⎡
⎣ 12

0
−12

⎤
⎦ , (7.122)

whose inversion leads to

I′
1 = (0.79 + j0.52) A,

I′
2 = (−0.36 + j0.48) A,

and

I′
3 = (−1.86 + j0.33) A.

Hence,

I′
L = I′

1 − I′
2 = (0.79 + j0.52) − (−0.36 + j0.48)

= (1.15 + j0.04) A. (7.123)

Source 2 Alone: Deactivation of the 12 V source and
reactivation of the −6j V source produces the circuit shown
in part (c) of Fig. 7-29. Now the loop currents are I′′

1, I′′
2, and

I′′
3, and their matrix equation is⎡
⎣ (7 − j3) −(2 + j1) −2

−(2 + j1) (6 + j1) −2
−2 −2 6

⎤
⎦
⎡
⎣I′′

1
I′′

2
I′′

3

⎤
⎦ =

⎡
⎣ 0

j6
0

⎤
⎦ . (7.124)
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Both sources

2 Ω3 Ω

2 Ω2 Ω

2 Ω

−j6 V−j4 Ω

IL

2 Ω

j1 Ω

12 V

+
_

+_

(a)

12 V source replaced with short circuit(c)

2 Ω

2 Ω3 Ω

2 Ω2 Ω

−j4 Ω

2 Ω

j1 Ω

I3

I1
I2IL

+
_−j6 V

−j6 V source replaced with short circuit(b)

2 Ω

2 Ω3 Ω

2 Ω2 Ω

−j4 Ω

2 Ω

j1 Ω

12 V

+_
I3

I1
I2IL

Figure 7-29: Demonstration of the source-superposition technique (Example 7-15).

The solution of Eq. (7.124) is

I′′
1 = (−0.36 + j0.34) A,

I′′
2 = (−0.02 + j1.23) A,

I′′
3 = (−0.13 + j0.53) A,

and

I′′
L = I′′

1 − I′′
2 = −0.36 + j0.34 − (−0.02 + j1.23)

= (−0.34 − j0.89) A.

Total Superposition Solution: Given I′
L due to source 1 alone

and I′′
L due to source 2 alone, the total current due to both sources

simultaneously is

IL = I′
L + I′′

L = (1.15 + j0.04) + (−0.34 − j0.89)

= (0.81 − j0.85) A, (7.125)

which is identical to the expression given by Eq. (7.120).

Example 7-16: Thévenin Approach

For the circuit of Fig. 7-30, (a) obtain its Thévenin equivalent
at terminals (a, b), as if the inductor were an external load, and
(b) then use the Thévenin circuit to determine IL.

Solution: (a) We will apply the open-circuit/short-circuit
method to determine the values of VTh and ZTh of the Thévenin
equivalent circuit.

Open-Circuit Voltage: With the inductor replaced with an
open circuit in Fig. 7-30(b), the matrix equation for loop
currents I1 and I2 is[

(9 − j4) −4
−4 6

] [
I1
I2

]
=
[

12 + j6
−12

]
, (7.126)

and its inversion gives

I1 = (0.02 + j0.96) A and I2 = (−1.98 + j0.64) A.
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(b) Inductor replaced with open circuit(a) Original circuit

2 Ω3 Ω

2 Ω2 Ω

2 Ω

−j6 V−j4 Ω

IL

2 Ω

j1 Ω

12 V

+
_

+_

2 Ω

−j6 V

I2

I1

Voc

3 Ω

2 Ω2 Ω

2 Ω

−j4 Ω

2 Ω

12 V

+
_

+_

a

b

(c) Inductor replaced with short circuit (d) Thevenin circuit connected to inductor

I5

2 Ω3 Ω

2 Ω2 Ω

2 Ω

−j6 V−j4 Ω Isc

2 Ω

12 V

+
_

+_

a

b

a

b

I3 I4

IL

a

b

+
_

j1 Ω

ZTh

VTh
L

'

Figure 7-30: After determining the open-circuit voltage in part (b) and the short-circuit current in part (c), the Thévenin equivalent circuit
is connected to the inductor to determine IL.

With I1 and I2 known, application of KVL around the loop
containing the −j6 V source leads to

VTh = Voc = 2(I1 − I2) + 2I1 − j6

= 4I1 − 2I2 − j6 = (4.06 − j3.44) V. (7.127)

Short-Circuit Current: In part (c) of Fig. 7-30, the inductor
has been replaced with a short circuit. The matrix equation for
loop currents I3 to I5 is given by

⎡
⎣(7 − j4) −2 −2

−2 6 −2
−2 −2 6

⎤
⎦
⎡
⎣I3

I4
I5

⎤
⎦ =

⎡
⎣ 12

j6
−12

⎤
⎦ . (7.128)

Solution of Eq. (7.128) gives

I3 = (0.44 + j0.95) A,

I4 = (−0.53 + j1.60) A,

and

I5 = (−2.03 + j0.85) A,

from which we have

Isc = I3 − I4 = (0.44 + j0.95) − (−0.53 + j1.60)

= (0.97 − j0.65) A. (7.129)

Given Voc and Isc, it follows that

ZTh = Voc

Isc
= 4.06 − j3.44

0.97 − j0.65
= (4.53 − j0.51) 	. (7.130)
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(b) Having established VTh and ZTh, we now connect the
Thévenin equivalent circuit to the inductor at terminals (a, b),
as shown in Fig. 7-30(d). The current IL is simply

IL = VTh

ZTh + j1
= 4.06 − j3.44

4.53 − j0.51 + j1
= (0.80 − j0.85) A.

(7.131)

7-10 ac Op-Amp Circuits

Question 1: Are op amps used in ac circuits?

Answer 1: Yes.

Question 2: Is the ideal op-amp model applicable to ac circuits?

Answer 2: The ideal op-amp model is based on the assumption
that the open-loop gain A is very large (> 104), which is
true at dc and low frequencies, but not necessarily so at high
frequencies. The range of frequencies over which A is large
depends on the specific op-amp design. As we shall see later on
in this section, when the standard LM741 op amp is used in an
inverting amplifier circuit, the ideal op-amp model is applicable
for ac circuits so long as the frequency is less than about 1 kHz.
For operations at higher frequencies, other models should be
used instead, so the selection of a particular op-amp model for
a particular application (such as amplification and processing
of video signals) becomes an important consideration.

To explain what we mean by the answer to the second
question, let us start with a quick review of the op-amp models
introduced earlier in Chapter 4. The operation of the op amp can
be represented by the equivalent circuit shown in Fig. 7-31(a).
The model parameters include large input resistance Ri on the
order of megaohms, small output resistance Ro on the order of
50 	, and an open-loop gain A. At dc, A is very large, on the
order of 105 or greater. These attributes allowed us to adopt
the ideal op-amp model in which we set Ri ≈ ∞, Ro ≈ 0, and
A ≈ ∞. By invoking these approximations, we obtained the
two constraints:

υp = υn

and

ip = in = 0.

The use of these constraints served to significantly simplify the
analysis of op-amp circuits containing dc sources.An important
underlying assumption is that A is very large. Whereas this
assumption is certainly valid for dc, it is not necessarily so at
ac.

Ri
Ro

υp

io
υo

υn

ip

in

+ +

−

+

−

(υp − υn)
A(υp − υn)+-+_

(a) Op-amp equivalent circuit

(b) Ideal op-amp model

υo
+

υn

υp

in = 0
(Ro = 0)

(Ri =    )8

+

_

υp = υn

Figure 7-31: Op-amp (a) equivalent circuit (for both dc and
ac) and (b) ideal model (for dc, and ac at low frequencies).

Figure 7-32 displays a typical plot of the open-loop gain A as
a function of the oscillator frequency f for the LM741 op amp.
At dc, the gain (denoted A0) is indeed very large (105), but A

decreases rapidly with increasing frequency. The gain spectrum
of an op amp is characterized by three important parameters:

(a) the dc gain A0: the value of A at f = 0 Hz.

(b) the corner frequency fc: the frequency at which
A = A0/

√
2 = 0.707A0.

(c) the unity gain frequency fu: the frequency at which A = 1.

For the op-amp gain displayed in Fig. 7-32, A0 = 105,
fc = 10 Hz, and fu = 1 MHz. The ideal op-amp model assumes
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0.707 × 105105 dc gain

LM741104

103

102

10

10 100 1 k 10 k 100 k 1 M 10 M

1

0.1

A

f (Hz)

Corner frequency fc
Unity gain frequency fu

Figure 7-32: Open-loop gain A versus frequency for the
LM741 op amp.

that A is very large, which is a valid assumption at dc and at
frequencies as high as 10 kHz, but it is certainly not valid at
much higher frequencies.

What are the implications of a nonuniform spectrum for A

(i.e., A not a constant as a function of f )? We answer the
question through Example 7-17.

Example 7-17: Audio and Video Amplifier

The objective of this example is to establish whether or not the
inverting amplifier circuit shown in Fig. 7-33(a) is suitable for
amplifying (a) audio signals with spectra extending to 1 kHz
and video signals with spectra extending to 1 MHz. The op-amp
gain spectrum is given in Fig. 7-32, and the input and output
resistances are Ri = 1 M	, and Ro = 50 	.

Solution: Since A is not uniformly high at all the frequencies
under consideration, we should compute the circuit gain
G = υo/υs using the op-amp equivalent circuit model, and then
compare it with the value obtained using the ideal model. We
will perform the comparison at multiple frequencies between
dc and 1 MHz.

Ideal op-amp model

From Eq. (4.24),

Gideal = υo

υs
= −Rf

Rs
= −10 k

2 k
= −5. (7.132)

(a) Inverting amplifier circuit

υo+

_Rs

RL    10 kΩ

Rf = 10 kΩ

υs

υn

υp+
−~

2 kΩ

(b) Equivalent circuit model

υo

Rs = 2 kΩ

RL    10 kΩ

Rf = 10 kΩ

Ro

Riυs

υn

υp

+
−~ +_A(υp − υn)

1 MΩ

Figure 7-33: Inverting amplifier.

Equivalent circuit model

The node equations at nodes υn and υo in Fig. 7-33(b) are given
by:

υn − υs

Rs
+ υn

Ri
+ υn − υo

Rf
= 0, (7.133)

υo − υn

Rf
+ υo − A(υp − υn)

Ro
+ υo

RL
= 0. (7.134)

After setting υp = 0 (because the positive input terminal is
connected to the ground terminal) and solving the two equations
simultaneously to obtain an expression for the circuit gain, we
have

G = υo

υs
= Rf

Rs

·
[

RsRi(Ro − ARf)

(RLRo + RfRL + RfRo)(RiRf + RsRf + RsRi) − RsRi(Ro − ARf)

]
.

(7.135)

Using the values Ri = 106 	, Rs = 2 × 103 	, Rf = 104 	,
Ro = 50 	, RL = 10 k	, and the value of A from Fig. 7-32,
we obtain the results summarized in Table 7-5.

(a) Audio Signal: Based on the gain data listed in Table 7-5,
an audio signal consisting of frequencies extending between
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Table 7-5: Inverting amplifier gain G as a function of
oscillation frequency f . Gideal = −5

f (Hz) A G Error

0 (dc) 105 −4.997 0.06%
100 104 −4.970 0.6%
1 k 103 −4.714 5.7%

10 k 102 −3.111 37.8%
100 k 10 −0.707 85.9%

1 M 1 −0.081 98.4%

The error is defined as

% error =
(

Gideal − G

Gideal

)
× 100.

dc and 1 kHz would experience relatively minimal distortion
because they would all be amplified by a factor of about −5,
within a maximum variation of 5.7% (at 1 kHz).

(b) Video Signal: Because the video signal extends to 1 MHz
and the op-amp circuit does not provide good amplification at
frequencies above 10 kHz, the output signal will be highly
distorted. Hence, to amplify video signals with minimal
distortion, it is necessary to use an op amp with a corner
frequency (Fig. 7-32) as high as 1 MHz or higher.

7-11 Op-Amp Phase Shifter

In Section 7-8, we examined how an RC circuit can be used as
a phase shifter with an output voltage having the same angular
frequency ω of the input voltage, but whose phase angle is
increased or decreased (shifted) by a desired amount. That is,
if the input is

υin(t) = V1 cos ωt, (7.136a)

the phase-shifted output is

υout(t) = V2 cos(ωt + φ). (7.136b)

As was shown earlier in Section 7-8, an RC circuit can indeed
realize the desired phase shift, but at a cost in amplitude. The
amplitude of the output voltage, V2, is smaller than V1, and the
degree of reduction depends on φ and the number of RC stages
used in the phase shifter.

An op-amp circuit can serve as a phase shifter, without
necessarily sacrificing a reduction in amplitude. Consider the
circuit in Fig. 7-34(a). It is an inverting amplifier with complex
source and feedback impedances:

υout+

_

+

_

R1

Zs

Zf

R2

C2

C1

υin
+
−~

Figure 7-34: Inverting amplifier as a phase-shift circuit.

Zs = R1 + 1

jωC1
= jωR1C1 + 1

jωC1
, (7.137a)

Zf = R2 ‖ 1

jωC2
= R2/jωC2

R2 + 1/jωC2
= R2

1 + jωR2C2
.

(7.137b)

The circuit gain is

G = Vout

Vin
= −Zf

Zs
= −jωR2C1

(1 + jωR1C1)(1 + jωR2C2)
,

(7.138)
which can be expressed as

G = |G|ejφ, (7.139)

with

|G| = ωR2C1

[(1 + ω2R2
1C2

1 )(1 + ω2R2
2C2

2 )]1/2
, (7.140a)

φ = 270◦ − tan−1(ωR1C1) − tan−1(ωR2C2), (7.140b)

where 270◦ is the phase angle corresponding to (−j)  in the 
numerator of Eq. (7.138). In the time domain,

υout(t) = |G|V1 cos(ωt + φ). (7.141)

Through judicious choice of the values of R1, R2, C1, and C2,
it should be possible to design a phase shifter that provides the
desired value of φ, with |G| ≥ 1. The process is illustrated by
Example 7-18.

Example 7-18: Op-Amp Phase Shifter

Select values for R1, R2, C1, and C2 in the circuit of Fig. 7-34
so that φ = 120◦ and |G| = 2 at ω = 500 rad/s.
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ac input Transformer Rectifier Filter Voltage
regulator dc output

υs(t)

υs(t)

Vout

Vout

Figure 7-35: Block diagram of a basic dc power supply.

Solution: With 4 selectable parameters against only 2
specified parameters, the desired outcome can be realized
through many different combinations of (R1, R2, C1, C2).
Hence, we arbitrarily choose

R1 = 2 k	, C1 = 3 μF,

which leads to

ωR1C1 = 500 × 2 × 103 × 3 × 10−6 = 3.

Using this value and φ = 120◦ in Eq. (7.140b) leads to

120◦ = 270◦ − tan−1(3) − tan−1(ωR2C2),

which simplifies to

tan−1(ωR2C2) = 270◦ − 120◦ − tan−1 3

= 150◦ − 71.57◦ = 78.43◦.

Hence,

ωR2C2 = tan 78.43◦ = 4.89.

With ωR1C1 = 3 and ωR2C2 = 4.89, and |G| = 2, solution of
Eq. (7.140a) leads to

R2 = 21 k	,

and

C2 = 4.89

ωR2
= 4.89

500 × 21 × 103 = 0.47 μF.

7-12 Application Note: Power-Supply
Circuits

Systems composed of one or more electronic circuits usually
contain power-supply circuits that convert the ac power
available from the wall outlet into dc power, thereby providing
the internal dc voltages required for proper operation of the
electronic circuits. Most dc power supplies consist of the four
subsystems diagrammed in Fig. 7-35. The input is an ac voltage
υs(t) of amplitude Vs and angular frequency ω, and the final
output is a dc voltage Vout. Our plan in this section is to
describe the operation of each of the intermediate stages, and
then connect them all together.

7-12.1 Ideal Transformers

A transformer consists of two inductors called windings, that are
in close proximity to each other but not connected electrically.
The two windings are called the primary and the secondary,
as shown in Fig. 7-36. Even though the two windings are
isolated electrically—meaning that no current flows between
them—when an ac voltage is applied to the primary, it creates a
magnetic flux that permeates both windings through a common
core, inducing an ac voltage in the secondary.

� The transformer gets its name from the fact that it
is used to transform currents, voltages, and impedances
between its primary and secondary circuits. �

The key parameter that determines the relationships between
the primary and the secondary is the turns ratio n = N2/N1,



“book” — 2015/5/4 — 7:17 — page 433 — #49

7-12 APPLICATION NOTE: POWER-SUPPLY CIRCUITS 433

Dots on same ends
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Figure 7-36: Schematic symbol for an ideal transformer. Note
the reversal of the voltage polarity and current direction when
the dot location at the secondary is moved from the top end of
the coil to the bottom end. For both configurations:

υ2

υ1
= N2

N1
= n,

i2

i1
= N1

N2
= 1

n
,

p2

p1
= υ2i2

υ1i1
= 1

where N1 is the number of turns in the primary coil and N2 is
the number of turns in the secondary. An additionally important
attribute is the direction of the primary winding, relative to
that of the secondary, around the common magnetic core. The
relative directions determine the voltage polarity and current
direction at the secondary, relative to those at the primary. To
distinguish between the two cases, a dot usually is placed at one
or the other end of each winding, as shown in Fig. 7-36. For the
ideal transformer, voltage υ2 at the secondary side is related
to voltage υ1 at the primary side by

υ2

υ1
= N2

N1
= n, (7.142)

where the polarities of υ1 and υ2 are defined such that their (+)

terminals are at the ends with the dots. In an ideal transformer,
no power is lost in the core, so all of the power supplied by a
source to its primary coil is transferred to the load connected
at its secondary side. Thus, p1 = p2, and since p1 = i1υ1 and
p2 = i2υ2, it follows that

i2

i1
= N1

N2
, (7.143)

with i1 always defined in the direction towards the dot on the
primary side and i2 defined in the direction away from the dot
on the secondary side. The purpose of the dot designation is
to indicate whether the windings in the primary and secondary
coils curl in the same (clockwise or counterclockwise) direction
or in opposite directions. The coil directions determine the

direction of magnetic flux coupling between the two coils. More
details are available in Chapter 11.

� If N2/N1 > 1, the transformer is called a step-up
transformer because it transforms υ1 to a higher voltage,
and if N2/N1 < 1, it is called a step-down transformer. �

Most office and household electronic gadgets (such as
telephones, clocks, radios, and answering machines) require
dc voltages that are on the order of volts (or at most a few tens
of volts), which is much smaller than the voltage level available
at the wall outlet. The transformer in such gadgets is invariably
a step-down transformer.

As discussed in great detail in Chapter 11, the input-
output relationships for a real transformer are more elaborate
than those given by Eqs. (7.142) and (7.143) for the
ideal transformer. Nevertheless, these simple relationships are
reasonable first-order approximations and serve our current
discussion quite adequately.

Concept Question 7-17: In a transformer, how are the 
voltage polarities and current directions defined relative 
to the dots on the primary and secondary windings?
(See         )

Concept Question 7-18: For an ideal transformer, how
is power p2 related to power p1? (See         )

7-12.2 Rectifiers

A rectifier is a diode circuit that converts an ac waveform into
one that is either always positive or always negative, depending
on the direction(s) of the diode(s). Power supplies usually use a
bridge rectifier, but to appreciate how such a bridge functions,
we will first consider the simple single-diode rectifier circuit
shown in Fig. 7-37. As discussed in Section 2-6.2, a diode is
modeled by a practical response that allows current to flow
through it in the direction shown in Fig. 7-37 if and only if the
voltage across it is greater than a threshold value known as the
forward-bias voltage VF. That is, for the circuit in Fig. 7-37,
the output voltage across the load resistor is given by

υout =
{

υin − VF if υin ≥ VF,

0 if υin ≤ VF.
(7.144)

For an ideal diode with VF = 0, the output waveform is identical
to the input waveform for the half cycles during which υin is
positive, and the output is zero when υin is negative. In the case
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Figure 7-37: Half-wave rectifier circuit.

of a real diode with VF ≈ 0.7V, the peak amplitude of the output
is smaller than that of the input by 0.7 V. Because the output
waveform essentially replicates only the positive half cycles
of the input waveform (with a negative amplitude shift equal
to VF), the circuit of Fig. 7-37 is called a half-wave rectifier.

Next, we consider the bridge-rectifier circuit of Fig. 7-38.
The bridge rectifier uses four diodes. During the positive half
cycle of υin(t), two of the diodes conduct, and the other two
are OFF. The reverse happens during the second half cycle, but
the direction of the current through RL is the same during both
half cycles. Consequently, the output waveform essentially is
equivalent to taking the absolute value of the input waveform
(if VF is so small relative to the peak value as to be neglected).
Because a bridge rectifier acts on both halves of a cycle, it is
often called a full-wave rectifier.

Exercise 7-17: Suppose the input voltage in the circuit of
Fig. 7-38 is a 10 V amplitude square wave. What would
the output look like?

Answer: 8.6-V dc. (See )

7-12.3 Smoothing Filters

So far, we have examined two of the four subcircuits of the dc
power supply. The transformer serves to adjust the amplitude
of the ac signal to a level close to the desired dc voltage level
of the final output. The bridge rectifier converts the ac signal
into an all-positive waveform. Next, we need to reduce the
variations of the full-wave rectified waveform to bring it to
as close to a constant level as possible. We accomplish this
by subjecting the full-wave rectified waveform to a smoothing
(averaging) filter. This is realized by adding a capacitor C in

parallel with the load resistor. The modified circuit is shown in
Fig. 7-39(a), and the associated output waveform is displayed in
Fig. 7-39(b). The capacitor is a storage device that goes through
partial charging-up and discharging-down cycles. During the
charging-up period, the upswing time constant of the circuit is
given by

τup = (2RD ‖ RL)C ≈ 2RDC if RL � RD, (7.145)

where RD is the diode resistance. Typically, RD is on the order of
ohms and RL is on the order of kiloohms, so the approximation
given by Eq. (7.145) is quite reasonable. In the absence of
the capacitor in the circuit, RD usually is ignored because
it is in series with a much larger resistance, RL. Adding a
capacitor, however, creates an RC circuit in which R is the
parallel combination of RD and RL, placing RD in a controlling
position.

During the discharging period, the diode turns off, and
the capacitor discharges through RL alone. Consequently, the
downswing time constant involves RL and C only,

τdn = RLC. (7.146)

For a specified value of the diode resistance RD, we can choose
the values of RL and C so that τup is short and τdn is long—
both relative to the period of the rectified waveform—thereby
realizing a fast response on the upswing part and a very slow
response on the downswing part. In practice, it is possible to
generate an approximately constant dc voltage with a ripple
component on the order of 1 to 10 percent of its average value
(Fig. 7-39(b)).



“book” — 2015/5/4 — 7:17 — page 435 — #51

7-12 APPLICATION NOTE: POWER-SUPPLY CIRCUITS 435

(a) Positive half cycle

RL

υout

υin

+_
OFF

OFF
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Figure 7-38: Full-wave bridge rectifier. Current flows in the same direction through the load resistor for both half cycles.

Example 7-19: Filter Design

If the bridge rectifier circuit of Fig. 7-39(a) has a 60 Hz ac input
signal, determine the values of RL and C that would result in
τup = Trect/12 and τdn = 12Trect, where Trect is the period of
the rectified waveform. Assume RD = 5 	.

Solution: If the frequency of the original ac signal is 60 Hz,
the frequency of the rectified waveform is 120 Hz. Hence, the
period of the rectified waveform is

Trect = 1

120
= 8.33 ms,

and the corresponding design specifications are

τup = Trect

12
= 0.69 ms, and τdn = 12Trect = 100 ms.

Application of Eq. (7.145) leads to

τup ≈ 2RDC
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(a) Bridge rectifier with filter

(b) Filtered output
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Figure 7-39: Smoothing filter reduces the variations of waveform υout(t).

or

C = τup

2RD
= 0.69 × 10−3

2 × 5
= 69 μF.

With the value of C known, application of Eq. (7.146) gives

RL = τdn

C
= 100 × 10−3

69 × 10−6 = 1.45 k	.

7-12.4 Voltage Regulator

The circuit shown in Fig. 7-40 includes all of the power-supply
subcircuits we have discussed thus far, plus two additional
elements, namely a series resistance Rs and a zener diode.
When operated in reverse breakdown, the zener diode maintains
the voltage across it at a constant level Vz—so long as the
current iz passing through it remains between certain limits.
Since the diode is connected in parallel with RL, the output
voltage becomes equal to the zener voltage Vz, and the effective
time constant of the smoothing filter becomes τ = RsC. It is
worth noting that the addition of the zener diode reduces the
peak-to-peak ripple voltage Vr (Fig. 7-39(b)) at the output of

the RC filter by about an order of magnitude. An approximate
expression for the peak-to-peak ripple voltage with the zener
diode in place is given by

Vr = [(Vs1 − 1.4) − Vz]Trect

RsC
× (Rz ‖ RL)

Rs + (Rz ‖ RL)
, (7.147)

where Vs1 is the amplitude of the ac signal at the output of
the transformer (Fig. 7-40), the factor 1.4 V accounts for the
voltage drop across a pair of diodes in the rectifier, Vz is the
manufacturer-rated zener voltage for the specific model used in
the circuit, Trect is the period of the rectified waveform, and Rz is
the manufacturer specified value of the zener-diode resistance.

Example 7-20: Power-Supply Design

A power supply with the circuit configuration shown in
Fig. 7-40 has the following specifications: the input voltage
is 60 Hz with an rms amplitude Vrms = 110 V where
Vrms = Vs/

√
2 (the rms value of a sinusoidal function is
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Figure 7-40: Complete power-supply circuit.

discussed in Chapter 8), N1/N2 = 5, C = 2 mF, Rs = 50 	,
RL = 1 k	, Vz = 24 V, and Rz = 20 	. Determine υout, the
ripple voltage, and the ripple fraction relative to υout.

Solution: At the secondary side of the transformer,

υs1(t) =
(

N2

N1

)
(Vs cos 377t)

= 1

5
× 110

√
2 cos 377t = 31.11 cos 377t V.

Hence, Vs1 = 31.11 V, which is greater than the zener voltage
Vz = 24 V.

Consequently, the zener diode will limit the output voltage
at

υout = Vz = 24 V.

In Example 7-19, we established that Trect = 8.33 ms. Also,

Rz ‖ RL = 20 × 1000

20 + 1000
= 19.6 	.

Application of Eq. (7.147) gives

Vr = [(Vs1 − 1.4) − Vz]Trect

RsC
× (Rz ‖ RL)

Rs + (Rz ‖ RL)

= [(31.11 − 1.4) − 24]
50 × 2 × 10−3 (8.33 × 10−3) × 19.6

50 + 19.6

= 0.13 V (peak-to-peak).

Hence,

ripple fraction = (Vr/2)

Vz
= 0.13/2

24
= 0.0027,

which represents a relative variation of less than ±0.3 percent.

7-13 Multisim Analysis of ac Circuits

Even though we usually treat the wires in a circuit as ideal short
circuits, in reality a wire has a small but non-zero resistance.
Also, as noted earlier in Section 5-7.1, when two wires are in
close proximity to one another, they form a non-zero capacitor.
A pair of parallel wires on a circuit board is modeled as a
distributed transmission line with each small length segment 


represented by a series resistance R and a shunt capacitance C,
as depicted by the circuit model shown in Fig. 7-41. For a
parallel-wire segment of length 
, R and C are given by

R = 2


πa2σ

(low-frequency approximation)
(a

√
f σ ≤ 500),

(7.148a)

or

R =
√

πf μ

σ

(



πa

)
(high-frequency approximation)
(a

√
f σ ≥ 1250),

(7.148b)

and

C = πε


ln(d/a)
for (d/2a)2 � 1, (7.148c)

where a is the wire radius, d is the separation between the
wires, f is the frequency of the signal propagating along the
wires, μ and σ are respectively the magnetic permeability and
conductivity of the wire material, and ε is the permittivity of
the material between the two wires. Note that R represents the
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Figure 7-41: Distributed impedance model of two-wire
transmission line.

resistance of both wires. There is actually a third distributed
element to consider in the general case of a transmission line:
the distributed inductance. This inductance is placed in series
with the resistance R of each segment. It arises because current
flowing through the transmission-line wires gives rise to a
magnetic field around the wires and, hence, an inductance (as
discussed in Section 5-3). However, modeling the behavior
of a transmission line with all three components is rather
complex. So, for the purposes of this section, we will ignore the
inductance altogether so that we may illustrate the performance
of an RC transmission line using Multisim. Keeping this in
mind, the distributed model shown in Fig. 7-41 allows us to
represent the wires by a series of cascaded RC circuits. For
the model to faithfully represent the behavior of the real two-
wire configuration, each RC stage should represent a physical
length 
 that is no longer than a fraction (≈ 10 percent) of the
distance that the signal travels during one period of the signal
frequency. Thus, 
 should be on the order of


 ≤ upT

10
≈ c

10f
, (7.149)

where up is the signal velocity along the wires, which is on
the order of the velocity of light by c = 3 × 108 m/s, and the
period T is related to the frequency f by T = 1/f . For example,
if the signal frequency is 1 GHz (= 109 Hz), then 
 should be
on the order of


 ≈ c

10f
= 3 × 108

10 × 109 = 3 cm,

and if the total length of the parallel wires is 
t = 15 cm, then
their transmission-line equivalent circuit should consist of n

sections with

n = 
t



= 15 cm

3 cm
= 5.

We will now use Multisim to simulate such a transmission line.

Example 7-21: Transmission-Line Simulation

A pair of parallel wires made of a conducting material with
conductivity σ = 1.9×105 S/m is used to carry a 1 GHz square-
wave signal between two circuits on a circuit board. The wires
are 15 cm in length and separated by 1 mm, and their radii are
0.1 mm. (a) Develop a transmission-line equivalent model for
the wires and (b) use Multisim to evaluate the voltage response
along the transmission line.

Solution: (a) With 
 = 3 cm (to satisfy Eq. (7.149)),
application of Eqs. (7.148b and c) gives

R =
√

πf μ

σ

(



πa

)

=
√

π × 109 × 4π × 10−7

1.9 × 105

(
3 × 10−2

π × 10−4

)

= 13.76 	

and

C = πε


ln(d/a)

= π × (10−9/36π) × 3 × 10−2

ln(10)

= 3.6 × 10−13 F

= 0.36 pF.

(b) To use Multisim, we need to select values for R and C—
from the libraries of available values—that are approximately
equal to those we calculated. The selected values are less critical
to the simulation than the value of their product, because it is
the product RC = 13.76 × 0.36 × 10−12 ≈ 5 × 10−12 s that
determines the time constant of the voltage response. Hence,
we select

R = 10 	 and C = 0.5 pF,

and we draw the 5-stage circuit shown in Fig. 7-42. The square
wave is generated by a pulse generator that alternates between
0 and 1 V. Its pulses are 500 ps long and the pulse period is
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Figure 7-42: Transmission-line circuit in Multisim.

1000 ps (or equivalently, 1 ns, which is the period corresponding
to a frequency f = 1 GHz). The Rise Time and Fall Time
should be set to 1 ps. Figure 7-43 displays V(1) at node 1,
which represents the pulse-generator voltage waveform, and
the voltages at nodes 2, 3, 4, 5, and 6 corresponding to the
outputs of the five RC stages.

During the charging-up period, it takes longer for the
nodes further away from the pulse generator to reach the
steady-state voltage of 1 V than it does for those closer to
the generator. The same pattern applies during the discharge
period. In addition to the parallel-wire configuration, the
distributed transmission-line concept is equally applicable

V(6)

Input voltage V(1)

V(4)

V(2)

Figure 7-43: Multisim display of voltage waveforms at nodes 1, 2, 3, 4, 5, and 6.
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Figure 7-44: Using the Logic Analyzer to measure time delay in Multisim.

to other transmission media, including the shielded cable
commonly used for the transmission of audio, video, and
digital data between different circuits. If a digital signal with
logic 0 = 0 V and logic 1 = 1 V is to be transmitted along
a coaxial cable or some other transmission line, it may be of
interest to simulate the process using Multisim to determine
how long it takes to charge the different nodes along the line
up to 1 V. This is also known as propagating the logic 1
down the transmission line. The Logic Analyzer (Simulate
→ Instruments → Logic Analyzer) is used to visualize a
large number of logic levels at once. (See the Multisim Tutorial
for a detailed explanation on how to use the Logic Analyzer
Instrument.) An example is shown in Fig. 7-44. The circuit uses
1 M	 resistors, 5 fF capacitors, and a pulse generator. The pulse
length is set at 500 ps and the pulse period at 1000 ps (= 1 ns).
The circuit nodes are wired to the logic analyzer. In Fig. 7-45, we
can observe how long it takes each node to charge up sufficiently
to register as a logic 1. Note that the logic analyzer’s cursor can
be used to read out the exact time points.

Example 7-22: Measuring Phase Shift

Run a Transient Analysis on the Multisim circuit in Fig. 7-44
after replacing the pulse generator with a 1 V amplitude, 10
MHz ac source. The goal is to determine the phase of node 2,

relative to the phase of node 1 (the voltage source). Select a
Start Time of 2.7 μs and an End Time (TSTOP) of 3.0 μs,
and set TSTEP and TMAX to 1e-10 seconds so as to generate
smooth-looking curves. [We did not choose a Start Time of 0 s
simply because it takes the circuit a few microseconds to reach
its steady-state solution.]

Solution: Figure 7-46 shows the traces of selected nodes
V(1), V(2), and V(6) on Grapher View. Clicking on the
Show/Hide Cursors button enables the measurement cursor,
which can be used to quantify the amplitude (vertical axis) and
time (horizontal axis) for each curve. To measure the phase shift
between nodes V(2) and V(1), two cursors are needed.

Step 1: Place cursor 1 slightly to the left of a maximum of the
V(1) trace.

Step 2: Click on the trace for V(1) to select it. White triangles
will appear on the V(1) trace.

Step 3: Right-click the cursor itself and select Go to next
Y Max=>. On row x1, at column V(1), the value in the
table should be 2.7250 μs.
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Node 1 Node 2

Node 4 Node 6

Figure 7-45: Logic Analyzer readout at nodes 1, 2, 3, 4, 5, and 6.

V(1)

V(2)

V(6)

Figure 7-46: Multisim Grapher Plot of voltage nodes V(1), V(2), and V(6) in the circuit of Fig. 7-42.
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Figure 7-47: Using Measurement Probes to determine phase and amplitude of signal at various points on transmission line.

Step 4: Repeat the process using cursor 2 to select the nearby
maximum of theV(2) trace. The entry in row x2, at column
V(2), should be 2.7312 μs.

The time difference between the two values is

�t = 2.7312 μs − 2.7250 μs

= 0.0062 μs.

Given that f = 10 MHz, the period is

T = 1

f

= 1

107

= 10−7

= 0.1 μs.

Application of Eq. (7.11) gives

φ = 2π

(
�t

T

)

= 360◦ ×
(

0.0062

0.1

)

= 22.3◦.

We also can determine the ratio of the amplitude of V(2) to
that of V(1). The ratio of y2 in column V(2) to y1 in column
V(1) gives

V(2)

V(1)
= 0.656

1
≈ 66 percent.

Exercise 7-18: Determine the amplitude and phase of
V(6) in the circuit of Example 7-22, relative to those of
V(1).

Answer: (See )

Additional method to measure amplitude and phase

Let us continue working with the transmission-line circuit of
the previous two examples. Place a Measurement Probe (of
the type we introduced in Chapters 2 and 3) at each of the
appropriate nodes in the circuit. Double-click on the Probe, and
under the Parameters tab, select the appropriate parameters so
that only V(p-p), Vgain(ac), and Phase are printed in the Probe
output. Additionally, with the exception of Probe 1 (located
right above V1), at the top of the Probe Properties window,
check Use reference probe, and select Probe 1. Note that
“phase” here refers to the phase difference between the voltage
at the specific probe and the reference probe. So if a particular
signal is leading the reference node, then the phase will appear
negative, and if a particular signal is lagging the reference node,
then the phase will appear positive. This is the opposite of how
we are taught to think of phase, so keep this at the front of your
mind when using this approach.

Run the Interactive Simulation by pressing F5 (or any of
the appropriate buttons or toggles, which you should know by
now) and the result should resemble that shown in Fig. 7-47.
We can see that the Phase at Node 2 is 22.6◦, which of course is
opposite to what we see in Fig. 7-46, where the signal at V(2)
is behind V(1) by 22.3◦. However, we must remember that the
phase values are flipped in the Measurement Probe readings,
so the values actually are in agreement. Additionally, we see
in Fig. 7-47 that the Vgain(ac) at Node 2 is “654m” (which
corresponds to 65.4 percent), which is very nearly in agreement
with the value of 66 percent obtained in Example 7-22.
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Summary

Concepts

• A sinusoidal waveform is characterized by three
independent parameters: its amplitude A, its angular
frequency ω, and its phase angle φ.

• Complex algebra is used extensively in the phasor
domain to analyze ac circuits. Hence, it behooves every
student taking a course in circuit analysis to become
proficient in using complex numbers (by hand, with a
scientific calculator, and with MATLAB/Mathworks).

• By transforming an ac circuit from the time domain to
the phasor domain, its integro-differential equation gets
transformed into a linear equation. After solving the
linear equation, the solution is then transformed back
to the time domain.

• Voltages and currents in the time domain have phasor

counterparts in the phasor domain; resistors, capacitors,
and inductors are transformed into impedances.

• The rules for combining impedances (when connected
in series or in parallel) are the same as those for
resistors in resistive circuits. The same is true for
Y–� transformations.

• All of the techniques of circuit analysis are equally
applicable in the phasor domain.

• A phase shifter is a circuit that can modify the phase
angle of a sinusoidal waveform.

• An ac waveform can be converted into dc by subjecting it
to a four-step process that includes a transformer, bridge
rectifier, smoothing filter, and voltage regulator.

• Multisim is very useful for analyzing an ac circuit and
evaluating its response as a function of frequency.

Mathematical and Physical Models

Trigonometric identities Table 7-1

Time domain/phasor domain Table 7-2
correspondence

Impedance ZR = R

ZC = 1/jωC

ZL = jωL

Impedances in series Zeq =
N∑

i=1

Zi

Admittances in parallel Yeq =
N∑

i=1

Yi

Y–� transformation Section 7-4.2

Transformer
υ2

υ1
= N2

N1

i2

i1
= N1

N2

Wire resistance R = 2


πa2σ
for (a

√
f σ ≤ 500)

R =
√

πf μ

σ

(



πa

)

for (a
√

f σ ≥ 1250)

Wire capacitor C = πε


ln(d/a)
for (d/2a)2 � 1

Important Terms Provide definitions or explain the meaning of the following terms:

absolute phasor diagram
ac
admittance
alternating current
amplitude

angular frequency
argument
bridge rectifier
capacitive impedance
complex conjugate

complex number
conductance
core
cosine-referenced
current division

downswing time constant
electromagnetic

compatibility
Euler’s identity
forward-bias voltage
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Important Terms (continued)

frequency
frequency domain

technique
full-wave rectifier
half-wave rectifier
iff
ideal transformer
imaginary
impedance
inductive impedance
lag
lead
oscillation frequency
peak-to-peak ripple voltage

peak value
period (of a cycle)
phase angle
phase lag
phase lead
phase-shift circuit
phase-shift oscillator
phasor counterpart
phasor diagram
phasor domain
phasor domain technique
polar form
primary winding
radio frequency identification

reactance
real
relative phasor diagram
rectangular form
rectifier
resistance
ripple
secondary winding
sinusoidal waveform
source-transformation

principle
step-down transformer
step-up transformer
susceptance

Thévenin’s theorem
time-independent
time shift
time-varying function
transformer
true
turns ratio
upswing time constant
voltage division
voltage regulator
winding
zener diode
zener-diode resistance
zener voltage

PROBLEMS

Section 7-1: Sinusoidal Signals

*7.1 Express the sinusoidal waveform

υ(t) = −4 sin(8π × 103t − 45◦) V

in standard cosine form and then determine its amplitude,
frequency, period, and phase angle.

7.2 Express the current waveform

i(t) = −0.2 cos(6π × 109t + 60◦) mA

in standard cosine form and then determine the following:

(a) Its amplitude, frequency, and phase angle.

(b) i(t) at t = 0.1 ns.

*7.3 A 4 kHz sinusoidal voltage waveform υ(t), with a 12 V
amplitude, was observed to have a value of 6 V at t = 1 ms.
Determine the functional form of υ(t).

7.4 Two waveforms, υ1(t) and υ2(t), have identical ampli-
tudes and oscillate at the same frequency, but υ2(t) lags υ1(t)

by a phase angle of 60◦. If

υ1(t) = 4 cos(2π × 103t + 30◦) V,

write the expression appropriate for υ2(t) and plot both
waveforms over the time span from −1 ms to +1 ms.

∗
Answer(s) available in Appendix G.

7.5 Waveforms υ1(t) and υ2(t) are given by:

υ1(t) = −4 sin(6π × 104t + 30◦) V,

υ2(t) = 2 cos(6π × 104t − 30◦) V.

Does υ2(t) lead or lag υ1(t), and by what phase angle?

*7.6 A phase angle of 120◦ was added to a 3 MHz signal,
causing its waveform to shift by �t along the time axis. In
what direction did it shift and by how much?

7.7 Provide an expression for a 24 V signal that exhibits
adjacent minima at t = 1.04 ms and t = 2.29 ms.

7.8 A multiplier circuit has two input ports, designated υ1
and υ2, and one output port whose voltage υout is equal to the
product of υ1 and υ2. Assume

υ1 = 10 cos 2πf1t V,

υ2 = 10 cos 2πf2t V.

(a) Obtain an expression for υout in terms of the sum and
difference frequencies, fs = f1 + f2 and fd = f1 − f2.

(b) Plot its waveform over the time interval [0, 2 s], given that
f1 = 3 Hz and f2 = 2 Hz.

*7.9 Provide an expression for a 12 V signal that exhibits a
maximum at t = 2.5 ms, followed by an adjacent minimum at
t = 12.5 ms.



“book” — 2015/5/4 — 7:17 — page 445 — #61

PROBLEMS 445

Section 7-2: Complex Algebra

7.10 Express the following complex numbers in polar form:

(a) z1 = 3 + j4

(b) z2 = −6 + j8

*(c) z3 = −6 − j4

(d) z4 = j2

*(e) z5 = (2 + j)2

(f) z6 = (3 − j2)3

(g) z7 = (−1 + j)1/2

7.11 Express the following complex numbers in rectangular
form:

(a) z1 = 2ejπ/6

(b) z2 = −3e−jπ/4

*(c) z3 = √
3 e−j3π/4

(d) z4 = −j3

(e) z5 = −j−4

*(f) z6 = (2 + j)2

(g) z7 = (3 − j2)3

7.12 Complex numbers z1 and z2 are given by:

z1 = 6 − j4,

z2 = −2 + j1.

(a) Express z1 and z2 in polar form.

(b) Determine |z1| by applying Eq. (7.20) to the given
expression.

(c) Determine the product z1z2 in polar form.

(d) Determine the ratio z1/z2 in polar form.

(e) Determine z2
1 and compare it with |z1|2.

(f) Determine z1/(z1 − z2) in polar form.

7.13 For the complex number z = 1 + j , show that

z2 − |z|2 = −2(1 − j).

7.14 If z = −8 + j6, determine the following quantities:

(a) |z|2
*(b) z2, in polar form

(c) 1/z, in polar form

(d) z−3, in polar form

(e) Re(1/z2)

*(f) Im(z∗)
(g) Im[(z∗)2]
(h) Re[(z∗)−1/2]

7.15 Complex numbers z1 and z2 are given by

z1 = 2 −60◦,
z2 = 5 45◦.

Determine in polar form:

(a) z1z2

(b) z1/z2

*(c) z1z∗
2

(d) z2
1

(e)
√

z2

(f)
√

z∗
2

(g) z1(z2 − z1)
∗

(h) z∗
2/(z1 + z2)

7.16 Given z = 1.2 − j2.4, determine the value of:

(a) ln z

*(b) ez

(c) ln(z∗)
(d) exp(z∗ + 1)

7.17 Simplify the following expressions into the form
(a + jb), where a and b are real numbers:

(a)
√

j + √−j

(b)
√

j
√−j

(c)
(1 + j)2

(1 − j)2

7.18 Simplify the following expressions and express the result
in polar form:

(a) A = 5e−j30◦

2 + j3
− j4

*(b) B = (−20 45◦)(3 − j4)

(2 − j)
+ (2 + j)

(c) C = j4

(3 + j2) − 2(1 − j)
+ 1

1 + j4

(d) D =
∣∣∣∣ (2 − j) −(3 + j4)

−(3 + j4) (2 + j)

∣∣∣∣
(e) E =

∣∣∣∣ 5 30◦ −2 45◦
−2 45◦ 4 60◦

∣∣∣∣
7.19 Calculate the following complex numbers and express
the results in rectangular form:
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(a) 3ejπ/4 − j4

(b) (3 − j4)/(2 45◦)
(c) [(7 − j5)/(3 + j2)] − 2ej3π/4

7.20 Calculate the following complex numbers and express
the results in polar form:

(a) 2ejπ/3 − 5ejπ/2

*(b) (8 − j3)(7 + j2)

(c) [(6 − j7)/(−2 + j9)] + 3e−jπ/4

Sections 7-3 to 7-5: Phasor Domain and Impedance
Transformations

7.21 Transform the following sinusoidal currents into their
phasor counterparts:

(a) i1(t) = 10 sin(8t + 75◦) A

(b) i2(t) = −17 cos(9t − 25◦) A

(c) i3(t) = [8 cos(6t − 45◦) − 5 sin(6t)] A

7.22 Determine the phasor counterparts of the following
sinusoidal functions:

(a) υ1(t) = 4 cos(377t − 30◦) V

(b) b υ2(t) = −2 sin(8π × 104t + 18◦) V

(c) υ3(t) = 3 sin(1000t + 53◦) − 4 cos(1000t − 17◦) V

7.23 Determine the instantaneous time functions correspond-
ing to the following phasors:

(a) I1 = 6ej60◦
A at f = 60 Hz

(b) I2 = −2e−j30◦
A at f = 1 kHz

*(c) I3 = j3 A at f = 1 MHz

(d) I4 = −(3 + j4) A at f = 10 kHz

(e) I5 = −4 −120◦ A at f = 3 MHz

7.24 Show that the instantaneous time function corresponding
to the phasor V = 4ej60◦ + 6e−j60◦

V is given by

υ(t) = 5.29 cos(ωt − 19.1◦) V.

7.25 Determine the impedances of the following elements:

(a) R = 1 k	 at 1 MHz

(b) L = 30 μH at 1 MHz

*(c) C = 50 μF at 1 kHz

7.26 The function υ(t) is the sum of two sinusoids,

υ(t) = 4 cos(ωt + 30◦) + 6 cos(ωt + 60◦) V. (1)

(a) Apply the necessary trigonometric identities from
Table 7-1 to show that

υ(t) = 9.67 cos(ωt + 48.1◦) V. (2)

(b) Transform the expression given by Eq. (1) to the phasor
domain, simplify it into a single term, and then transform it
back to the time domain to show that the result is identical
to the expression given by Eq. (2).

7.27 Use phasors to simplify each of the following
expressions into a single term [Hint: See Problem 7.26]:

(a) υ1(t) = 12 cos(6t + 30◦) − 6 cos(6t − 45◦) V

*(b) υ2(t) = −3 sin(1000t − 15◦) − 6 sin(1000t + 15◦)
+ 12 cos(1000t − 60◦) V

(c) υ3(t) = 2 cos(377t + 60◦) − 2 cos(377t − 60◦) V

(d) υ4(t) = 10 cos 800t + 10 sin 800t V

7.28 Simply the following expressions using phasors:

(a) i1(t) = 20 cos(ωt − 30◦) + 16 cos(ωt + 15◦) A

(b) i2(t) = 14 sin(ωt + 45◦) − 17 cos(ωt + 60◦) A

(c) i3(t) = 2 cos(5t) − 7 sin(5t) A

*7.29 The current source in the circuit of Fig. P7.18 is given
by

is(t) = 12 cos(2π × 104t − 60◦) mA.

Apply the phasor-domain analysis technique to determine iC(t),
given that R = 20 	 and C = 1 μF.

is(t) R C

iC

Figure P7.29: Circuit for Problems 7.29 and 7.30.

7.30 Repeat Problem 7.29, after replacing the capacitor with
a 0.5 mH inductor and then calculating the current through it.

7.31 Find is(t) in the circuit of Fig. P7.31, given that
υs(t) = 15 cos(5 × 104t − 30◦) V, R = 1 k	, L = 120 mH,
and C = 5 nF.

+
_

Ris(t)

LCυs(t)

Figure P7.31: Circuit for Problem 7.31.



“book” — 2015/5/4 — 7:17 — page 447 — #63

PROBLEMS 447

*7.32 Find voltage υab(t) in the circuit of Fig. P7.32, given
that is(t) = 35 sin(300t − 15◦) mA, R = 80 	, L = 15 mH,
and C = 200 μF.

R
L

C
is(t)

a

b

+

_

υab(t)

Figure P7.32: Circuit for Problem 7.32.

7.33 Find ia(t) in the circuit of Fig. P7.33, given that
υs(t) = 40 sin(200t − 20◦) V.

200 μF

30 Ω

10 Ω

50 mH
υs(t)

+
_

ia(t)

Figure P7.33: Circuit for Problem 7.33.

7.34 Determine the equivalent impedance:

(a) Z1 at 1000 Hz (Fig. P7.34(a))

(b) b Z2 at 500 Hz (Fig. P7.34(b))

(c) Z3 at ω = 106 rad/s (Fig. P7.34(c))

(d) Z4 at ω = 105 rad/s (Fig. P7.34(d))

(e) Z5 at ω = 2000 rad/s (Fig. P7.34(e))

7.35 Find the input impedance Z of the circuit in Fig. P7.35.

5 Ω

7 Ω j6 Ω−j3 Ω

j3 ΩZ −j2 Ω

Figure P7.35: Circuit for Problem 7.35.

*7.36 Find the input impedance Z of the circuit in Fig. P7.36
at ω = 400 rad/s.

(a)

10 μF 10 mH

50 Ω

Z1

(c)

25 nF

20 nF50 Ω

30 ΩZ3

(b)

0.2 μF0.15 H

0.3 H 1 kΩ

Z2

(d)

0.1 mH

0.5 μF

1 μF

10 Ω

10 Ω

10 Ω
Z4

(e)

10 mH
50 μF 20 μF

10 Ω 30 Ω

20 Ω

Z5

Figure P7.34: Circuits for Problem 7.34.

a

b

5 Ω

5 Ω

2 mF 9 mH

3 mH

Z

Figure P7.36: Circuit for Problem 7.36.
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7.37 Find Z of the circuit in Fig. P7.37, given that

υs(t) = 10 cos(377t + 15◦) V

and

is(t) = 3 sin(377t + 30◦) A.

Z
+
_Vs

Is

Figure P7.37: Circuit for Problem 7.37.

*7.38 Find IR in the circuit of Fig. P7.38, given that Vs = 25V.

+
_ 10 Ω

−j5 Ω

13 Ω

IR

Vs j12 Ω

Figure P7.38: Circuit for Problem 7.38.

7.39 The voltage source in the circuit of Fig. P7.39 is given
by

υs(t) = 12 cos 104t V.

(a) Transform the circuit to the phasor domain and then
determine the equivalent impedance Z at terminals (a, b).
[Hint: Application of �–Y transformation should prove
helpful.]

(b) Determine the phasor I, corresponding to i(t).

(c) Determine i(t).

3 Ω3 Ω

3 Ω

Zυs(t)

i(t) a

b

0.3 mH0.3 mH

50 μF

+
_

Figure P7.39: Circuit for Problem 7.39.

*7.40 The circuit in Fig. P7.40 is in the phasor domain.
Determine the following:

(a) The equivalent input impedance Z at terminals (a, b).

(b) The phasor current I, given that Vs = 25 45◦ V.

5 Ω

Z

a

b

−j5 Ω
j5 Ω

j5 Ω

+
_Vs

I

j5 Ω

j5 Ω

Figure P7.40: Circuit for Problem 7.40.

7.41 Use the phasor domain circuit in Fig. P7.41.

(a) Determine the value of Zx that would make the input
impedance Z purely real.

(b) Specify what type of element would be needed to realize
that condition, and what its magnitude should be if
ω = 6250 rad/s.

Z

a

b

j1 Ω

j1 Ωj1 Ω

j1 Ω

1 Ω 1 Ω

1 Ω1 Ω

2 Ω

Zx

Figure P7.41: Circuit for Problem 7.41.

7.42 In response to an input signal voltage
υs(t) = 24 cos 2000πt , the input current in the circuit of
Fig. P7.42 was measured as i(t) = 6 cos(2000πt − 60◦) mA.
Determine the equivalent input impedance Z of the circuit.
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Z

a

b
Passive
circuit

υs(t)

i(t)

+
_

Figure P7.42: Configuration for Problem 7.42.

7.43 At ω = 400 rad/s, the input impedance of the circuit in
Fig. P7.43 is Z = (74 + j72) 	. What is the value of L?

Z

a

L

b

10 Ω

50 μF

20 Ω

Figure P7.43: Circuit for Problem 7.43.

*7.44 In the circuit of Fig. P7.44, what should the value of L

be at ω = 104 rad/s so that i(t) is in-phase with υs(t)?

Z

a

L
b

50 Ω

4 μF25 Ωυs(t)

i(t)

+
_

Figure P7.44: Circuit for Problem 7.44.

7.45 At what angular frequency ω is the current i(t) in the
circuit of Fig. P7.45 in-phase with the source voltage υs(t)?

a

b

Z

50 Ω108.33 μF

0.2 mF

0.2 mF

0.2 Hυs(t)

i(t)

+
_

Figure P7.45: Circuit for Problem 7.45.

Sections 7-6: Equivalent Circuits

7.46 Your objective is to obtain a Thévenin equivalent for the
circuit shown in Fig. P7.46, given that is(t) = 3 cos 4 × 104t A.
To that end:

(a) Transform the circuit to the phasor domain.

(b) Apply the source-transformation technique to obtain the
Thévenin equivalent circuit at terminals (a, b).

(c) Transform the phasor-domain Thévenin circuit back to the
time domain.

a

b

35 Ω

25 Ω 0.5 μF

1 mH

is(t)

     Ω350
37

Figure P7.46: Circuit for Problem 7.46.

7.47 The input circuit shown in Fig. P7.47 contains two
sources, given by

is(t) = 2 cos 103t A,

υs(t) = 8 sin 103t V.

This input circuit is to be connected to a load circuit that
provides optimum performance when the impedance Z of the
input circuit is purely real. The circuit includes a “matching”
element whose type and magnitude should be chosen to realize
that condition. What should those attributes be?

a

Z

b

2 Ω
0.5 mF

Matching element

?

Load
circuit

4 mH
is(t)

υs(t)

6 Ω

+
_

Figure P7.47: Circuit for Problem 7.47.

*7.48 Determine the Thévenin equivalent of the circuit in
Fig. P7.48 at terminals (a, b), given that

υs(t) = 12 cos 2500t V,

is(t) = 0.5 cos(2500t − 30◦) A.
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a

b
10 Ω80 μF

4 mH4 mH

is(t)υs(t)

5 Ω

+
_

Figure P7.48: Circuit for Problem 7.48.

7.49 The circuit in Fig. P7.49 is in the phasor domain.
Determine its Thévenin equivalent at terminals (a, b).

aa

b

0.2 Ω
0.2 Ω

j0.1 Ω 0.1 Ω

+_

I

0.2I

Figure P7.49: Circuit for Problem 7.49.

7.50 As we will learn in Chapter 8, to maximize the transfer
of power from an input circuit to a load ZL, it is necessary to
choose ZL such that it is equal to the complex conjugate of
the impedance of the input circuit. For the circuit in Fig. P7.50,
such a condition translates into requiring ZL = Z∗

Th. Determine
ZL such that it satisfies this condition.

a

b

4 kΩ

3 kΩ
−j6 kΩ+

_

+ _

ZTh

Ix

2000Ix

ZL

15       V0�

Figure P7.50: Circuit for Problem 7.50.

*7.51 The phasor current IL in the circuit of Fig. P7.51 was
measured to be

IL =
(

78

41
+ j

36

41

)
mA.

Determine ZL.

2 kΩ3 kΩ

j6 kΩ
+
_

IL

ZL
15       V0�

Figure P7.51: Circuit for Problem 7.51.

Sections 7-7 and 7-8: Phasor Diagrams and Phase Shifters

7.52 For the circuit in Fig. P7.52:

(a) Apply current division to express IC and IR in terms of Is.

(b) Using Is as reference, generate a relative phasor diagram
showing IC, IR, and Is and demonstrate that the vector
sum IR + IC = Is is satisfied.

(c) Analyze the circuit to determine Is and then generate
the absolute phasor diagram with IC, IR, and Is drawn
according to their true phase angles.

4 Ω

3 Ω

+
_

IRIC

Is

−j3 ΩVs = 2              V45o

Figure P7.52: Circuit for Problem 7.52.

7.53 For the circuit in Fig. P7.53:

(a) Apply current division to express I1 and I2 in terms of Is.

(b) With Is as reference, generate a relative phasor diagram
showing that the vector sum I1+I2 = Is is indeed satisfied.

(c) Analyze the circuit to determine Is and then generate the
absolute phasor diagram for the three currents.

3 Ω4 Ω

5 Ω

+
_

I2I1

Is

−j3 Ωj4 Ω

Vs = 10       V0�

Figure P7.53: Circuit for Problem 7.53.
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7.54 Design a two-stage 1 MHz RC phase-shift circuit whose
output voltage is 120◦ behind that of the input signal. All
capacitors are 1 nF each. Determine the values of the resistors
and the amplitude ratio of the output voltage to that of the input.

7.55 A two-stage RC circuit provides a phase shift lead of
120◦. What is the ratio of the output-voltage amplitude to that
of the input?

*7.56 The element values of a single-stage phase-shift circuit
are R = 40 	 and C = 5 μF.At what frequency f is φ1 = −φ2,
where φ1 and φ2 are the phase angles of the output voltages
across R and C, respectively?

Section 7-9: Analysis Techniques

7.57 Apply nodal analysis in the phasor domain to determine
ix(t) in the circuit of Fig. P7.57.

5 Ω

5 Ω5 Ω

21 cos 105t V 10.5 cos 105t V +
_+

_
1 μF 1 μF

ix

Figure P7.57: Circuit for Problem 7.57.

*7.58 Apply nodal analysis in the phasor domain to determine
iC(t) in the circuit of Fig. P7.58.

5 Ω

5 Ω
5 Ω

12 cos (400t − 30�) V

20 mH20 mH

+
_

iC

mF1
1.6

Figure P7.58: Circuit for Problem 7.58.

7.59 The circuit in Fig. P7.59 contains a supernode between
nodes V1 and V2. Apply the supernode method to determine
V1, V2, and V3, and then calculate IC.

0.4 Ω

2 A

4 A−j0.5 Ω

−j6 V

j0.2 Ω
IC

V1 V2 V3+_

Figure P7.59: Circuit for Problem 7.59.

7.60 Apply the by-inspection method to develop a node-
voltage matrix equation for the circuit in Fig. P7.60, and then 
use MATLAB or MathScript software to solve for V1 and V2.

6 Ω

4 A

2 A
−j4 Ω

−j3 A

V1 V2

6 Ω

−j4 Ω

j12 Ω

Figure P7.60: Circuit for Problem 7.60.

7.61 With Is = 12 120◦ V in the circuit of Fig. P7.61, apply 
the by-inspection method to develop a node-voltage matrix 
equation and then use MATLAB or MathScript software to 
solve for Ix .

20 Ω
20 Ω

10 Ω

10 Ω

20 Ω

Is
Ix

−j10 Ω−j20 Ω

Figure P7.61: Circuit for Problem 7.61.

*7.62 Apply nodal analysis to determine IC in the circuit of
Fig. P7.62.
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2 Ω
6 Ω−j1 Ω

j3 Ω

+
_

+_

8         V45o

2IC

IC

Figure P7.62: Circuits for Problems 7.62 and 7.63.

7.63 Apply mesh analysis to determine IC in the circuit of
Fig. P7.62.

7.64 Apply mesh analysis to determine iL(t) in the circuit of
Fig. P7.64.

30 Ω

20 Ω

+
_ +

_

iL(t)

mF20
377

H10
377

12 cos 377t (V)
4 sin 377t (V)

Figure P7.64: Circuit for Problem 7.64.

*7.65 Use mesh analysis to obtain an expression for the phasor
Vout in the circuit of Fig. P7.65, in terms of Vs and R, given
that R = ωL = 1/ωC.

+
_ VoutVs

R

C
L

R
+

_

Figure P7.65: Circuit for Problem 7.65.

7.66 Apply the by-inspection method to develop a mesh-
current matrix equation for the circuit in Fig. P7.66 and then 
use MATLAB or MathScript software to solve for I1, I2, and I3.

7.67 Use any analysis technique of your choice to determine 
iC(t) in the circuit of Fig. P7.67.

iC

3iC

5 Ω10 Ω

10 Ω

1 mH

1 μF6 cos 2.5    104t A

Figure P7.67: Circuit for Problem 7.67.

*7.68 Determine ix(t) in the circuit of Fig. P7.68, given that
υs(t) = 6 cos 5 × 105t V.

0.1 Ω

0.1 Ω

0.2 Ω

ix

+ _

υs(t)

20 μF

20 μF

Figure P7.68: Circuit for Problem 7.68.

7.69 Find Is in the circuit of Fig. P7.69, given that
Vs = 8 15◦ V.

5 Ω

5 Ω5 Ω
−j10 Ω

(12 + j6) V (4 + j3) V

−j10 Ω

j5 Ω

+
_

I1 I2 I3+
_

Figure P7.66: Circuit for Problem 7.66.
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Is

2.5 ΩVs +
_

−j6 Ω

−j7 Ω

1.5 Ω j3 Ω 4 Ω

Figure P7.69: Circuit for Problem 7.69.

7.70 Find Z in the circuit of Fig. P7.70, given that Vs = 40 V
and Va = 17.22e−j132.2◦

V.

VaVs
+
_ Z

j4 Ω 3 Ω

−j5 Ω
+
_

Figure P7.70: Circuit for Problem 7.70.

*7.71 Find the Thévenin equivalent at terminals (a, b) for the
circuit in Fig. P7.71. The source is Vs = 10 45◦ V.

+
_ a b

8 Ω

4 Ωj6 Ω

−j5 Ω

Vs

Figure P7.71: Circuit for Problem 7.71.

7.72 Find ω such that υa(t) and is(t) in the circuit of
Fig. P7.72 are in-phase. The element values are R1 = 5 	,
R2 = 3 	, L = 35 mH, and C = 7 mF.

+ _

C

L

υa

R1

R2

is(t)

Figure P7.72: Circuit for Problem 7.72.

7.73 Find is(t) in the circuit of Fig. P7.73, given that
υs = 15 cos(ωt), and:

(a) ω = 50 rad/s

(b) ω = 75 rad/s

(c) ω = 200 rad/s

+
_υs(t)

is(t)

12 Ω

20 Ω

30 mH

10 mF

Figure P7.73: Circuit for Problem 7.73.

*7.74 Find ia(t) in the circuit of Fig. P7.74, given that
is(t) = 18 cos(35t + 75◦) A.

is(t)

ia(t)

50 Ω 80 mH 30 mH

24 Ω20 mF

Figure P7.74: Circuit for Problem 7.74.
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7.75 Find the value of ω at which υs(t) and is(t) in the circuit
of Fig. P7.75 are in phase.

10 Ω

is(t)

15 Ωυs(t)

30 mH

5 mF
+
_

Figure P7.75: Circuit for Problem 7.75.

7.76 In the circuit of Fig. P7.76, find the value of ω, given that
υs(t) = 20 cos(ωt + 31.4◦) V and is(t) = 50 sin(ωt + 80◦) A.

+
_

is(t)

υs(t)

0.3 Ω

3 mH

8 mF

Figure P7.76: Circuit for Problem 7.76.

*7.77 Find Ia in the circuit of Fig. P7.77, given that Vs = 10 V
and Is = 5 30◦ A.

+
_ IaVs

−j4 Ω

j4 Ω

3 Ω

6 Ω Is

Figure P7.77: Circuit for Problem 7.77.

7.78 Use the superposition principle to solve for Va in the
circuit of Fig. P7.78.

+
_Va−j4

+
_

+
_−j10 Ω

j6 Ω

9 Ω20 V

10 A 30 V

Figure P7.78: Circuit for Problem 7.78.

7.79 Find Vo in the circuit of Fig. P7.79.

+

_

+
_ −j2 Ω

−j4 Ω

V010 V

5 Ω 5 Ω

+
_

Figure P7.79: Circuit for Problem 7.79.

*7.80 The input signal in the op-amp circuit of Fig. P7.80 is
given by

υin(t) = V0 cos ωt.

Assuming the op amp is operating within its linear range,
obtain an expression for υout(t) by applying the phasor-domain
technique and then evaluate it for ωRC = 1.

RL

R
C

υin(t) υout

_

++
_

+

_

Figure P7.80: Op-amp circuit for Problem 7.80.

7.81 The input signal in the op-amp circuit of Fig. P7.81 is
given by

υin(t) = 0.5 cos 2000t V.
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Obtain an expression for υout(t) and then evaluate it for
R1 = 2 k	, R2 = 10 k	, and C = 0.1 μF.

υin(t)
υout

R1

R2

C

_

+

_
+
_

Figure P7.81: Op-amp circuit for Problem 7.81.

7.82 For υi(t) = V0 cos ωt , obtain an expression for υout(t)

in the circuit of Fig. P7.82 and then evaluate it for V0 = 4 V,
ω = 400 rad/s, R = 5 k	, and C = 2.5 μF.

υout
C

R

υi +
_

Figure P7.82: Circuit for Problem 7.82.

*7.83 For υi(t) = V0 cos ωt , obtain an expression for υout(t)

in the circuit of Fig. P7.83 and then evaluate it for V0 = 2 V,
ω = 377 rad/s, R1 = 2 k	, R2 = 10 k	, and C = 0.5 μF.

υout

C

υi
R1

R2

+

_

Figure P7.83: Circuit for Problem 7.83.

Section 7-12: Power-Supply Circuits

7.84 The signal voltage at the input of a half-wave rectifier
circuit is given by υin(t) = A cos(377t + 30◦) V. Determine
and plot the waveform of υout(t). Calculate the fraction of a
full period over which υout = 0 for each of the following values
of A (assume VF = 0.7 V):

(a) A = 0.5 V

(b) A = 5 V

7.85 A bridge rectifier is driven by a 1 kHz input signal with an
amplitude of 10 V. The smoothing filter at the rectifier output
uses a 1-μF capacitor in parallel with a load resistor RL. If
RD = 5 	:

(a) What should RL be so that τdn/τup = 2500?

(b) How does τdn compare with the period of the rectified
waveform?

(c) What is the approximate peak value of the output
waveform?

7.86 A power supply with the circuit configuration
shown in Fig. 7-40 has the following specifications:
υs = 24 cos(2π × 103t + 30◦) V, N2/N1 = 2, C = 0.1 mF,
Rs = 50 	, RL = 20 k	, Rz = 20 	, and Vz = 42 V.
Determine υout and the peak-to-peak ripple voltage.

Section 7-13: Multisim Analysis

7.87 Use the NetworkAnalyzer (seeAppendix C) in Multisim
to determine the equivalent impedance Zeq of the circuit in
Fig. P7.87. Using the Network Analyzer, plot Zeq from 1 kHz
to 1 MHz and provide a hand calculation demonstrating that the
simulated results are correct.

a

b

180 mH
Zeq

100 kΩ

+

_

Figure P7.87: Circuit for Problem 7.87.
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7.88 Use the NetworkAnalyzer (seeAppendix C) in Multisim
to determine the equivalent impedance Zeq of the circuit in
Fig. P7.88. Using the Network Analyzer, plot the real and
imaginary parts of Zeq from 100 Hz to 100 kHz and provide
a hand calculation demonstrating that the simulated results are
correct.

a

b

180 μH

1 μF

Zeq

1 Ω

Figure P7.88: Circuit for Problem 7.88.

7.89 A 1 V, 100 MHz voltage source υs(t) sends a
signal down two transmission lines simultaneously, as
depicted by Fig. P7.89. Model this circuit in Multisim with
R1 = R2 = 10 	, C1 = 7 pF, and C2 = 5 pF and answer the
following questions.

C1

R1
+

_
C1

R1

C1

R1

C1

R1

C1

R1

+
_

υout1

C2

R2
+

_
C2

R2

C2

R2

C2

R2

C2

R2

υout2υs(t)

Figure P7.89: Circuit for Problem 7.89.

(a) What is the phase shift between υs(t) and the two output
nodes, υout1 and υout2 ?

(b) What is the amplitude ratio for υout1/υs and υout2/υs?

7.90 Phase-shift circuits have many uses. They can be the
fundamental component of an oscillator (a circuit which
produces a repetitive electronic signal). The circuit shown
in Fig. P7.90 is a phase-shift oscillator. While a detailed
analysis is too complex for this text, Multisim allows us to
easily create and analyze this circuit. Using the 3-terminal

virtual op-amp component, construct the phase-shift oscillator
shown in the figure and plot the output from 0 to 1.5 ms in
Transient Analysis. Determine the frequency and amplitude
of the oscillations as well as the DC offset. Note that you may
need to decrease the maximum time step (TMAX) in order to
get a clear plot.

υout
R5

R4

R1 R2 R3

C1 C2 C3
5 nF 5 nF 5 nF

+
_

+
_

1 MΩ

1 V

5 kΩ
5 kΩ5 kΩ 5 kΩ

Figure P7.90: Circuit for Problem 7.90.

7.91 Using a Multisim tool or analysis of your choice, find the
phase and magnitude of the voltage at each node in the circuit
in Fig. P7.91.

Potpourri Questions

7.92 Select two from among the touchscreen sensing
mechanisms depicted in Fig. TF18-1 of Technology Brief 18.
Compare and contrast their advantages and limitations.

7.93 What is the “crystal” in a crystal oscillator? How is it
related to piezoelectricity?
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V1

R1

C1

L1

R3

R4

R2
C2

C3
50 Ω 50 Ω 3.9 mF3.9 mF

10 mH
L2 10 mH

6.9 mF50 Ω

100 Ω
5 cos(2π    103t) V

+
_

Figure P7.91: Circuit for Problem 7.91.

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following 
prob-lems using three complementary approaches: (a) 
analytically, (b) with Multisim, and (c) by constructing the 
circuit and using the myDAQ interface unit to measure 
quantities of interest via your computer. [myDAQ tutorials 
and videos are available on                      .]

m7.1 Impedance Transformations: Determine the equiv-
alent impedance Z looking into terminals (a, b) for the 
circuit of Fig. m7.1 at the following frequencies: 100 Hz, 
500 Hz, 1000 Hz, and 2000 Hz. Report your results in polar 
form. Use these component values: R1 = 100 	, R2 = 90 	, 
C = 1.0 μF, and L = 33 mH.

R1
a

b

R2

L
C

Figure m7.1 Circuit for Problem m7.1.

m7.2 Equivalent Circuits: For the circuit in Fig. m7.2:

(a) Determine the Thévenin equivalent circuit at terminals
(a, b) using the open-circuit/short-circuit method. Show
the Thévenin impedance as a resistor in series with a single
reactive element (capacitor or inductor) and determine
the values of all components in the equivalent circuit.
The sinusoidal source is Vs = 3 V and f = 500 Hz.
Component values are: R1 = 90 	, R2 = 100 	,
C = 1.0 μF, and L = 33 mH.

(b) Repeat with the source frequency increased to 1100 Hz.

(c) Does the circuit seem to “change its personality” with
different source frequencies? Explain your answer.

R1
a

b

R2

L

C
~+_ υs

Figure m7.2 Circuit for Problem m7.2.

m7.3 Phase-Shift Circuits: Figure m7.3 shows a phase-shift
circuit based on op amps.

(a) Write the general expression for the magnitude of Vout
with frequency taken as a variable. Hint: View the circuit
as the cascade of two standard op-amp circuits.

(b) Write the general expression for the phase of Vout with
frequency taken as a variable.

(c) Set C = 0.1 μF and set all resistors to 1.0 k	. Determine
the frequency in Hz at which Vout and Vin share the same
magnitude. What is the phase shift at this frequency?

υout
+
_

~+_υin

R1 R2

R3

C

+
_

Figure m7.3 Circuit for Problem m7.3.



“book” — 2015/5/4 — 7:17 — page 458 — #74

458 CHAPTER 7 AC ANALYSIS

m7.4 Introduction to Bode Plots: Determine Va for the
circuit of Fig. m7.4 for V1 = 1 V at the following frequencies:
100 Hz, 500 Hz, and 2000 Hz. Use these component values:
R1 = 4.7 k	, R2 = 3.3 k	, R3 = 2.2 k	, C1 = 0.047 μF,
and C2 = 0.1 μF.

For the myDAQ and Multisim portions of this question, use
a Bode plotter to capture a representation of Va . The Bode plot
provides the magnitude and phase of the gain ratio Va/V1 as a
function of frequency. Use cursors to verify the gain and phase
of Va from the analytical portion.

R1 R2 R3

~+_V1 C1 C2

Va Vb

Figure m7.4 Circuit for Problem m7.4.

m7.5 Frequency Response: An ac circuit may respond
differently at different frequencies. Find the peak-to-peak
voltage across the 33 k	 resistor in Fig. m7.5 at each of
following frequencies:

(a) 1 kHz

(b) 2 kHz

(c) 20 kHz
The amplitude of the ac source is 1 V.

R1 R2

L

R3~
+

_
υs(t) 33 kΩ

3.3 mH

Figure m7.5 Circuit for Problem m7.5.

m7.6 Arbitrary Sources: Use the myDAQ’s arbitrary
waveform generator “ARB” and the AO 0 and AO 1 ports to
create the circuit in Fig. m7.6. Then use Multisim to verify
your answer (no analytical component to this problem).

• V1 is a square wave with LO value: 0, HI value: 1V, period:
1 ms, and 50% duty cycle.

• V2 is a square wave with LO value: 0 V, HI value: 0.5 V,
period: 0.5 ms, and 50% duty cycle.

(a) From the waveform of the voltage across R4, determine
the four distinct voltage levels (you will need to use
the myDAQ’s oscilloscope and Arbitrary Waveform
Generator).

(b) Using your answer from part (a), find the four
corresponding currents flowing through resistor R4.Verify
your answer using Multisim.

R4

R3

V1

5.6 kΩ22 kΩ

+ _

V2

VR4

R5 1 kΩ

R2 1 kΩ
R1 1 kΩ

Figure m7.6 Circuit for Problem m7.6.
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Objectives

Learn to:

� Calculate the average and rms value of a periodic
waveform.

� Determine the complex power, average real
power, and reactive power for any complex load
with known input voltage or current.

� Determine the power factor for a complex
load and evaluate the improvement realized by
compensating the load through the addition of a
shunt capacitor.

� Choose the load impedance so as to maximize the
transfer of power from the input circuit to the load.

� Apply Multisim to measure power.

Vs

RL

Rs
RMCMa c

b d

LLZLoad + Match

ZLoad

ZSource

Source Matching network Load

+

_

A matching network is a circuit used to optimize the transfer
of ac power between a source and a load. This chapter provides
the tools to analyze circuits from the perspective of the total
complex power they consume (in their resistors) and store (in
their capacitors and inductors).

CHAPTER 8
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Overview

The power absorbed by a resistor R when a current i passes
through it is given by p = i2R. If i is time varying, we usually
designate it i(t), call it the instantaneous current, and call the
corresponding power the instantaneous power

p(t) = i2(t) R (W). (8.1)

Usually, we are interested in the average power P consumed
by a given circuit—or by a collection of circuits, as in an entire
household—and since ac signals are periodic in time with an
angular frequency ω and a time period T = 2π/ω, we define
Pav to be the average value of p(t) over one (or more) complete
period(s). For an ac current given by

i(t) = Im cos ωt, (8.2)

the average power consumed by a resistor R is

Pav = 1
2 I 2

mR (W). (8.3)

This result, which we will derive in Section 8-2, is somewhat
intriguing, primarily because Pav is independent of ω and its
expression contains a factor of 1/2. The explanations are fairly
straightforward and will be covered later. The more important
point we wish to make at this time is that had our intent been to
discuss ac power in resistive circuits only, the discussion would
not have required more than just a few pages and perhaps no
more than one or two examples. Instead, we are devoting this
entire chapter to ac power because real circuits contain more
than just resistors; they contain capacitors and inductors, both
of which cannot consume power but can store it and then release
it.

The current through a resistor is always in phase with the
voltage across it. This phase attribute is responsible, in part, for
the functional form of the expression for Pav given by Eq. (8.3).
The expression, however, generally is not valid when the load
circuit contains reactive elements (capacitors and inductors)
either alone or in combination with resistive elements. So, for
the general case, we need to develop a formulation appropriate
for any complex load—from the purely resistive to the purely
reactive. That defines one of the objectives of the present
chapter.

When we transform a circuit from the time domain to the
phasor domain, voltages and currents are assigned phasor
counterparts, and passive elements become impedances. What
about power? Is there a phasor power P, corresponding to p(t)?
The answer is: Not exactly. We will introduce a quantity S
which we will call complex power, but S is not the phasor
counterpart of p(t). In fact, we assign it the symbol S (rather

than P) to avoid the possible misinterpretation that it bears a
one-to-one correspondence to p(t). As we will see in Section
8-3, S consists of a real part and an imaginary part with the
real part representing the real average power consumed by the
circuit and the imaginary part representing the average power
stored by the circuit.

Towards the end of Chapter 3, we posed the question: When
an input circuit is connected to a resistive load, under what
condition(s) is the power transferred from the circuit to the load
a maximum? Through the application of Thévenin’s theorem,
we demonstrated that the transferred power is a maximum when
the load resistance is equal to the Thévenin resistance of the
input circuit. In the present chapter, we pose the question again,
but we generalize the load to a complex load ZL = RL + jXL,
composed of a resistive part RL and a reactive part XL. In view
of the fact that ZL consists of two parts, we should expect the
answer to consist of two conditions (not just one) and it does.
The details are given in Section 8-5.

8-1 Periodic Waveforms

Even though the focus of this chapter is on the ac power
carried by sinusoidally time-varying signals, we will preface our
examination by first reviewing some of the important properties
shared by all periodic waveforms, including sinusoids.

Mathematically, a periodic waveform x(t) with period T

satisfies the periodicity property

x(t) = x(t + nT ) (8.4)

for any integer value of n. The periodicity property simply
states that the waveform of x(t) repeats itself every T seconds.
Figure 8-1 displays the waveforms of three typical (and
unrelated) periodic functions. In part (a), υ(t) is a sine wave; in
(b) i(t) is a sawtooth with a clipped top; and part (c) displays a
function given by p(t) = Pm cos2 ωt .

8-1.1 Instantaneous and Average Values

Each of the three waveforms shown in Fig. 8-1 describes
the exact variation of its magnitude as a function of time.
Consequently, the time function υ(t), for example, is referred
to as the instantaneous voltage. Similarly, i(t) is the
instantaneous current, and p(t) is the instantaneous power.
Often times, however, we may be interested in specifying an
attribute of the waveform that conveys useful information about
it, and yet it is much simpler to use than the complete waveform.
When ac circuits are concerned, two attributes of particular
interest are the average value of the waveform and its root-
mean-square (rms) value. The latter is introduced in the next
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υ(t) = Vm sin (2πt/T)

0

Vm Vav = 0

−Vm

T/2
T/4

3T/2
T 2T

υ(t)

Positive integrand Negative integrand

t

(a)

0

(b)

Im
Iav

−Im

T/2 3T/2T

i(t)

t
2T

p(t) = Pm cos2 (2πt/T)

(c) 2T

Pm

p(t)

t
T/2 3T/2T

PavPm /2

Figure 8-1: Examples of three periodic waveforms.

subsection, so for the present we pursue only the former. The
average value of a periodic function x(t) with period T is given
by

Xav = 1

T

T∫
0

x(t) dt. (8.5)

� We note that Xav is obtained by integrating x(t) over
a complete period T and then normalizing the integrated
value by dividing it by T . The limits of integration are
from 0 to T , but the definition is equally valid for any
two limits so long as the upper limit is greater than the
lower limit by exactly T (such as from T0 to T0 + T ) or
an integer multiple of T . �

The voltage waveform shown in Fig. 8-1(a) is given by

υ(t) = Vm sin
2πt

T
. (8.6)

Application of Eq. (8.5) gives

Vav = 1

T

T∫
0

Vm sin
2πt

T
dt

= Vm

T

(
− T

2π

)
cos

2πt

T

∣∣∣∣
T

0
= −Vm

2π
[1 − 1] = 0. (8.7)

The fact that the average value of a sine wave is zero is not at
all surprising; it is clear from the characteristic symmetry of
its waveform that the area under the curve (integrand) during
the first half of any cycle is equal (but opposite in polarity) to
the area under the curve during the second half of the cycle,
so the net sum of the two is exactly zero. In contrast, the lack
of symmetry in the waveforms of i(t) and p(t) in Figs. 8-1(b)
and (c) (between that part of the waveform above the t axis
and the part below it) is an obvious indicator that their average
values are not only nonzero but also positive.

Example 8-1: Average Values

Determine the average values of the waveforms displayed in
parts (b) and (c) of Fig. 8-1.

Solution: During the first half of the first cycle, i(t) is
described by a linear ramp of the form

i(t) = at + b for 0 ≤ t ≤ T

2
.

Its slope is

a = 2Im

T/2
= 4Im

T
,

and its intercept at t = 0 is

b = −Im.

Hence,

i(t) =
{

[(4t/T ) − 1]Im for 0 ≤ t ≤ T/2,

Im for T/2 ≤ t < T .
(8.8)
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By Eq. (8.5), the average value of i(t) is

Iav = 1

T

T∫
0

i(t) dt

= 1

T

⎡
⎢⎣

T/2∫
0

(
4t

T
− 1

)
Im dt +

T∫
T/2

Im dt

⎤
⎥⎦ = Im

2
. (8.9)

We also can obtain the same result by adding up the areas
bounded by one cycle of the waveform of i(t) and then dividing
the net total by T , as in

Iav = 1

T

[
−1

2
Im × T

4
+ 1

2
Im × T

4
+ Im × T

2

]
= Im

2
.

To determine Pav of p(t), we apply Eq. (8.5) to the cos2

function:

Pav = 1

T

T∫
0

Pm cos2
(

2πt

T

)
dt.

The integration is facilitated by applying the trigonometric
relation

cos2 x = 1

2
+ 1

2
cos 2x,

which leads to the final result

Pav = Pm

2
.

We should take note for future reference of the fact that the
average value of cos2 ωt is 1/2. In fact, it is easy to show that

1

T

T∫
0

cos2
(

2πnt

T
+ φ1

)
dt = 1

2
,

and

1

T

T∫
0

sin2
(

2πnt

T
+ φ2

)
dt = 1

2
,

(8.10)

for any values of φ1 and φ2.

�The average values of cos2(nωt) and sin2(nωt) are both
1/2 for any integer values of n equal to or greater than 1,
irrespective of whether or not their arguments are shifted
by constant phase angles, so long as the averaging process
is performed over a complete period T = 2π/ω. That is,
the average values of cos2(nωt + φ) and sin2(nωt + φ)

also are 1/2 for any constant value of φ. �

8-1.2 Root-Mean-Square (rms) Value

For a periodic current waveform i(t) flowing through a
resistor R, the average power absorbed by the resistor is

Pav = 1

T

T∫
0

p(t) dt = 1

T

T∫
0

i2(t) R dt. (8.11)

�We would like to introduce a new attribute of i(t), called
its effective value, Ieff , defined such that the average
power Pav delivered by i(t) to resistor R is equivalent to
what a dc current Ieff would deliver to R, namely I 2

effR. �

That is,

I 2
effR = Pav = 1

T

T∫
0

i2(t) R dt. (8.12)

Solving for Ieff gives

Ieff =

√√√√√ 1

T

T∫
0

i2(t) dt (8.13)

According to Eq. (8.13), Ieff is obtained by taking the square
root of the mean (average value) of the square of i(t). The three
terms characterizing the operation are coupled together to form
root-mean-square (rms for short) and Ieff is relabeled Irms.

Even though the idea to define an effective or rms value is
introduced in connection with a periodic current waveform, the
definition is equally applicable to a periodic voltage waveform
as well as to any other periodic waveform. For a periodic
waveform x(t), its rms value therefore is defined as

Xrms = Xeff =

√√√√√ 1

T

T∫
0

x2(t) dt. (8.14)

When a multimeter is used to measure an ac voltage
waveform, it records the rms value of the voltage. In contrast,
when the waveform is displayed on an oscilloscope, the entire
waveform is displayed.
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Example 8-2: rms Values

Determine the rms values of (a) υ(t) = Vm sin(2πt/T +φ) and
(b) i(t) of Fig. 8-1(b).

Solution: (a) Application of Eq. (8.14) to υ(t) gives

Vrms =
⎡
⎣ 1

T

T∫
0

V 2
m sin2

(
2πt

T
+ φ

)
dt

⎤
⎦

1/2

(8.15)

In view of Eq. (8.10),

Vrms = Vm√
2
. (8.16)

Hence:

� For any sinusoidal function, its rms value is equal to its
maximum value (its amplitude) divided by

√
2. �

(b) From Eq. (8.8) of Example 8-1, i(t) is given by

i(t) =
{( 4t

T
− 1

)
Im for 0 ≤ t ≤ T

2 ,

Im for T
2 ≤ t < T .

Its rms value therefore is given by

Irms =

⎧⎪⎨
⎪⎩

1

T

⎡
⎢⎣

T/2∫
0

(
4t

T
− 1

)2

I 2
m dt +

T∫
T/2

I 2
m dt

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1/2

,

which leads to

Irms = 2Im√
6

= 0.82Im.

Concept Question 8-1: What is the average value of a
sinusoidal waveform? What is its rms value? (See         )

Concept Question 8-2: Why is Eq. (8.10) true,
irrespective of the values of φ1 and φ2? Explain in terms 
of a diagram. (See         )

Concept Question 8-3:What does rms stand for and how
does it relate to its definition? (See         )

Exercise 8-1: Determine the average and rms values of
the waveform υ(t) = 12 + 6 cos 400t V.

Answer: Vav = 12 V,  Vrms = 12.73 V. (See )

Exercise 8-2: Determine the average and rms value of the
waveform

i(t) = 8 cos 377t − 4 sin(377t − 30◦) A.

Answer: Iav = 0,  Irms = 7.48 A. (See )

8-2 Average Power

The circuit configuration shown in Fig. 8-2 consists of an
active ac circuit supplying power to a passive load. The load
circuit is not restricted in terms of either its architecture or
the combination of resistors, capacitors, and inductors it may
contain. The instantaneous voltage across the load is υ(t)

and the corresponding instantaneous current flowing into it—
whose direction is defined in accordance with the passive
sign convention—is i(t). Since this is an ac circuit, all of its
currents and voltages oscillate sinusoidally at the same angular
frequency ω. The general functional forms for υ(t) and i(t) are
given by

υ(t) = Vm cos(ωt + φυ), (8.17a)

and

i(t) = Im cos(ωt + φi), (8.17b)

where Vm and Im are the amplitudes of υ(t) and i(t), and φυ

and φi are their phase angles, respectively. Our objective is
to relate the average power absorbed by the load Pav to the
parameters of υ(t) and i(t).

Active
ac

circuit

Passive
circuit

Source circuit Load circuit

a

b

i(t)

υ(t)
+

_

Figure 8-2: Passive load circuit connected to an input source
at terminals (a, b).
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t (ms)
5 10 15 20

Power p(t)

Current i(t)

Voltage υ(t)

Figure 8-3: Waveforms for a 60 Hz circuit with
υ(t) = 4 cos(377t + 30◦) V, i(t) = 3 cos(377t − 30◦) A, and
p(t) = υ(t) i(t). The waveform of i(t) is shifted by 60◦ behind
that of υ(t), and the oscillation frequency of p(t) is twice that
of υ(t) or i(t).

The instantaneous power flowing into the load circuit is

p(t) = υ(t) i(t) = VmIm cos(ωt + φυ) cos(ωt + φi). (8.18)

By applying the trigonometric identity

cos x cos y = 1

2
cos(x − y) + 1

2
cos(x + y), (8.19)

p(t) can be cast in the form

p(t) = VmIm

2
cos(φυ − φi) + VmIm

2
cos(2ωt + φυ + φi).

(8.20)
Before proceeding to find the average value of p(t), let us briefly
examine the significance of the two terms of Eq. (8.20). The first
term is a constant, as it contains no dependence on t , and the
second term is sinusoidal, but its angular frequency is 2ω. Thus:

� p(t) is the sum of a dc-like term and an ac term that
oscillates at a frequency twice that of i(t) and υ(t). �

This behavior is evident in the waveforms of υ(t), i(t), and
p(t) displayed in Fig. 8-3. The angular frequency ω = 2πf

corresponds to f = 60 Hz, and the phase angles were arbitrarily
chosen as φυ = 30◦ and φi = −30◦. The waveform patterns
elicit the following observations:

(a) The voltage υ(t) oscillates symmetrically relative to the
t axis, with a peak-to-peak variation extending from −4 V to
+4 V. The current i(t) exhibits a similar pattern between −3 A
and +3 A.

(b) The waveforms of υ(t) and i(t) are separated from each
other by a time shift �t , corresponding to the difference in phase
angle between them. Given that φυ = +30◦ and φi = −30◦,
υ(t) leads i(t) by 60◦. A complete period

T = 1/f = 1/60 = 16.67 ms

corresponds to a total phase angle of 360◦. Hence, υ(t) leads
i(t) by

�t =
(

60◦

360◦

)
× 16.67 ms = 2.78 ms.

(c) The waveform of the power p(t) is not symmetrical with
respect to the t axis. It has a dc shift equal to the first term in
Eq. (8.20). Also, it traces twice as many cycles per unit time, in
comparison with the waveforms of υ(t) or i(t).

Returning to the task at hand, we now apply Eq. (8.5) to the
expression of p(t) given by Eq. (8.20) to determine Pav, the
average power delivered to the load:

Pav = 1

T

T∫
0

p(t) dt

= 1

T

T∫
0

VmIm

2
[cos(φυ − φi) + cos(2ωt + φυ + φi)] dt.

(8.21)

For any sinusoidal function with ω = 2π/T , it is fairly
straightforward to show that for integer values of n equal to
or greater than 1 and any constant angle θ

1

T

T∫
0

cos(nωt + θ) dt = 0 (n = 1, 2, . . . ). (8.22)

Thus, the average value over a period T = 2π/ω of a sinusoidal
function of angular frequency ω or integer multiple of ω is
zero. In view of Eq. (8.22), the integral of the second term
in Eq. (8.21) is zero. Consequently, the expression for Pav
simplifies to

Pav = VmIm

2
cos(φυ − φi) (W). (8.23)
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Technology Brief 20
The Electromagnetic Spectrum

Electromagnetic Energy

The sun’s rays, the signal transmitted by a cell phone, and
the radiation emitted by plutonium share a fundamental
property: they all carry electromagnetic (EM) energy.
It is an interesting and fundamental observation that
this energy can be described both as a wave moving
through space and as a particle. Neither model alone
is sufficient to explain the phenomena we observe in the
world around us. This correspondence, called the wave-
particle duality, sparked scientific debate as far back as
the 1600s, and it was not until the 20th century and the
advent of quantum mechanics that this duality was fully
incorporated into modern physics.

When we treat EM energy as a wave with alternating
electric and magnetic fields, we ascribe to the wave
a wavelength λ and an oscillation frequency f, whose
product defines the velocity of the wave u as

u = f λ.

If the propagation medium is free space, then u is equal
to c, which is the speed of light in vacuum at 3 × 108 m/s.
Because of the wave-particle duality, when EM energy is
regarded as a particle, each such particle will have the
same velocity u as its wave counterpart and will carry
energy E whose magnitude is specified by the frequency f
through

E = hf,

Atmospheric
transmission

wavelength1 mm

100%

Figure TF20-1: The electromagnetic spectrum extends
over a wide range of wavelengths—from gamma rays
to radio waves. The atmosphere is transparent in the
microwave and in selected windows in the visible and
infrared.

where h is Planck’s constant (6.6 × 10−34 J·s). In view of
the direct link between E and f, we can refer to an EM
particle (also called a photon) either by its energy E or
by the frequency f of its wave counterpart. The higher the
frequency is, the higher is the energy carried by a photon,
but also the shorter is its wavelength λ.

The Spectrum

In terms of the wavelength λ, the EM spectrum extends
across many orders of magnitude (Fig. TF20-1), from
the radio region on one end to the gamma-ray region on
the other. The degree to which an EM wave is absorbed
or scattered as it travels through a medium depends
on the types of constituents present in that medium
and their sizes relative to λ of the wave. For Earth’s
atmosphere, the composition and relative distributions of
its gases are responsible for the near total opacity of
the atmosphere to EM waves across most of the EM
spectrum, except for narrow “windows” in the visible,
infrared, and radio spectral regions (Fig. TF20-1). It is
precisely because EM waves with these wavelengths can
propagate well through the atmosphere that human sight,
thermal infrared imaging, and radio communication are
possible through the air.

1. Cosmic Rays: Emitted by the decay of the nuclei of
unstable elements and by cosmic, high-energy sources in
the universe, cosmic rays—which include gamma, beta,
and alpha radiation—are highly energetic particles that
can be dangerous to organisms and destructive to matter.
Earth emits gamma rays of its own, but at very weak
levels.

2. X-Rays: Slightly lower energy radiation falls into the
X-ray region; this radiation is energetic enough to be
dangerous to organisms in large doses, but small doses
are safe. More importantly, their relatively high energy
allows them to traverse much farther into solid objects
than lower frequency radiation (such as visible light).
This phenomenon allows for modern medical radiology,
in which X-rays are used to measure the opacity of the
medium between the X-ray source and the detector or
film. Thankfully, Earth’s atmosphere efficiently screens
the surface from high-energy radiation, such as cosmic
rays and X-rays.

3. Ultraviolet Rays: The atmosphere is only partially
opaque to ultraviolet (UV) waves, which border the visible
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Table TT20-1: Some examples of radio frequency communication channels and their frequency bands.

Communica�on modality Band name Frequencies 
Medium wave AM radio (US) MF 520 – 1610 kHz, broken into 10 kHz channels 

FM radio (US) VHF 88 – 108 MHz, broken into 100 – 200 kHz 
channels 

GPS L1 and L2 UHF 1575.42 MHz (L1) and 1227.60 MHz (L2) 

802.11g wifi ISM 2.4 – 2.5 GHz, broken into 13 overlapping 22 
MHz channels 

Bluetooth® ISM 2400 – 2483 MHz, broken into 1 MHz channels 
802.15.4 – ZigBee (US) UHF 902 – 928 MHz, broken into 30 channels 

802.15.4 – ZigBee (Asia) UHF 2.4 GHz, broken into 16 channels 

spectrum on the short-wavelength side. UV radiation is
both useful in modern technology and potentially harmful
to living things in high doses. Among its many uses,
UV radiation is used routinely in electronic fabrication
technology for erasing programmable memory chips,
polymer processing, and even as a curing ink and
adhesive. While UV’s potential danger to human skin is
well recognized, it is for the same reasons that UV lamps
are used to sterilize hospital and laboratory equipment.

4. Visible Light Rays: The wavelength range of visible
light extends from about 380 nm (violet color) to 740 nm
(red/brown color), although the exact range varies from
one human to another. Some species can see well into
the infrared (IR) or the UV, so the definition of visible
is completely anthropocentric. It is no coincidence that
evolution led to the development of sight organs that
are sensitive to precisely that part of the spectrum
where atmospheric absorption is very low. In the visible
spectrum, blue light is more susceptible to scattering by
atmospheric particles than the longer wavelengths, which
is why the sky appears blue to us.

5. Infrared Rays: The infrared (IR) region, straddled
in between the visible spectrum and the radio region,
is particularly useful for thermal applications. When
an object is heated, the added energy increases the
vibrations of its molecules. These molecular vibrations,
in turn, release electromagnetic radiation at many
frequencies.Within the range of our thermal environment,
the peak of the radiated spectrum is in the IR region.
This feature has led to the development of IR detectors
and cameras for both civilian and military thermal-imaging

applications. Nightvision systems use IR detector arrays
to image a scene when the intensity of visible-wavelength
light is insufficient for standard cameras. This is because
material objects emit IR energy even in pitch-black
darkness. Conversely, IR energy can be used to heat
an object, because a good radiator of IR is also a good
absorber. Additionally, IR beams are used extensively
in short-distance communication, such as in the remote
control of most modern TV sets and garage door openers.

6. Radio Waves: The frequency range of the radio
spectrum extends from essentially dc (or zero frequency)
to f = 1 THz = 1012 Hz. It is subdivided into many bands
with formal designations (Fig. TF20-1) such as VHF
(30 to 300 MHz) and UHF (300 to 3000 MHz), and
some of those bands combine together to form bands
commonly known by historic designations, such as the
microwave band (300 MHz to 30 GHz). All major free-
space communication systems operate at frequencies
in the radio region, including wireless local area
networks (LANs), cell phones, satellite communication,
and television and radio transmissions (Table TT20-1).
Because the radio spectrum is used so heavily, spectrum
allocation is controlled (often sold) by various national and
international agencies that set standards for what types of
devices are permitted to operate, within what frequency
bands, and at what maximum-power transmission levels.
Cell phones, for example, are allowed to transmit and
receive in the 2.11 to 2.2 GHz band and in the 1.885 to
2.025 GHz band. Radio waves are the range where the
classic antenna-to-antenna transmission occurs.
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This is the dc term in Eq. (8.20). According to Eq. (8.16), the
rms value of a sinusoidal voltage waveform is related to its
amplitude by Vrms = Vm/

√
2, and a similar relationship holds

for i(t). Hence,

Pav = VrmsIrms cos(φυ − φi) (W). (8.24)

The quantity (φυ − φi) is called the power factor angle and
plays a critical role with respect to Pav. For a purely resistive
load R, υ(t) and i(t) are in phase, which means that φυ = φi .
Consequently,

Pav = VrmsIrms = V 2
rms

R
.

(purely resistive load)

(8.25)

The average power supplied to the load is exactly what we
would expect for a resistor at dc, except that in the ac case, we
substitute rms for dc values.

For a purely reactive load (capacitors and/or inductors,
with no resistors), we established in Section 7-7 that
(φυ − φi) = ±90◦, with the (+) sign corresponding to an
inductive load (because υL leads iL by 90◦) and the (−) sign
corresponding to a capacitive load (υC lags iC by 90◦). In either
case,

Pav = VrmsIrms cos 90◦ = 0.

(purely reactive load)

(8.26)

�A purely reactive load can store power and then release
it, but the net average power it absorbs is zero. �

Concept Question 8-4: How is the rms value related to
the amplitude of a sinusoidal signal? (See         )

Concept Question 8-5: How much average power is
consumed by a reactive load? Explain. (See         )

Exercise 8-3: The voltage across and current through a
certain load are given by

υ(t) = 8 cos(754t − 30◦) V

and

i(t) = 0.2 sin 754t A.

What is the average power consumed by the load, and by 
how far in time is i(t) shifted relative to υ(t)?

Answer: Pav = 0.4 W;  �t = 1.39 ms. (See )

8-3 Complex Power

The correspondence between the instantaneous voltageυ(t) and
instantaneous current i(t) and their respective phasors (V and I)
is embodied by the relationships

υ(t) = Vm cos(ωt + φυ) V = Vmejφυ (8.27a)

and

i(t) = Im cos(ωt + φi) I = Imejφi . (8.27b)

In the time domain, in general it is not possible to combine all
of the elements of a passive load circuit into a single equivalent
element, but it is possible to do so in the phasor domain. A
passive ac circuit always can be represented by an equivalent
impedance Z, as shown in Fig. 8-4, and it has to satisfy the
condition

Z = V
I

= Vm

Im
ej (φυ−φi) (	), (8.28a)

where V and I are the phasor voltage and current at its input
terminals. Since in general

Z = |Z| ejφz ,

V Z

Ia

b

Active
ac

circuit
(phasor domain)

Source circuit Load circuit

+

_

Figure 8-4: Source circuit connected to an impedance Z of a
load circuit.
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where φz is the phase angle of Z, it follows that

|Z| = Vm

Im
, φz = φυ − φi. (8.28b)

The complex power S is a phasor quantity defined in terms of V
and I, but it is not simply the product of V and I. The definition
of S is constructed such that the real part of S is exactly equal
to Pav, the real average power absorbed by the load Z. To that
end, S is defined as

S = 1

2
VI∗ (VA), (8.29)

where I∗ is the complex conjugate of I, realized by replacing j

with −j everywhere in I. Upon inserting the expressions for V
and I given by Eqs. (8.27a and b) into Eq. (8.29) (after replacing
jφi with −jφi so as to convert I to I∗), we obtain the result

S = 1

2
(Vmejφυ )(Ime−jφi )

= 1

2
VmImej (φυ−φi)

= 1

2
VmIm cos(φυ − φi) + j

1

2
VmIm sin(φυ − φi). (8.30)

For the sake of consistency, we introduce the rms phasor voltage
and current as

Vrms = V√
2

= Vm√
2

ejφυ (8.31a)

and

Irms = I√
2

= Im√
2

ejφi , (8.31b)

and we rewrite Eqs. (8.29) and (8.30) in terms of rms quantities
as

S = VrmsI∗
rms (VA), (8.32)

and

S = VrmsIrms cos(φυ − φi) + jVrmsIrms sin(φυ − φi). (8.33)

We note that the real part of S (first term) is equal to the
expression for Pav given by Eq. (8.24). The second term is
called the reactive power Q:

Q = VrmsIrms sin(φυ − φi) (VAR). (8.34)

Hence,

S = Pav + jQ (VA), (8.35)

and conversely,

Pav = Re[S] (average absorbed power) (8.36a)

and

Q = Im[S] (peak exchanged power). (8.36b)

� Whereas Pav represents real dissipated power, Q

represents the peak amount of power exchanged (back and
forth) between the source circuit and the load circuit. �

During a single oscillation cycle of duration T :

PavT = energy dissipated in the load,
QT = energy transferred to the load and then

returned to the source.

The three quantities—S, Pav, and Q—are each a product of a
voltage and a current and therefore should be measured in watts.

� However, to help distinguish between them, only Pav
retains the unit of watt, and the other two have been
assigned artificially different units. S has been given
the unit volt-ampere (VA) and Q the unit volt-ampere
reactive (VAR). �

8-3.1 Complex Power for a Load

So far, we have expressed S in terms of V and I, but V and I are
linked to one another through the impedance of the load circuit
Z (Fig. 8-4). In general, Z has a real, resistive component R,
and an imaginary, reactive component X:

Z = R + jX.

We should recall from Chapter 7 that the reactive component is
inductive if X > 0 and capacitive if X < 0. In terms of Z,

V = Z I, (8.37)

and the expression for S given by Eq. (8.29) becomes

S = 1

2
V I∗ = 1

2
Z I I∗ = 1

2
|I|2 Z = I 2

rms(R + jX), (8.38)
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From this, we deduce that

Pav = Re[S] = 1

2
|I|2R = I 2

rmsR (W) (8.39a)

and

Q = Im[S] = 1

2
|I|2X = I 2

rmsX (VAR). (8.39b)

The relationship between S and its components Pav and Q

is illustrated graphically in Fig. 8-5(a) for an impedance
with an inductive component (X > 0). A similar illustration
is contained in Fig. 8-5(b) for an impedance with a
capacitive component (X < 0). The vector S lies in quadrant 1
(0 < (φυ − φi) ≤ 90◦) if X is inductive and in quadrant 4
(−90◦ ≤ (φυ − φi) < 0) if X is capacitive. (If S were to lie
in quadrants 2 or 3, Pav would be negative, indicating that the
load is actually a source supplying power, not consuming it.)

8-3.2 Conservation of Complex Power

In a circuit containing n elements, energy conservation requires
that the sum of the complex powers associated with all n

elements be equal to zero:

n∑
i=1

Si = 0.

Since Si is complex, it follows that both the real and imaginary
components of the sum have to individually be equal to zero,
which, in view of Eq. (8.35), leads to

n∑
i=1

Pavi
= 0,

n∑
i=1

Qi = 0. (8.40)

Keeping in mind that Pavi
has a positive (+) value if the ith

element is a resistor and a negative (−) value if it is a generator
of power, the first summation in Eq. (8.40) states that the power
consumed by the resistors is equal to the (real) power generated
by the sources in the circuit. Similarly, the summation over Qi

states that there is no net exchange of reactive power between
the sources and the reactive elements in the circuit.

(a) Inductive load

(b) Capacitive load

Q

Pav
Pav = Irms 

R

S

2

2Q = Irms X
(X > 0)

ϕυ − ϕi

(X < 0)

Q

Pav

Pav = Irms 
R

S

2

2Q = Irms X

ϕυ − ϕi

Im

Im

Re

Re

Figure 8-5: Complex power S lies in quadrant 1 for an inductive
load and in quadrant 4 for a capacitive load.

Example 8-3: RL Load

An input circuit consisting of a source υs = 10 cos 105t V in
series with a source resistance Rs = 100 	 is connected to an
RL load circuit, as shown in Fig. 8-6(a). If R = 300 	 and
L = 3 mH, determine: I, S into the RL load and φυ of the
voltage across the load.

Solution: From the expression for υs, we deduce that
Vs = 10 V and ω = 105 rad/s. Hence, the load impedance is

Z = R + jωL = 300 + j105 × 3 × 10−3 = (300 + j300) 	.

The phasor current I corresponding to i(t) is given by

I = Vs

Rs + Z
= 10

100 + 300 + j300

= 10

400 + j300
= 20e−j36.87◦

mA.
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(a) Circuit

(b) S in complex plane

(c) V and I in complex plane

υs

Input circuit Load
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L

R

υ

a

b

i

+
−~

Q = 60 mVAR

Pav = 60 mW

S

45o

V

I

ϕυ = 8.13o

ϕi = −36.87o

ϕυ − ϕi = 45o

(V and I have different scales)

+

_

Im

Im

Re

Re

Figure 8-6: Example 8-3.

Given that Im = 20 mA and R = X = 300 	,

Pav = I 2
rmsR = I 2

mR

2
= (20 × 10−3)2

2
× 300 = 60 mW

and

Q = I 2
rmsX = (20 × 10−3)2

2
× 300 = 60 mVAR,

and their combination specifies S as

S = 60 + j60 = 84.85ej45◦
mVA.

According to Eq. (8.30), the phase angle of S is equal to φυ −φi .
Hence,

45◦ = φυ − (−36.87◦),

which yields

φυ = 8.13◦.

We also can determine V independently by applying voltage
division to the circuit,

V = VsZ
Rs + Z

= 10(300 + j300)

400 + j300
= 8.48ej8.13◦

V,

which confirms the value we found earlier for φυ . Figure 8-6(b)
and (c) provide graphical renditions of S, V, and I in the complex
plane.

Example 8-4: Capacitive Load

The current source is(t) = 20 cos(103t + 30◦) mA and
associated shunt resistance Rs = 400 	, as shown in
Fig. 8-7(a), provide ac power to the load circuit to the right of
terminals (a, b). If R1 = 200 	, R2 = 2 k	, and C = 1 μF,
determine: (a) I, V, S, Pav, and Q for the entire load circuit (to
the right of terminals (a, b)), (b) SC for the capacitor alone, and
(c) Ss for the current source.

Solution: (a) In the phasor domain,

Is = 20ej30◦
mA

and

ZC = −j

ωC
= −j

103 × 10−6 = −j1000 	,

and the impedance Z of the load circuit is

Z = R1 + R2 ‖ ZC

= 200 + 2000 × (−j1000)

2000 − j1000
= (600 − j800) 	.

Current division in the phasor-domain circuit of Fig. 8-7(b)
yields

I = IsRs

Rs + Z
= 20 × 10−3ej30◦ × 400

400 + (600 − j800)
= 6.25ej68.66◦

mA,
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(a) Time domain

(b) Phasor domain
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Input Load
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b

I IC

2000 Ω

200 Ω

400 Ω −j1000 Ω

Z = (600 −j800) Ω
123123

+

_

+
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Figure 8-7: Circuit for Example 8-4.

and the phasor voltage at terminals (a, b) is

V = IZ = 6.25×10−3ej68.66×(600−j800) = 6.25ej15.53◦
V.

Given I and V, the complex power S is

S = 1

2
VI∗ = 1

2
× 6.25ej15.53◦ × 6.25 × 10−3e−j68.66◦

= 19.53e−j53.13◦
mVA,

with real and imaginary components given by

Pav = Re[S] = 19.53 × 10−3 cos(−53.13◦) = 11.72 mW

and

Q = Im[S] = 19.53 × 10−3 sin(−53.13◦) = −15.62 mVAR.

(b) The phasor current IC flowing through C is related to I
by

IC = R2I
R2 + ZC

= 2000 × 6.25 × 10−3ej68.66◦

2000 − j1000

= 5.59ej95.23◦
(mA),

and the corresponding voltage VC across the capacitor is

VC = ICZC = 5.59ej95.23◦ × 10−3 × (−j1000)

= 5.59ej5.23◦
V,

where we used the identity

−j = e−j90◦
.

The complex power associated with the capacitor is

SC = 1

2
VCI∗

C = 1

2
5.59ej5.23◦ × 5.59 × 10−3e−j95.23◦

= 15.62e−j90◦ = 0 − j15.62 mVA.

As expected, the real part of SC (representing the amount of
power dissipated in the capacitor) is zero, and the imaginary
part is exactly equal toQof the overall load circuit (the capacitor
is the only element in the load circuit capable of exchanging
power back and forth with the input circuit).

(c) Recall that for any device, S represents the complex power
transferred into the device, and it is defined such that the current
direction through the device is from the (+) terminal to the
(−) terminal of the voltage across it. For the current source Is,
it flows through itself from the (−) terminal of V to the (+)

terminal of V, in exact opposition to the definition of S. Hence,

Ss = −1

2
VI∗

s = −1

2
× 6.25ej15.53◦ × 20e−j30◦ × 10−3

= −62.5e−j14.47◦
mVA

= −62.5 cos(−14.47◦) − j62.5 sin(−14.47◦)
= (−60.52 + j15.62) mVA.

The real part of Ss represents the real average power generated
by Is and is equal in magnitude to the average power dissipated
in the three resistors in the circuit. The imaginary part of Ss is
equal in magnitude and opposite in sign to SC.

Concept Question 8-6: What are the two components 
of the complex power S, what type of power do they 
represent, and what units are assigned to them? 
(See         )

Concept Question 8-7: If S lies in quadrant 2 in the
complex plane, what does that tell you about the load?  
(See         )

Exercise 8-4: The current flowing into a load is given by
i(t) = 2 cos 2500t A. If the load is known to consist of
a series of two passive elements, and S = (10 − j8) VA,
determine the identities of the elements and their values. 

Answer: R = 5 	,  C = 100 μF. (See                 )
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Table 8-1: Summary of power-related quantities.

Time Domain Phasor Domain
i

υ
Load
circuit

Input
circuit

a

b

V

I

Input
circuit Z = R + jX

a

b

= |Z|e jϕz

υ(t) = Vm cos(ωt + φυ) V = Vmejφυ

i(t) = Im cos(ωt + φi) I = Imejφi

Vrms = Vm/
√

2 Vrms = Vrmse
jφυ

Irms = Im/
√

2 Irms = Irmse
jφi

Complex Power
S = 1

2 VI∗ = VrmsI∗rms = Pav + jQ

Real Average Power Reactive Power
Pav = Re [S]

= VrmsIrms cos(φυ − φi)

= I2
rmsR = V 2

rmsR/|Z|2
Q = Im [S]

= VrmsIrms sin(φυ − φi)

= I2
rmsX = V 2

rmsX/|Z|2

Apparent Power Power Factor

S = |S| =
√

P 2
av + Q2

= VrmsIrms
= I2

rms|Z| = V 2
rms/|Z|

S = Sej (φυ−φi) = Sejφz

φz = φυ − φi

pf = Pav

S
= cos(φυ − φi)

= cos φz

8-4 The Power Factor

Several power-related terms were introduced in the preceding
two sections, including the complex power S, the real average
power Pav, and the reactive power Q. We plan to introduce two
additional terms in this section, so lest this apparent profusion
of terms contribute to any possible confusion, we have prepared
a summary of all relevant terms and expressions in the form of
Table 8-1. This is intended to provide the reader easy access
to and greater clarity about the interrelationships among the
various power quantities.

In terms of the complex quantities V and I (representing the
phasor voltage across a load circuit and the associated current
into it) the complex power S transferred to the load circuit
(Fig. 8-8) is given by

S = Pav + jQ, (8.41)

with

Pav = VrmsIrms cos(φυ − φi) (8.42a)

(a)

(b)

Inductive load

Capacitive load

V

I

Electrical
power
source

Z = R + jωL

a

b

R

L

V

I

Electrical
power
source

Z = R −

a

b

R

C

j
ωC

Figure 8-8: Inductive and capacitive loads connected to an
electrical source.
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Table 8-2: Power factor leading and lagging relationships for a load Z = R + jX.

Load Type φφφzzz = φφφυυυ − φφφiii I-V Relationship pf

Purely Resistive (X = 0) φz = 0 I in phase with V 1

Inductive (X > 0) 0 < φz ≤ 90◦ I lags V lagging

Purely Inductive φz = 90◦ I lags V by 90◦ lagging
(X > 0 and R = 0)

Capacitive (X < 0) −90◦ ≤ φz < 0 I leads V leading

Purely Capacitive φz = −90◦ I leads V by 90◦ leading
(X < 0 and R = 0)

and

Q = VrmsIrms sin(φυ − φi). (8.42b)

For reasons that we will discuss in the next subsection, the
magnitude of S is called the apparent power S, and it is given
by

S = |S| =
√

P 2
av + Q2 = VrmsIrms, (8.43)

and the ratio of Pav to S is called the power factor pf, and is
given by

pf = Pav

S
= cos(φυ − φi). (8.44)

The argument of the cosine (φυ − φi) is called the power
factor angle. Per Eq. (8.28b), this angle is equal to the phase
angle of the load impedance φz :

φz = φυ − φi. (8.45)

In view of Eq. (8.45), the expression for the power factor can
be rewritten as

pf = cos φz . (8.46)

Inductive load

An inductive load, such as a series RL circuit, has an impedance

Zind = R + jωL. (8.47)

As both components of Zind are positive quantities, φz is
positive. Since R cannot be negative, the range of φz is
0 ≤ φz ≤ 90◦ with 0◦ corresponding to a purely resistive load
and 90◦ corresponding to a purely inductive load.

Capacitive load

The equivalent circuit of a capacitive load is a series RC circuit
with

Zcap = R − j

ωC
. (8.48)

Consequently, φz is negative and its range is −90◦ ≤ φz ≤ 0,
with −90◦ corresponding to a purely capacitive load.

Because cos(−θ) = cos θ for any angle θ between −90◦ and
+90◦, the power factor (Eq. (8.46)) is insensitive to the sign
of φz , and therefore, it cannot differentiate between an inductive
load and a capacitive load. To qualify pf with such information:

� The load is said to have a leading pf or a lagging pf,
depending on whether the current I leads or lags the
voltage V (see Table 8-2). �

8-4.1 Power Factor Significance

Most industrial loads involve the use of large motors or other
inductive machinery that require the supply of tens of kilowatts
of power, typically at 440 V rms. Household appliances (such
as refrigerators and air conditioners) also contain inductive
coils, and most are designed to operate at either 110 V rms
or 220 V rms. Thus, most loads to which an electrical source
has to supply power have an RL equivalent circuit of the type
shown in Fig. 8-8(a). From the perspective of an energy supplier
(such as the electric power company) the load has two important
attributes: S and Pav. The amount of power the company has to
supply is S, but it can charge for only Pav, because Pav is the
only real power consumed by the load. The company appears
to supply S—hence, the name apparent power—but it gets paid
for a fraction of that, and the power factor is that fraction. For
two loads—one purely resistive with Z1 = R and the second
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inductive with Z2 = R + jωL—with both requiring the same
voltage V and consuming the same power Pav, the inductive
load will require the transmission of a larger current to it than
would the purely resistive load. This point is demonstrated
numerically through Example 8-5.

Example 8-5: ac Motor

The equivalent circuit of a dishwasher motor is characterized
by an impedance Z = (20 + j20) 	. The household voltage is
110 V rms. Determine: (a) pf, S, and Pav and (b) the current that
the electric company would have supplied to the motor had it
been purely resistive and consumed the same amount of power.

Solution: (a) We will treat the phase of the voltage as our
reference by setting it arbitrarily equal to zero. Thus,

Vrms = Vrms 0◦ = 110 V. (8.49)

This is justified by the fact that none of the quantities of interest
require knowledge of the values of φυ and φi individually; it is
the difference (φυ −φi) that counts. The corresponding current
is

Irms = Vrms

Z
= 110

20 + j20
= 110

20
√

2 ej45◦ = 3.9 −45◦ A,

from which we deduce that Irms = 3.9 A and φz = 45◦. The
quantities of interest are then given by

S = VrmsIrms = 110 × 3.9 = 427.8 VA,

Pav = S cos φz = 429 cos 45◦ = 302.5 W,

and

pf = Pav

S
= 0.707. (8.50)

(b) A purely resistive load that consumes 302.5 W at 110 V
rms must have a current of

Irms = Pav

Vrms
= 302.5

110
= 2.75 A. (8.51)

For the same amount of consumed power, the power supplier
has to provide 3.9 A to an inductive load with a power factor
of 0.707, compared with only 2.75 A to a purely resistive load
with pf = 1.

(a) Uncompensated load

(b) Compensated load

Inductive load

IL

VL
Generator

circuit ZL

Is

R

L

Compensated load

IL

IC

VL
Generator

circuit ZLC
R

L

Is

123

Figure 8-9: Adding a shunt capacitor across an inductive load
reduces the current supplied by the generator.

8-4.2 Power Factor Compensation

Raising the power factor of an inductive load (such as an
electric drill or a compressor) is highly desirable, not only
for the energy supplier but also ultimately for its customers
as well. Redesigning the load circuit itself to raise its power
factor to a value closer to 1, however, may not be practical,
primarily because its motor or other inductive components were
presumably selected to meet certain operational specifications
that may be incompatible with a higher power factor. This
problem of partial incompatibility raises the following question:
can we raise the pf of a load (as seen by the generator circuit)
while keeping it the same as far as the inductive load itself
is concerned? The answer is yes, and the solution is fairly
straightforward: it entails adding a shunt capacitor across the
inductive load, as shown in Fig. 8-9(b). Without the capacitor
(Fig. 8-9(a)), the inductor load requires a voltage VL across it
and a current IL through it. The source current Is is equal to IL.
The presence of the shunt capacitor does not change VL, and by
virtue of the load impedance ZL, the current IL = VL/ZL also
remains unchanged. In other words, the capacitor exercises no
influence on the inductive load, but it does change the overall
load circuit as far as the generator is concerned. The new load
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(a) Phasor currents

Is

IC

IL = Is

VL

IC

ϕZL

ϕnew

(b) Uncompensated load

QL

PL

SL

ϕZL

(c) Compensated load

QL
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SL
Q  = QL + QC

QC
PL

Im

Im

Im

Re

Re

Re

Figure 8-10: Comparison of source currents and power factor
triangles for the compensated and uncompensated circuits.

circuit—which we will call the compensated load circuit—
consists of the parallel combination of C and the original
RL circuit. Because of the new current IC, the source current
becomes

I′
s = IL + IC. (8.52)

Had C and the RL load been purely resistive, both IC and IL
would have been real and of the same sign, resulting in a
larger source current rather than smaller. Fortunately, IC and IL
are phasor quantities, and their imaginary components have
opposite polarities (actually, IC is purely imaginary). With VL
chosen to serve as the phase reference, Fig. 8-10(a) illustrates
how the vector sum of IL (the current into the RL circuit)
and IC leads to a vector I′

s, whose length (or equivalently, its

magnitude) is shorter than the length it was before adding the
capacitor. In terms of the power factor,

pf =
{

cos φzL for the RL circuit alone,

cos φnew for the compensated circuit,
(8.53)

where φnew is the phase angle between I′
s and VL in the

compensated load circuit.
Another approach to demonstrate how the addition of the

capacitor improves the power factor is by comparing the
power factor triangle of the RL circuit alone with that of the
compensated load circuit that includes the capacitor. The two
triangles are diagrammed in parts (b) and (c) of Fig. 8-10, in
which PL and QL represent the consumed and reactive powers
associated with the RL load, and QC is associated with the
capacitor C. The capacitor introduces reactive power QC, and
since QC is negative, the net sum

Q′ = QL + QC (8.54)

is smaller than QL alone, thereby reducing the phase angle from
φzL to φnew, where

φnew = tan−1
(

Q′

PL

)
. (8.55)

Example 8-6: pf Compensation

A 60 Hz electric generator supplies a 220 V rms to a load
that consumes 200 kW at pf = 0.8 lagging. By adding a shunt
capacitor C, the power factor of the overall circuit was improved
to 0.95 lagging. Determine the value of C.

Solution: A power factor of 0.8 corresponds to a phase
angle φzL given by

φzL = cos−1(pf1) = cos−1(0.8) = 36.87◦.

The values of SL and QL for the load alone are

SL = PL

pf1
= 200 × 103

0.8
= 250 kVA

and

QL = SL sin φzL = 250 sin 36.87◦ = 150 kVAR.

The associated power triangle is shown in Fig. 8-11(a).
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(a)

(b)

36.87o

QL = 150 kVAR

PL = 200 kW

S L =
 250 kVA

pf1 = 0.8

pf2 = 0.95

18.19o Q  = 65.72 kVAR

PL = 200 kW

SL

Im

Im

Re

Re

Figure 8-11: Power triangles for Example 8-6.

Addition of the capacitor changes the power factor to
pf2 = 0.95, with a corresponding angle as

φnew = cos−1(pf2) = cos−1(0.95) = 18.19◦.

The consumed power PL does not change, but from
Fig. 8-11(b), the new reactive power is now

Q′ = 200 tan φnew = 200 tan 18.19◦ = 65.72 kVAR.

Using the value of QL we determined earlier, the reactive power
introduced by the capacitor is

QC = Q′ − QL = (65.74 − 150) = −84.26 kVAR.

With ZC = 1/jωC, the complex power of C is

SC = VLrmsI
∗
Crms

= VLrms

V∗
Lrms

Z∗
C

= −j |VLrms |2ωC.

Hence, PC = 0, and

QC = −|VLrms |2ωC.

Solving for C gives

C = −QC

2πf V 2
rms

= 84.26 × 103

2π × 60 × (220)2 = 4.62 mF.

Concept Question 8-8: Why is the power factor of a 
household appliance significant to an electric utility 
company? (See         )

Concept Question 8-9: What is pf compensation, and
why is it used? (See         )

Exercise 8-5: At 60 Hz, the impedance of a RL load is
ZL = (50 + j50) 	. (a) What is the value of the power
factor of ZL. (b) What will be the new power factor if a
capacitance C = 1

12π
mF is added in parallel with the RL

load?

Answer: (a) pf1 = 0.707, (b) pf2 = 1. (See )

8-5 Maximum Power Transfer
Consider the network configuration shown in Fig. 8-12 in
which an ac source circuit is represented by its Thévenin
equivalent circuit, composed of a phasor voltage Vs and a source
impedance

Zs = Rs + jXs. (8.56)

Similarly, the load is represented by its impedance ZL with

ZL = RL + jXL. (8.57)

Active
ac

circuit

Passive
circuit

Source circuit Load circuit

a

b

IL

IL

VL

a

b

VLVs ZL = RL + jXL

Zs = Rs + jXs

+
_

Figure 8-12: Replacing the source and load circuits with their
respective Thévenin equivalents.
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Technology Brief 21
Seeing without Light

When we think of optical technology, we most often think
of visible light—the wavelengths we can see, that our
eyes are sensitive to. These wavelengths range from
about 750 nm (red) to 400 nm (violet), as shown in
Fig. TF21-1. From f = c/λ, where c = 3 × 108 m/s and λ

is the wavelength in meters, the corresponding frequency
range extends from 400 THz (1 THz = 1012 Hz) for red
light to 750 THz for violet light.

Our eyes are insensitive to electromagnetic waves
whose frequencies are outside this range, but we can
build sensors that are. Infrared (IR) frequencies (those
below the visible spectrum) can be used for thermal
imaging (sensing heat) and night vision (seeing in the
dark). Ultraviolet (UV) frequencies (those above the
visible spectrum) can be used for dermal (skin) imaging
as well as numerous surface treatments (see Technology
Brief 5 on LEDs).

Thermal — Infrared (IR) Imaging

Night-vision imaging is used for a wide variety of
applications including imaging people for security and
rescue (as seen in Figs.TF21-2 andTF21-3). Helicopters
can fly over large regions, locating people and animals
from their IR signatures. Firefighters can use IR goggles
to see through smoke and find victims.Thermal imaging is

1 mm
3 μm

1.4 μm
750 nm

700 nm
600 nm

500 nm
650 nm

400 nm
320 nm

280 nm
200 nm

450 nm
550 nm

Visible light

Infrared

Near Near

A
B

C
Far
(vacuum)

Ultraviolet

Figure TF21-1: Spectrum of visible light and its two neighbors, the infrared and the ultraviolet.

Figure TF21-2: A night-vision image taken with military-
grade goggles.

also used for medical applications (inflammation warms
injured body parts) including those involving animals and
small children who cannot tell you “where it hurts” and
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Figure TF21-3: A full-color thermal-infrared image of a
soldier.

industrial and mechanical applications (damaged/failing/
inefficient parts often heat up). This also is used to locate
problems in electrical circuits at the board or chip level
(Fig.TF21-4). Night vision is important for security, and is
highly valued by outdoor enthusiasts as well (IR wildlife

Figure TF21-4: Circuit board with superimposed IR image (inset) identifying (in red) high-temperature components or
connections. (Credit: Suljo.)

cameras can catch pictures of animals when they are
most likely to be moving around at night). IR is used for
things other than imaging, too, including motion detection
and measuring body temperature.

Historically, two approaches have been pursued to “see
in the dark”: one that relies on measuring self-emitted
thermal energy by the scene and another that focuses
on intensifying the light reflected by the scene when
illuminated by very weak sources, such as the moon or the
stars. We will explore each of the two approaches briefly.

The visible spectrum extends from the violet (wave-
length λ ≈ 0.38 μm) to the red (≈ 0.78 μm). The spectral
region next to the visible is the infrared (IR), and it is
subdivided into the near-IR (≈ 0.7 to 1.3 μm), mid-IR
(1.3 to 3 μm), and thermal-IR (3 to 30 μm). Infrared
waves cannot be perceived by humans, because our
eyes are not sensitive to EM waves outside of the visible
spectrum. In the visible spectrum, we see or image a
scene by detecting the light reflected by it, but in the
thermal-IR region, we image a scene without an external
source of energy, because the scene itself is the source.
All material media emit electromagnetic energy all of
the time—with hotter objects emitting more than cooler
objects. The amount of energy emitted by an object and
the shape of its emission spectrum depend on the object’s
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Figure TF21-5: Spectra of power density emitted by ideal blackbodies at 0 ◦C, 300 ◦C, and 6000 ◦C.

temperature and its material properties. Most of the
emitted energy occurs over a relatively narrow spectral
range, as illustrated in Fig. TF21-5, which is centered
around a peak value that is highly temperature dependent.
For a high-temperature object like the sun (≈ 6000 ◦C),
the peak value occurs at about 0.5 μm (red-orange color),
whereas for a terrestrial object, the peak value occurs in
the thermal-IR region.

Through a combination of lenses and a 2-D array of
infrared detectors, the energy emitted by a scene can be
focused onto the array, thereby generating an image of
the scene. The images sometimes are displayed with a
rainbow coloring—with hotter objects displayed in red and
cooler objects in blue.

In the near- and mid-IR regions, the imaging process
is based on reflection—just as in the visible. Interestingly,
the sensor chips used in commercial digital cameras are
sensitive not only to visible light but to near-IR energy
as well. To avoid image blur caused by the IR energy,
the camera lens usually is coated with an IR-blocking
film that filters out the IR energy but passes visible light
with near-perfect transmission. TV remote controls use

near-IR signals to communicate with TV sets, so if an
inexpensive digital camera with no IR-blocking coating is
used to image an activated TV remote control in the dark,
the image will show a bright spot at the tip of the remote
control. Some cameras are now making use of this effect
to offer IR-based night-vision recording. These cameras
emit IR energy from LEDs mounted near the lens, so upon
reflection by a nighttime scene, the digital camera is able
to record an image “in the dark.”

Image Intensifier

A second approach to nighttime imaging is to build
sensors with much greater detection sensitivity than the
human eye. Such sensors are called image intensifiers.
Greater sensitivity means that fewer photons are required
in order to detect and register an input signal against the
random “noise” in the receiver (or the brain in the case
of vision). Some animals can see in the dark (but not in
total darkness) because their eye receptors and neural
networks require fewer numbers of photons than humans
to generate an image under darker conditions. Image
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Figure TF21-6: Schematic of image intensifier assembly and operation.

intensifiers work by a simple principle (Fig. TF21-6).
Incident photons (of which there are relatively few in a
dark scene) are focused through lenses and onto a thin
plate of gallium arsenide material. This material emits
one electron every time a photon hits it. Importantly, these
electrons are emitted at the locations where the photons
hit the plate, preserving the shape of the light image.
These photoelectrons then are accelerated by a high
voltage (∼ 5000 V) onto a microchannel plate (MCP).
The MCP is a plate that emits 10,000 new electrons
every time one electron impacts its surface. In essence,
it is an amplifier with a current gain of 10,000. These
secondary electrons again are accelerated—this time
onto phosphors that glow when impacted with electrons.
This works on the same principle as the cathode ray tube.
The phosphors are arranged in arrays and form pixels on
a display, allowing the image to be seen by the naked eye.

Ultraviolet Imaging

On the other end of the spectrum, UV wavelengths range
from 400–200 nm and beyond. UV can also be used to
see things that are out of the visible spectrum, particularly
skin or soft tissue damage, as shown in the picture of
sun-damaged skin in Fig. TF21-7. Dark areas of the skin
show where UV is absorbed and not reflected.This can be
used for treatment planning, and also to show people the
value of skin protection from the sun. UV is also used for
numerous astrophysical observations, including the solar
flare image shown in Fig. TF21-8. Much information in the
universe is outside of the visible spectrum.

Visible light UV image

Figure TF21-7: Comparison of visible light and UV
images.The latter shows skin damage. (Credit: Milford MD
Advanced Dermatology Pocono Medical Care, Inc.)

Figure TF21-8: Giant solar flare captured in UV light.
(Courtesy NASA/SDO and the AIA, EVE, and HMI science
team.)



“book” — 2015/5/4 — 7:19 — page 481 — #23

8-5 MAXIMUM POWER TRANSFER 481

In Section 3-6, we established that for a purely resistive circuit,
the power transferred from the source circuit to the load is a
maximum when RL = RS. The question we now pose is: What
are the equivalent conditions for an ac circuit with complex
impedances?

To answer the question, we start by writing down the
expression for IL (the current flowing into the load) namely

IL = Vs

Zs + ZL
= Vs

(Rs + RL) + j (Xs + XL)
. (8.58)

From Eq. (8.39a), the average power transferred to (consumed
by) the load is

Pav = 1

2
|IL|2RL = 1

2
IL × I∗

LRL

= 1

2

Vs

(Rs + RL) + j (Xs + XL)

× V∗
s

(Rs + RL) − j (Xs + XL)
· RL

= 1

2

|Vs|2RL

(Rs + RL)2 + (Xs + XL)2 . (8.59)

The load parameters RL and XL represent orthogonal
dimensions in the complex plane. Hence, the values of
RL and XL that maximize Pav can be obtained by
performing independent maximization processes: one by
setting ∂Pav/∂RL = 0 and another by setting ∂Pav/∂XL = 0.
For RL,

∂Pav

∂RL
= 1

2
|Vs|2

[
(Rs + RL)2 + (Xs + XL)2 − 2RL(Rs + RL)

[(Rs + RL)2 + (Xs + XL)2]2

]
.

(8.60)
The right-hand side of Eq. (8.60) is equal to zero if its numerator
is equal to zero (because the other alternative, namely setting
the denominator equal to infinity, produces a solution in which
ZL and Zs are open circuits corresponding to no power transfer
to the load). That is,

(Rs + RL)2 + (Xs + XL)2 − 2RL(Rs + RL) = 0,

which simplifies to

R2
s − R2

L + (Xs + XL)2 = 0. (8.61)

Similarly, the partial derivative of Pav with respect to XL is

∂Pav

∂XL
= 1

2
|Vs|2RL

[ −2(Xs + XL)

(Rs + RL)2 + (Xs + XL)2

]
, (8.62)

which when set equal to zero yields

XL = −Xs. (8.63)

Incorporating Eq. (8.63) in Eq. (8.61) gives

RL = Rs. (8.64)

The conditions on XL and RL can be combined into

ZL = Z∗
s (maximum power transfer), (8.65)

where Z∗
s = (Rs − jXs) is the complex conjugate of Zs. When

the condition represented by Eq. (8.65) is true, the load is said
to be conjugate matched to the source.

According to the result encapsulated by Eq. (8.65):

� The average power transferred to (consumed by) an
ac load is a maximum when its impedance ZL is equal
to Z∗

s , which is the complex conjugate of the Thévenin
impedance of the source circuit. �

Under the conditions of maximum power transfer represented
by Eqs. (8.63) and (8.64), the expression for Pav given by
Eq. (8.59) reduces to

Pav(max) = 1

8

|Vs|2
RL

. (8.66)

Example 8-7: Maximum Power

Determine the maximum amount of power that can be
consumed by the load ZL in the circuit of Fig. 8-13.

Solution: We start by determining the Thévenin equivalent
of the circuit to the left of terminals (a, b). In Fig. 8-13(b),
the load has been removed so as to calculate the open-circuit
voltage. Voltage division yields

Vs = Voc = (4 + j6)

4 + 4 + j6
× 24 = 17.31 19.44◦ V,

where Vs is the Thévenin voltage of the source circuit to the
left of terminals (a, b). The Thévenin impedance of the source
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(a)

a

b

ZL

4 Ω

4 Ω

+
_0o24 V

−j3 Ω

j6 Ω

(b)

a

b

4 Ω

4 Ω

+
_0o24 V

−j3 Ω

j6 Ω
+

_

19.44oVoc = 17.31            V

Open-circuit
voltage

(c)

Zs = ZTh

a

b

4 Ω

4 Ω −j3 Ω

j6 Ω

= (2.72 − j2.04) Ω

Thevenin
impedance

'

Figure 8-13: Circuit for Example 8-7.

circuit, Zs, is obtained by calculating the impedance at terminals
(a, b), as shown in Fig. 8-13(c), after deactivating the 24 V
voltage source,

Zs = 4 ‖ (4+j6)−j3 = 4(4 + j6)

4 + 4 + j6
−j3 = (2.72−j2.04)	.

For maximum transfer of power to the load, the load impedance
should be

ZL = Z∗
s = (2.72 + j2.04) 	,

and the corresponding value of Pav is

Pav(max) = |Vs|2
8RL

= (17.31)2

8 × 2.72
= 13.77 W.

Concept Question 8-10: To achieve maximum transfer
of power from a source circuit to a load, how should the
impedance of the load be related to that of the source 
circuit? (See         )

Concept Question 8-11: Suppose that a certain passive 
circuit—containing resistors, capacitors, and inductors—
is connected to a square-wave voltage source. What 
procedure would you use to analyze the voltages and 
currents in the circuit? (See         )

8-6 Measuring Power with Multisim

This section introduces Multisim power-measurement tools and
demonstrates their ability through an interactive simulation
of an impedance-matching network. In Section 8-5 we
established that the amount of power transferred to a load from
a source is at a maximum when the impedance of the load ZLoad
is the complex conjugate of the source impedance ZSource. That
is,

ZLoad = Z∗
Source. (8.67)

Consider the circuit shown in Fig. 8-14. The circuit is supplied
by a realistic source composed of an ideal voltage source Vs
in series with a source resistance Rs. The load is a series RL
circuit. In the phasor domain:

ZSource = Rs and ZLoad = RL + jωLL. (8.68)

For the general case where LL 
= 0 and Rs 
= RL, the load
would not be matched to the source, and power transfer
would not be a maximum. By inserting a matching network
in between the source and the load and selecting the values of

+
−~Vs

RL

Rs
RMCMa c

b d

LLZLoad + Match

ZLoad

ZSource

Source Matching network Load

+

_

Figure 8-14: Matching network in between the source and the
load.
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Figure 8-15: Multisim simulation of matching network (CM, RM) in between the source and the load, and wattmeter displays for maximum
power transfer.

its components appropriately, we can match the source to the
load, thereby realizing the maximum transfer of power from
the source to the circuit segment to the right of terminals (a, b),
which includes the matching network and the load. If the load
has an inductor, the matching network should have a capacitor,
and vice versa.

For the circuit to the right of terminals (a, b), which includes
both the matching network and the load,

ZLoad+Match = (RM + RL) + j

(
ωLL − 1

ωCM

)
. (8.69)

For the maximum transfer of power at terminals (a, b) towards
the load, it is necessary that

ZSource = Z∗
Load+Match, (8.70)

which can be satisfied by selecting RM and CM as

RM = Rs − RL and CM = 1

ω2LL
, (8.71)

provided Rs ≥ RL. Under these matched conditions, the
impedance of the capacitor cancels out the impedance of LL,
and the source is matched to the combination of the matching

network and load. This means that the power transferred from
the source to this combination is a maximum, but it does
not mean that the power transferred to the load alone is a
maximum. In fact, if the values of Rs and RL cannot be changed,
power transfer to the load is a maximum when RM = 0 and
CM = 1/(ω2LL).

We also should note that the value of CM required to
achieve the matching condition is a function of ω. Thus, if
the value of CM is selected so as to match the circuit at
a given frequency, the circuit will cease to remain matched
if ω is changed to a significantly different value. To serve
its intended function with significant flexibility, the matching
network usually is configured to include a potentiometer and an
adjustable capacitor, allowing for manual tuning of RM and CM
to satisfy Eq. (8.71) at any specified value of ω (within a certain
range).

The circuit in Fig. 8-14 can be simulated and analyzed by
Multisim, as shown in Fig. 8-15. For variable components,
you can choose which keys will shift the component values by
double-clicking the component and selecting the desired key
letter under Values → Key. Measurement instruments XWM1
and XWM2 are wattmeters configured to measure the average
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S

Figure 8-16: Multisim circuit without instruments.

power dissipated by a component or circuit:

Pav = 1
2 Re[VI∗],

where V is the phasor voltage across the component or circuit
and I is the phasor current flowing into its positive voltage
terminal. In Fig. 8-15, XWM2 measures the current through Rs
and the voltage across it, and XWM1 measures the voltage
at node 7 (relative to the ground terminal) and the current
through the loop at node 7. Thus, XWM2 measures the average
power dissipated in Rs, and XWM1 measures the average power
delivered by the source to the matching network and load
combined. To match the load to the source in the circuit of
Fig. 8-15, we should select

RM = Rs − RL = 50 − 25 = 25 	

and

CM = 1

ω2LL
= 1

(2π × 103)2 × 10−3 = 25.33 μF.

In Fig. 8-15, RM is a 50 	 potentiometer set at 50 percent
of its maximum value (or 25 	), and CM is a variable 50 μF
capacitor, also set at 50 percent of its maximum value (which
is very close to the required value of 25.33 μF). The wattmeter
displays confirm that the average powers reported by XWM1
and XWM2 are indeed equal.

It is important to note that the wattmeter calculates the
average power by measuring the voltage and current at a
sampling rate specified by the Maximum Time Step (TMAX)
in the Interactive Simulation Settings. The default value is

10−5 s, which means that the voltage and current are sampled
at a time spacing of 10−5 s. At 1 kHz, the period is 10−3 s.
Hence at a time spacing of 10−5 s each cycle gets sampled
100 times, which is quite adequate for generating a reliable
measurement of the average power. At higher oscillation
frequencies, however, the period is much shorter necessitating
that TMAX be selected such that TMAX ≤ 10−2/f where f

is the oscillation frequency in Hz. Thus, at f = 1 MHz, for
example, TMAX should be set at 10−8 s.

Another method for measuring average power in Multisim is
to use the Analysis functions to plot the complex power across
any section of a circuit. Figure 8-16 is a Multisim reproduction
of the circuit in Fig. 8-15 but with no instruments and fixed-
value components. Note that to perform the AC Analysis
Simulation properly, the AC Analysis Magnitude value of
the VS source must be changed to 2.5 ∗ sqrt(2) = 3.5355 V.
We can plot the magnitude and phase of the complex
power S across terminals (3,0) in Fig. 8-16 by performing
AC Analysis in Multisim. Under Simulate → Analyses →
AC Analysis, set FSTART to 1 Hz and FSTOP to 1 MHz.
Make sure to include at least 10 points per decade to produce
a good plot. Under Output, enter the following expression:
0.5*(real(I(v1)),-imag(I(v1)))*V(3). Note that this expression
is equivalent to S = 1

2 I∗V (Eq. (8.29)). (The expression
(real(X),-imag(X)) gives us the complex conjugate of any
complex number X; we need to do this because Multisim
does not have a complex conjugate function). Figure 8-17
shows a plot of the AC Analysis output. As expected, the
phase of S goes to 0 at 1 kHz (since it is at this frequency
that the inductor and capacitor reactances cancel each other
out).
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Figure 8-17: Spectral plots of the magnitude and phase of the
complex power S at terminals (3,0) in Fig. 8-16.

Summary

Concepts

• Even though the average values of the sinusoidal voltage
across and current through a load are both zero, the
average power consumed by the load is not zero, unless
the load is purely reactive (no resistors).

• Power is characterized by several attributes, including
the complex power S, the average power Pav, and
reactive power Q.

• The power factor pf is the ratio of the average real
power Pav consumed by the load to S (the magnitude
of the complex power) which incorporates the reactive
power Q through S = [P 2

av + Q2]1/2.

• An RL load can be compensated by adding a shunt
capacitor, causing its pf to increase, and in turn reducing
the amount of current that has to be supplied by the
electrical power source.

• The power transferred from an input source circuit with
Thévenin impedance Zs = Rs + jXs to a complex load
with impedance ZL = RL +jXL is at a maximum when
ZL = Z∗

s .

• Multisim can be used to measure the magnitude and
phase of complex power as a function of frequency.

Mathematical and Physical Models

Average value Xav = 1

T

T∫
0

x(t) dt

rms value Xrms = Xeff =

√√√√√ 1

T

T∫
0

x2(t) dt

Average power Pav = VrmsIrms cos(φυ − φi) (W)

Complex power S = 1
2 VI∗ (VA)

Reactive power Q = VrmsIrms sin(φυ − φi) (VAR)

Power factor pf = Pav

S
= cos(φυ − φi)

Power factor lead or lag Table 8-2

Maximum power transfer ZL = Z∗
s

Maximum power Pav(max) = 1

8

|Vs|2
RL

Concept Question 8-12: How is power measured in 
Multisim? Why must all four terminals of the wattmeter 
be used to obtain a power measurement? (See         )

Concept Question 8-13: Assuming the values of Vs, Rs, 
RL, and LL are fixed, what values of RM and CM lead to 
maximum transfer of power from the source to RL? 
(See         )

Exercise 8-6: Use Multisim to simulate the circuit in
Fig. 8-15. Connect Channel B of the oscilloscope across
the voltage source Vs. Vary CM over its full range, noting
the phase difference between the two channels of the 
oscilloscope at CM = 0, CM = 25 μF, and CM = 50 μF.

Answer: (See )
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Important Terms Provide definitions or explain the meaning of the following terms:

apparent power
average power
average value
compensated load
compensated load circuit
complex power
consume
effective value

impedance matching network
in phase
instantaneous current
instantaneous power
instantaneous voltage
lagging
leading
matched load

mean
periodicity property
power factor
power factor angle
power factor compensation
reactive power
root
root-mean-square (rms) value

square
store
VAR
volt-ampere
volt-ampere reactive

PROBLEMS

Section 8-1: Periodic Waveforms

*8.1 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.1.

3 4 5 6 87210

1

2

3

4

t (s)

υ (V)

Figure P8.1: Waveform for Problem 8.1.

8.2 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.2.

3 4 5 6 87210

1

2

3

4

t (s)

υ (V)

Figure P8.2: Waveform for Problem 8.2.

∗
Answer(s) available in Appendix G.

8.3 Determine (a) the average and (b) rms values of the
periodic current waveform shown in Fig. P8.3.

3 4 5 6 87210

1

2

3

4

t (s)

i (A)

Figure P8.3: Waveform for Problem 8.3.

*8.4 Determine (a) the average and (b) rms values of the
periodic current waveform shown in Fig. P8.4.

3 4 5 6 87210

2

4

6

t (s)

i (A)

Figure P8.4: Waveform for Problem 8.4.

8.5 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.5.
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15 20 25 30 40351050

2

4

6

8

t (s)

υ (V)

Figure P8.5: Waveform for Problem 8.5.

8.6 Determine (a) the average and (b) rms values of the
periodic current waveform shown in Fig. P8.6.

12 16 20 24 322884
6
0

−6

−12

t (s)

i (A)

Figure P8.6: Waveform for Problem 8.6.

*8.7 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.7.

3 4 5 6 87210

3

6

9

12

t (s)

3t2

υ (V)

Figure P8.7: Waveform for Problem 8.7.

8.8 Determine (a) the average and (b) rms values of the
periodic current waveform shown in Fig. P8.8.

i(A)

t (s)
2 6 8 10

4

−4

−2

0
4

2

Figure P8.8: Waveform for Problem 8.8.

8.9 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.9.

υ(V)

t (s)

4

2
1.5

3

1

0
10 2 3 4 5 6 7 8

Figure P8.9: Waveform for Problem 8.9.

*8.10 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.10.

υ(V)

t (s)
86420

5
4
3
2
1
0

(2, 5) (6, 5)

(4, 3) (8, 3)

Figure P8.10: Waveform for Problem 8.10.
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8.11 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.11.

υ(V)

t (s)
61

0
3 4 5

−1

2

Figure P8.11: Waveform for Problem 8.11.

*8.12 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.12.

υ(V)

t (s)
10 3 4

1

0

0.86

2

υ(t) =
{

(1 − e−2t ) V, 0 ≤ t ≤ 1 s

(e−2(t−1) − e−2) V, 1 ≤ t ≤ 2 s

Figure P8.12 Waveform for Problem 8.12.

8.13 Determine (a) the average and (b) rms values of the
periodic voltage waveform shown in Fig. P8.13.

8.14 The current waveform shown in Fig. P8.8 dissipates
average power at a rate of 3.2 kW when connected to a resistor.
What is the value of the resistor?

8.15 Determine the average and rms values of the following
periodic waveforms:

(a) υ1(t) = 4 cos(60t − 30◦) V.

(b) i1(t) = 2.5 A.

*(c) υ2(t) = 12 − sin(2t + 45◦) V.

υ(V)

t (s)
4 6 8

2

−2

1

0

−1
2

υ(t) =
{

1
4 t3 V, −2 ≤ t ≤ 2 s
1
4 (t − 4)3 V, 2 ≤ t ≤ 6 s

Figure P8.13 Waveform for Problem 8.13.

(d) i2(t) = 4 sin(10t) − 6 sin2(5t) A.

8.16 Determine the average and rms values of the following
periodic waveforms:

(a) υ(t) = |12 cos(ωt + θ)| V

(b) υ(t) = 4 + 6 cos(2πf t + φ) V

(c) υ(t) = 2 cos ωt − 4 sin(ωt + 30◦) V

(d) υ(t) = 9 cos ωt sin(ωt + 30◦) V

Section 8-2 and 8-3: Average and Complex Power

8.17 Determine the complex power, apparent power, average
power absorbed, reactive power, and power factor (including
whether it is leading or lagging) for a load circuit whose voltage
and current at its input terminals are given by:

(a) υ(t) = 100 cos(377t − 30◦) V,
i(t) = 2.5 cos(377t − 60◦) A.

(b) υ(t) = 25 cos(2π × 103t + 40◦) V,
i(t) = 0.2 cos(2π × 103t − 10◦) A.

*(c) Vrms = 110 60◦ V, Irms = 3 45◦ A.

(d) Vrms = 440 0◦ V, Irms = 0.5 75◦ A.

(e) Vrms = 12 60◦ V, Irms = 2 −30◦ A.

8.18 Determine the complex power, apparent power, average
power absorbed, reactive power, and power factor (including
whether it is leading or lagging) for a load circuit whose voltage
and current at its input terminals are given by:
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(a) υ(t) = 110 cos(60t − 60◦) V,
i(t) = 4 cos(60t − 25◦) A.

(b) υ(t) = 12 cos(1000t + 30◦) V,
i(t) = 0.4 cos(1000t − 15◦) A.

(c) υ(t) = −10 cos(3000t + 10◦) V,
i(t) = 0.5 sin(3000t − 5◦) A.

(d) Vrms = 240 0◦ V, Irms = 0.8 50◦ A.

(e) Vrms = 6 20◦ V, Irms = 255 15◦ mA.

(f) Vrms = 18 40◦ V, Irms = 1 −50◦ A.

8.19 Determine the impedance of a load characterized by the
following attributes:

(a) S = 1.2 30◦ kVA, Vrms = 40 0◦ V,

(b) |S| = 80 VA, Q = 26 VAR, Irms = 4 45◦ A.

(c) Vrms = 25 −15◦ V, Irms = 0.5 35◦ A.

8.20 In the circuit shown in Fig. P8.20,
υ(t) = 40 cos(105t) V, R1 = 100 	, R2 = 500 	,
C = 0.1 μF, and L = 0.5 mH. Determine the complex
power for each passive element, and verify that conservation
of energy is satisfied.

+
_

R2

R1

υ(t) C

L

Figure P8.20: Circuit for Problem 8.20.

*8.21 In the circuit shown in Fig. P8.21,
υ(t) = 12 cos(2000t) V, R = 20 	, and C = 4.7 μF.
Determine the complex power of the source. What is the power
factor of the voltage source.

+
_

R C

υ(t)

Figure P8.21: Circuit for Problem 8.21.

8.22 In the phasor-domain shown in Fig. P8.22,
V = 120 0◦ V, I = 0.3 30◦ A, ω = 1000 rad/s, R1 = 200 	,
R2 = 200 	, R3 = 1.2 k	, L = 0.2 H, and C = 10 μF.
Determine the complex power for each passive element, and
verify that conservation of energy is satisfied.

+
_

R1 R2 L

R3V IC

Figure P8.22: Circuit for Problem 8.22.

*8.23 In the circuit of Fig. P8.23, υs(t) = 60 cos 4000t V,
R1 = 200 	, R2 = 100 	, and C = 2.5 μF. Determine the
average power absorbed by each passive element and the
average power supplied by the source.

R2

R1

Cυs(t)
+
_

Figure P8.23: Circuit for Problem 8.23.

8.24 In the circuit of Fig. P8.24, is(t) = 0.2 sin 105t A,
R = 20 	, L = 0.1 mH, and C = 2 μF. Show that the sum
of the complex powers for the three passive elements is equal
to the complex power of the source.

R L Cis(t)
+
_

Figure P8.24: Circuit for Problem 8.24.

8.25 In the phasor-domain circuit of Fig. P8.25, Vs = 20 V,
Is = 0.3 30◦ A, R1 = R2 = 100 	, ZL = j50 	, and
ZC = −j50 	. Determine the complex power for each of the
four passive elements and for each of the two sources. Verify
that conservation of energy is satisfied.
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R1

R2
+
_ IsZL

ZC

Vs

Figure P8.25: Circuit for Problem 8.25.

*8.26 Determine the average power dissipated in the load
resistor RL of the circuit in Fig. P8.26, given that Vs = 100 V,
R1 = 1 k	, R2 = 0.5 k	, RL = 2 k	, ZL = j0.8 k	, and
ZC = −j4 k	.

R1 R2 a

b
RL

+
_ ZCZLVs

Figure P8.26: Circuit for Problem 8.26.

8.27 Determine S for the RL load in the circuit of Fig. P8.27,
given that Is = 4 0◦ A, R1 = 10 	, R2 = 5 	, ZC = −j20 	,
R = 10 	, and ZL = j20 	.

R1

R2 a

b

R
ZC Is

Load

ZL

Figure P8.27: Circuit for Problem 8.27.

8.28 In the phasor-domain circuit shown in Fig. P8.28,
I = 2 0◦ A, R1 = 20 	, R2 = 1 	, R3 = 5 	, ZL1 = j5 	,
ZL2 = j25 	, and ZC = −20 	. Determine S of the load.

R1

R3

R2

L2

L1

C

b

a

I Load

Figure P8.28: Circuit for Problem 8.28.

*8.29 In the phasor-domain circuit shown in Fig. P8.29,
V = 100 0◦ V, R1 = 1 k	, R2 = 0.6 k	, RL = 3 k	,
ZL = j0.8 k	, and ZC = −j0.5 k	. Determine the average
power dissipated in RL.

+
_

R1

R2 RLZC

ZL

V

a

b

Figure P8.29: Circuit for Problem 8.29.

8.30 In the circuit shown in Fig. P8.30,
i(t) = 3 cos(1000t)A, R1 = 2 k	, R2 = 560 	, RL = 2 k	,
and L = 0.4 H. Determine the average power dissipated in RL.

R1 RL

R2

L

ix

4ix
a

b

i(t)

Figure P8.30: Circuit for Problem 8.30.

*8.31 In the phasor-domain circuit shown in Fig. P8.31,
V = 15 45◦ V, R1 = 5 	, R2 = 2 	, ZC = −j1 	,
ZL = j2 	, and Zload = 6 + j4 	. Determine the complex
power of the load.
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+
_

R2

R1

2I
ZC

ZL

I

a

b

+_

V Zload

Figure P8.31: Circuit for Problem 8.31.

8.32 In the op-amp circuit shown in Fig. P8.32,
υin(t) = 12 cos(1000t) V, R = 10 k	, RL = 5 k	, and
C = 1 μF. Determine the complex power for each of the
passive elements in the circuit. Is conservation of energy
satisfied?

+
_

C

υin(t)

υout(t)+
_

R

RL

+

_

Figure P8.32: Op-amp circuit for Problem 8.32.

*8.33 In the phasor-domain op-amp circuit shown in
Fig. P8.33, Vin = 2 0◦ V, R1 = 200 	, R2 = 2.4 k	,
RL = 10 k	, ZC = −j500 	, and ZL = j1 k	. Determine
the average power delivered to RL.

8.34 In the phasor-domain op-amp circuit shown in
Fig. P8.34, υ(t) = 8 cos(200t) V, R1 = 5 k	, RL = 2 k	,
C1 = 1 μF, and C2 = 4.7 μF. Determine the average power
delivered to RL.

8.35 Determine the power dissipated in RL of the circuit in
Fig. P8.35.

*8.36 Determine the power dissipated in RL of the circuit in
Fig. P8.36.

+
_

R2

R1

Vin

ZC

ZL

RL

+
_

Figure P8.33: Op-amp circuit for Problem 8.33.

RL

R1

C1 C2

υin(t) +
_

υout(t)

Figure P8.34: Op-amp circuit for Problem 8.34.

I

0.25I
RL = 0.5 Ω

a

b

0.5 Ω

0.2 Ω

j1.6 Ω 0.3 Ω

+
_ 2        V30�

Figure P8.35: Circuit for Problem 8.35.

3 Ω
RL = 4 Ω6 Ω−j1 Ω

j3 Ω

b

a

+
_

+_

8         V45�

2IC

IC

Figure P8.36: Circuit for Problem 8.36.
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8.37 In the op-amp circuit of Fig. P8.37,

υin(t) = V0 cos ωt V,

with V0 = 10 V, ωRC = 1, and RL = 10 k	. Determine the
power delivered to RL.

RL

R
C

υin(t) υout

_

++
_ +

_

Figure P8.37: Op-amp circuit for Problem 8.37.

8.38 Determine the amount of power delivered to RL in
the circuit of Fig. P8.38, given that υin(t) = 0.5 cos 2000t V,
R1 = 1 k	, R2 = 10 k	, C = 0.1 μF, RL = 1 k	, and
L = 0.2 H.

υin(t)

υout

R1

R2

C

L

_

RL

IL+

_

+
_

Figure P8.38: Op-amp circuit for Problem 8.38.

*8.39 Given that υs(t) = 2 cos 103t V in the circuit of
Fig. P8.39, determine the power delivered to RL.

RL = 5 kΩ

10 kΩ

0.1 μF

υs(t)
υout

_

+

_

Figure P8.39: Circuit for Problem 8.39.

8.40 The apparent power entering a certain load Z is 250 VA
at a power factor of 0.8 leading. If the rms phasor voltage of the
source is 125 V at 1 MHz:

(a) Determine Irms going into the load

(b) Determine S into the load

(c) Determine Z

(d) The equivalent impedance of the load circuit should be of
the form Z = R + jωL or Z = R − j/ωC. Determine the
value of L or C, whichever is applicable.

8.41 Voltage source Vs in the circuit of Fig. P8.41 supplies
power to three load circuits with impedances Z1, Z2, and Z3.
The following partial power information was deduced from
measurements performed on the three load circuits:

Load Z1 : 80 W at pf = 0.8 lagging

Load Z2 : 60 VA at pf = 0.7 leading

Load Z3 : 40 VA at pf = 0.6 leading

If Irms = 0.4 37◦ A, determine:

(a) the rms value of Vs by applying the law of conservation
of energy

(b) Z1, Z2, and Z3.

Irms

Vs Z1 Z2 Z3

100 Ω

+
_

Figure P8.41: Circuit for Problem 8.41.

8.42 The apparent power entering a certain load Z is 120 VA
at a power factor of 0.866 lagging. If the rms phasor voltage is
240 V at 60 Hz:

(a) Determine S into the load

(b) Determine Irms going into the load

(c) Determine Z

(d) The equivalent impedance of the load circuit should be of
the form Z = R+jωL or Z = R+1/jωC. Determine the
value of L or C, whichever is applicable.



“book” — 2015/5/4 — 7:19 — page 493 — #35

PROBLEMS 493

*8.43 In the circuit in Fig. P8.43, voltage source Vs supplies
power to three load circuits with impedances Z1, Z2, and Z3.
The following information was deduced from measurements
performed on the three load circuits:

Load Z1 : 100 VA at pf = 0.6 lagging

Load Z2 : 70 VA at pf = 0.75 leading

Load Z3 : 45 W at pf = 0.95 lagging

If Vs = 100 0◦ V, determine the equivalent impedance. Is
it inductive or capacitive? Are Z1, Z2, and Z3 inductive or
capacitive?

Z1Vs Z2 Z3
+
_

Figure P8.43: Circuit for Problem 8.43.

8.44 In the circuit shown in Fig. P8.44, voltage source Vs
supplies power to three load circuits with impedances Z1,
Z2, and Z3. The following information was deduced from
measurements performed on the three load circuits.

Load Z1 : 60 VA at pf = 0.866 lagging

Load Z2 : 80 W at pf = 0.750 leading

Load Z3 : 100 VAR at pf = 0.600 leading

If Irms = 0.5 45◦ and R = 100 	, determine:

(a) the rms value of Vs, by applying the law of conservation
of energy

(b) Z1, Z2, and Z3.

Z1

Z2

Vs

Irms

R

Z3
+
_

Figure P8.44: Circuit for Problem 8.44.

Section 8-4: Power Factor

*8.45 The RL load in Fig. P8.45 is compensated by adding the
shunt capacitance C so that the power factor of the combined
(compensated) circuit is exactly unity. How is C related to R,
L, and ω in that case?

R

L
C

Figure P8.45: Circuit for Problem 8.45.

8.46 The generator circuit shown in Fig. P8.46 (see page 493)
is connected to a distant load via a long coaxial transmission
line. The overall circuit can be modeled as in Fig. P8.46(b),
in which the transmission line is represented by an equivalent
impedance Zline = (5 + j2) 	.

(a) Determine the power factor of voltage source Vs.

(b) Specify the capacitance of a shunt capacitor C that
would raise the power factor of the source to unity when
connected between terminals (a, b). The source frequency
is 1.5 kHz.

8.47 Source Vs in the circuit of Fig. P8.47 is connected to two
industrial loads, with equivalent impedances Z1 and Z2, via two
identical transmission lines, each characterized by an equivalent
impedance Zline = (0.5 + j0.3) 	. If Z1 = (8 + j12) 	 and
Z2 = (6 + j3) 	:

(a) Determine the power factors for Z1, Z2, and source Vs.

(b) Specify the capacitance of a shunt capacitor C that would
raise the power factor of the source to 0.95 when connected
between terminals (a, b). The source frequency is 12 kHz.

Vs

a

b

C

1 Ω j0.3 Ω0.5 Ω j0.3 Ω0.5 Ω

Transmission
line

Transmission
line

Z1 Z2
+
_

Figure P8.47: Circuit for Problem 8.47.
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(a) Transmission-line circuit

(b) Equivalent circuit

Vs
+
_

a

b

10 Ω

Transmission line

ZL = (50 + j40) Ω

c

d

Vs
+
_

a

b

C

10 Ω j2 Ω5 Ω

Transmission line

ZL = (50 + j40) Ω

c

d

Figure P8.46: Circuit for Problem 8.46.

*8.48 Use the power information given for the circuit in
Fig. P8.48 to determine:

(a) Z1 and Z2

(b) the rms value of Vs.

Vs Z1 Z2

0.6 Ω 1.2 Ω j0.4 Ω

+

_
Vrms = 440      V0�

Load Z1 : 24 kW @ pf = 0.66 leading
Load Z2 : 18 kW @ pf = 0.82 lagging

+
_

Figure P8.48: Circuit for Problem 8.48.

8.49 In the circuit shown in Fig. P8.49, a generator is
connected to a load via a transmission line. Given that
Rs = 10 	, Zline = (4 + j2) 	, and Zload = (40 + j30) 	:

(a) Determine the power factor of the load, the power factor of
the transmission line, and the power factor of the voltage
source.

(b) Specify the capacitance of a shunt capacitor C that
would raise the power factor of the source to unity when
connected between terminals (a, b). The source frequency
is 60 Hz.

+
_

Rs

C

a

b

Vs

Transmission line

Load

Figure P8.49: Circuit for Problem 8.49.
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8.50 In the phasor-domain circuit shown in Fig. P8.50,
R1 = 1.2 k	, R2 = 5 k	, L1 = 0.8 H, L1 = 0.6 H,
C = 2 μF, and ω = 1000 rad/s.

*(a) Determine the power factor of the voltage source V.

(b) Specify the capacitance of a shunt capacitor Cshunt that
would raise the power factor at terminals (a, b) to 0.9 when
connected between terminals (a, b).

+
_

R1 a

b

L1

R2L2CshuntV

C

Figure P8.50: Circuit for Problem 8.50.

Section 8-5: Maximum Power Transfer

8.51 For the circuit in Fig. P8.51, choose the load
impedance ZL so that the power dissipated in it is a maximum.
How much power will that be?

ZLj2 Ω

4 Ω −j4 Ω

20       V0�
+
_

Figure P8.51: Circuit for Problem 8.51.

*8.52 For the circuit in Fig. P8.52, choose the load
impedance ZL so that the power dissipated in it is a maximum.
How much power will that be?

ZL 2 Ω

1 Ω

−j2 Ω

j2 Ω

6       V0�
+
_

Figure P8.52: Circuit for Problem 8.52.

8.53 For the circuit in Fig. P8.53, choose the load
impedance ZL so that the power dissipated in it is a maximum.
How much power will that be?

ZL

1 Ω

4 Ω

j6 Ω

−j1 Ω

j2 Ω

8       V0�

+_

I

2I

+
_

Figure P8.53: Circuit for Problem 8.53.

8.54 For the circuit in Fig. P8.54, choose the load
impedance ZL so that the power dissipated in it is a maximum.
How much power will that be?

8 kΩ

4 kΩ−j2 kΩ

−j6 kΩ

ZL

2       mA0�

Figure P8.54: Circuit for Problem 8.54.

*8.55 For the circuit in Fig. P8.55, choose the load
impedance ZL so that the power dissipated in it is a maximum.
How much power will that be?

2000Ix

6 kΩ

3 kΩ
+
_

+ _
j4 kΩ

ZL

Ix

15       V0�

Figure P8.55: Circuit for Problem 8.55.
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8.56 In the phasor-domain shown in Fig. P8.56,
V = 20 0◦ V, R1 = 10 	, R2 = 5 	, ZC = −j5 	,
and ZL = j3 	. Choose the load impedance Zload so that the
power dissipated in it is a maximum. How much power will
that be?

+
_

R2

R1

Zload

ZC

ZL

V

Figure P8.56: Circuit for Problem 8.56.

8.57 In the phasor-domain circuit shown in Fig. P8.57,
V = 30 60◦ V, R1 = 5 	, R2 = 20 	, R3 = 10 	,
ZC = −j4 	, and ZL = j6 	. Choose the load impedance
Zload so that the power dissipated in it is a maximum. How
much power will that be?

+
_

R1

Zload

ZL

ZC

R3

V

R2

Figure P8.57: Circuit for Problem 8.57.

*8.58 In the phasor-domain circuit shown in Fig. P8.58,
V = 6 0◦ V, R1 = 1 	, R2 = 2 	, R3 = 5 	, ZL1 = j2 	,
ZL2 = j5 	, and ZC = −j6 	. Choose the load impedance
Zload so that the power dissipated in it is a maximum. How
much power will that be?

+
_

R1

R2

I

2I

R3

+_

V
Zload

ZL1
ZL2

ZC

Figure P8.58: Circuit for Problem 8.58.

8.59 In the phasor-domain circuit shown in Fig. P8.59,
V = 12 0◦ V, R1 = 2 k	, R2 = 4 k	, ZL1 = j2 k	, and
ZL2 = j5 k	. Choose the load impedance Zload so that the
power dissipated in it is a maximum. How much power will
that be?

+_ Zload

V
ZL1

ZL2

R1

R2

Figure P8.59: Circuit for Problem 8.59.

*8.60 In the phasor-domain circuit shown in Fig. P8.60,
I = 2.5 0◦ mA, R1 = 10 k	, R2 = 2.4 k	, R3 = 10 k	,
and ZC = −j4 k	. Choose the load impedance Zload so that
the power dissipated in it is a maximum. How much power will
that be?

+
_

R3

R2

R1 ZloadZC VC

0.001 VC

I

Figure P8.60: Circuit for Problem 8.60.
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ZL = [50 + jω(1 μH)] Ω

1 μH

1 nFυs(t)

50 Ω

+
_

Figure P8.61: Circuit for Problem 8.61.

Section 8-6: Multisim

8.61 Model the circuit in Fig. P8.61 in Multisim and plot the
complex power through the load ZL as a function of frequency
from 1 kHz to 1 GHz. Assume υs(t) has an amplitude of 1 V.

8.62 Model the circuit in Fig. P8.62 in Multisim and find the
frequency at which the input impedance of the load circuit Zin
is purely real. Assume υs(t) has an amplitude of 1 V.

8.63 Model the circuit in Fig. P8.63 in Multisim and find the
frequency at which the input impedance of the load circuit Zin
is purely real.

1 μH 1 μH

1 μFυs(t)

50 Ω

50 ΩZin
+
_

Figure P8.62: Circuit for Problems 8.62 and 8.65.

8.64 Model the circuit in Fig. P8.64 and use the wattmeter to
determine the average power consumed by the load ZL. Also,
perform an AC Analysis from 100 kHz to 1 GHz and show that
the average power value given by the AC Analysis at 1 MHz
matches the value provided by the wattmeter.

  R = 50 Ω
C1 = 1 μF
C2 = 2 μF
C3 = 3 μF
  L = 1 mH

C2

C3

C1 L

L

L

R R

R
12.5 Ω

Zinυs(t)
+
_

Figure P8.63: Circuit for Problem 8.63.

1 V
1 MHz

0�

1 μH

1 nF25 Ω 12.5 Ω

+
_ ZL =

(
12.5 − j

ω × 1 nF

)
	

Figure P8.64: Circuit for Problem 8.64.
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8.65 Plot the power factor and phase angle φz across the load 
Zin in Fig. P8.62 using AC Analysis in Multisim from 1 kHz 
to 1 MHz. (See Multisim Demo 8.3 in the Tutorial for help on 
how to do this.)

Potpourri Questions

8.66 What is the wavelength range of visible light? The 
corresponding frequency range?

8.67 What is the frequency range assigned to Bluetooth 
communication?

8.68 What does “thermal” imaging refer to? How is ultraviolet 
light used in skin treatment?

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest 
via your computer. [myDAQ tutorials and videos are available 
on                          .]

m8.1 Periodic Waveforms: Plot the half-wave rectifier 
output and full-wave rectifier output for each of the three 
standard waveforms shown in Fig. m8.1. Then:

(a) Determine the general expressions for the (1) average
value and (2) rms value for each of the six rectified
waveforms.

(b) Evaluate your expressions for average and rms values for
Vm = 10 V and T = 10 ms.

m8.2 Average Power: The circuit shown in Fig. m8.2
operates in sinusoidal steady state at 1500 Hz. The voltage
source amplitude is 3V. Find the average power delivered by the
source. Use these component values: R = 100 	, C = 1.0 μF,
and L = 3.3 mH.

m8.3 Complex Power: The circuit shown in Fig. m8.3
operates in sinusoidal steady state at 1000 Hz. The voltage
source amplitude is 2.5 V. Component values are: R = 100 	,
C = 1.0 μF, and L = 3.3 mH.

(a) Find the complex power in rectangular format for each of
the four circuit elements: Ssrc, SR, SL, and SC.

(b) Demonstrate conservation of complex power with these
four values.

υ1(t)

t
T/4 3T/4 T

Vm

−Vm

T/2

υ2(t)

t
T/4 3T/4 T

Vm

T/2

−Vm

υ3(t)

t
T/4 3T/4 T

Vm

T/2

−Vm

−Vm

Figure m8.1 Circuit for Problem m8.1.

υsrc L

C

R

~+_

Figure m8.2 Circuit for Problem m8.2.
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υsrc L

C

R

~+_

Figure m8.3 Circuit for Problem m8.3.

m8.4 The Power Factor: The circuit shown in Fig. m8.4 is
a “scale model” of two industrial electric motors and a heating
unit connected to a manufacturing plant power distribution
network. The resistor/inductor combinations, R1-L1 and
R2-L2, model the winding resistance and magnetic fields of the
motors. Resistor R3 models the heater coils. C represents the
power factor compensation equipment—essentially a capacitor
bank with high power capacity.

(a) Determine the power factor of the uncompensated load,
and draw its power triangle to scale.

(b) Determine the value of the compensation capacitor C

required to improve the load power factor to 0.90 lagging.

+

_
~+_υsrc υL

R1

iL

L1

R2

L2

R3

Figure m8.4 Circuit for Problem m8.4.

(c) Available power factor compensation capacitors include
0.1 μF, 1.0 μF, and 10 μF; the cost of compensation
equipment increases with capacitance. Choose the least
expensive compensation capacitor closest to C and then
determine the power factor and power triangle (also drawn
to scale) of the compensated load.

Component values are: R1 = 10 	, R2 = 100 	, R3 = 100 	,
L1 = 3.3 mH, L2 = 33 mH, and Vsrc = 1 V at 2500 Hz (actual
industrial motors operate at hundreds of volts and 50 Hz to
60 Hz).
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Objectives

Learn to:

� Derive the transfer function of an ac circuit.

� Generate magnitude and phase spectral plots.

� Design first-order lowpass, highpass, bandpass,
and bandreject filters.

� Generate Bode plots for any transfer function.

� Design active filters.

� Apply Multisim to generate spectral responses for
passive and active circuits.
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ωc2

ωc1ωc3 105104 106 107

M1 [dB]

M3 [dB]

−20 dB/decade (1st order)

−60 dB/decade (3rd order)

M2 [dB]
−40 dB/decade (2nd order)

Frequency filters are used to suppress noise, remove interfering
signals, and to channel multifrequency signals along their
intended paths.

CHAPTER 9
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Overview

In Chapter 7 we learned how to analyze an ac circuit excited
by an individual source at a particular frequency f . Often, the
input signal is a superposition of many sinusoidal signals at
different frequencies. A good analogue is sunlight incident on
an eye’s pupil. The light consists of many ac-like signals at
many frequencies, extending from below the frequency of violet
to beyond that of red. The pupil is like a receiver that detects
the incident light, but it is also a filter because it detects only a
portion of the spectrum incident upon it, while rejecting other
bands such as the ultraviolet and infrared. Additional filtering
can be effected through the use of tinted sunglasses, or similar
optical filters. In digital photography, filtering can be performed
in software during post-processing (using PhotoshopTM, for
example) to enhance certain colors of interest over others. This
chapter is about how to design RLC circuits that can filter in
(pass through) the range of frequencies of interest (to a certain
application, such as in a communication, imaging, or sensing
system) and filter out (reject) the range of frequencies of signals
that are either problematic or not of interest.

To avoid interference, every radio and TV transmission
station is assigned a unique transmission frequency different
from those assigned to other radio and TV stations in the area.
At the receiver end, even though the antenna will intercept the
signals transmitted by all sources within a certain distance, the
receiver is able to select from among them the specific channel
of interest, while rejecting all others. The selection process
is based on the oscillation frequency of the desired signal,
and it is realized by passing the intercepted signals through
a narrow bandpass filter whose center frequency is aligned
with the frequency of the desired channel. The bandpass filter
is one of many different types of frequency-selective circuits
employed in analog and digital communication networks to
manage the traffic of signals between multiple sources and
multiple recipients. The behavior of an ac circuit as a function
of the angular frequency ω is called its frequency response.
Building on the phasor-domain analysis tools we acquired in
the preceding two chapters, we now are ready to develop and
adopt a standard set of metrics and design methodologies for
characterizing the frequency response of any resonant circuit
and to apply them to various types of active and passive circuits.

9-1 The Transfer Function

The passive linear circuit represented by the block diagram
in Fig. 9-1 has an input phasor voltage Vin applied at input
terminals (a, b), causing an associated input phasor current Iin
to flow into the circuit. In general, a corresponding set of

phasors, Vout and Iout, exist at output terminals (c, d). The
voltage gain of the circuit is defined as

Voltage gain: H(ω) = Vout(ω)

Vin(ω)
, (9.1)

where all quantities are written explicitly as functions of the
angular frequency ω simply to emphasize the notion that ω

will play a central role in our forthcoming discussions. If the
circuit contains capacitors and inductors, Vout likely will be a
function of ω, and in the general case Vin may vary with ω

also. The phasor H(ω) is called the voltage transfer function
of the circuit and carries a connotation broader than just another
name for voltage gain. In fact, H(ω) can be defined to convey
the relationship between any input excitation and any output
response. For example, we may define other transfer functions
for the circuit in Fig. 9-1, such as:

Current gain: HI (ω) = Iout(ω)

Iin(ω)
, (9.2a)

Transfer impedance: HZ(ω) = Vout(ω)

Iin(ω)
, (9.2b)

and

Transfer admittance: HY(ω) = Iout(ω)

Vin(ω)
. (9.2c)

In any case, because H(ω) always is defined as the ratio of an
output quantity to an input quantity, we may think of it as equal
to the output generated by the circuit in response to a unity
input (1 0◦).

As a complex quantity, the transfer function H(ω) has a
magnitude—to which we assign the symbol M(ω)—and an
associated phase angle φ(ω),

H(ω) = M(ω) ejφ(ω), (9.3)

where by definition,

M(ω) = |H(ω)| and φ(ω) = tan−1
{

Im[H(ω)]
Re[H(ω)]

}
. (9.4)

H(ω)
Linear circuit

+
_

+
_

Vin

a

b d

c
Iin Iout

Vout

Figure 9-1: The voltage-gain transfer function is
H(ω) = Vout(ω)/Vin(ω) .
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(c) Bandpass filter (d) Bandreject filter

(a) Lowpass filter (b) Highpass filter

M

M0

M0

ω

Passband

Idealized

HighpassLowpass

Bandpass Bandreject

Slope = Sg

ωc
0

0

Actual

M

M0
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ω

Passband

Idealized

ωc
0

0

ωc2
ωc1

M

M0

M0

ω

Passband

Idealized

Actual

Actual

ω0 ω0
0

0 ωc2
ωc1

M

M0

M0

ω

Passband
Stopband

Idealized

Actual

0
0

Passband

1
√2

1
√2

1
√2

1
√2

Figure 9-2: Typical magnitude spectral responses for the four types of filters.

9-1.1 Terminology

The voltage transfer functions most commonly encountered in
electronic circuits are those belonging to lowpass, highpass,
bandpass, and bandreject filters. To visualize the frequency
response of a transfer function, we usually generate plots of

its magnitude and phase angle as a function of frequency from
ω = 0 (dc) to ω = ∞. Figure 9-2 displays typical magnitude
responses for the four aforementioned types of filters. Each of
the four filters is characterized by at least one passband and one
stopband.
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� The lowpass filter allows low-frequency signals to
pass through (essentially unimpeded) but blocks the
transmission of high-frequency signals. �

The qualifiers low and high are relative to the corner
frequency ωc (Fig. 9-2(a)), which we shall define shortly.

� The highpass filter exhibits the opposite behavior,
blocking low-frequency signals while allowing high
frequencies to go through. �

The bandpass filter (Fig. 9-2(c)) is transparent to signals whose
frequencies are within a certain range centered at ω0, but cuts
off both very high and very low frequencies. The response of
the bandreject filter provides the opposite function to that of
the bandpass filter; it is transparent to low- and high-frequency
signals and opaque to intermediate-frequency signals.

We often use the term “frequency” for both the angular
frequency ω and the oscillation frequency f = ω/2π . Because
the impedances of inductors and capacitors are given by jωL

and 1/jωC, it is easier to analyze a circuit and plot its response
as a function of ω, but if the circuit performance is specified in
Hz, ω should be replaced with 2πf everywhere.

Gain factor M0

All four spectral plots shown in Fig. 9-2 exhibit smooth patterns
as a function of ω, and each has a peak value M0 in its passband.
If M0 occurs at dc, as in the case of the lowpass filter, it is
called the dc gain; if it occurs at ω = ∞, it is called the high-
frequency gain; and for the bandpass filter, it is called simply
the gain factor.

In some cases, the transfer function of a lowpass or highpass
filter may exhibit a resonance behavior that manifests itself
in the form of a peaking pattern in the neighborhood of the
resonant frequency of the circuit, ω0, as illustrated in Fig. 9-3.
Obviously, the peak value at ω = ω0 exceeds M0, but we will
continue to refer to M0 as the dc gain of M(ω) because M0 is
defined as the reference level in the passband of the transfer
function, whereas the behavior of M(ω) in the neighborhood
of ω0 is specific to that neighborhood.

Corner frequency ωc

The corner frequency ωc is defined as the angular frequency at
which M(ω) is equal to 1/

√
2 of the reference value M0,

M(ωc) = M0√
2

= 0.707M0. (9.5)

Since M(ω) is a voltage transfer function, M2(ω) is the transfer
function for power. The condition described by Eq. (9.5) is
equivalent to

M2(ωc) = M2
0

2
or P(ωc) = P0

2
. (9.6)

Hence, ωc also is called the half-power frequency. The spectra
of the lowpass and highpass filters shown in Fig. 9-2(a) and (b)
have only one half-power frequency each, but the bandpass and
bandreject responses have two half-power frequencies each, ωc1

and ωc2 .
Even though the actual frequency response of a filter is a

gently varying curve, it usually is approximated to that of an
equivalent idealized response, as illustrated in Fig. 9-2. The
idealized version for the lowpass filter has a rectangle-like
envelope with a sudden transition at ω = ωc. Accordingly, ωc
also is referred to as the cutoff frequency of the filter. This term
also applies to the other three types of filters.

Bandwidth B

For lowpass and bandpass filters, the bandwidth B is defined as
the range of ω corresponding to the filter’s idealized passband
(Fig. 9-2):

B = ωc for lowpass filter, (9.7a)

B = ωc2 − ωc1 for bandpass filter. (9.7b)

2M0

M0

M

0
0 2ω0 3ω0ω0

ω

strong resonance

weak resonance

dc gain

Figure 9-3: Resonant peak in the spectral response of a lowpass
filter circuit.
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Resonant frequency ω0

� Resonance is a condition that occurs when the input
impedance or input admittance of a circuit containing
reactive elements is purely real, and the angular frequency
at which it occurs is called the resonant frequency ω0. �

Often (but not always) the transfer function H(ω) also is purely
real at ω = ω0, and its magnitude is at its maximum or minimum
value.

Let us consider the two circuits shown in Fig. 9-4. The input
impedance of the RL circuit is simply

Zin1 = R + jωL. (9.8)

Resonance corresponds to when the imaginary part of Zin1 is
zero, which occurs at ω = 0. Hence, the resonant frequency of
the RL circuit is

ω0 = 0 (RL circuit). (9.9)

When ω0 = 0 (dc) or ∞, the resonance is regarded as a
trivial resonance because it occurs at the extreme ends of the
spectrum. This usually happens when the circuit has either an
inductor or a capacitor (but not both simultaneously). A circuit

(a) First-order RL filter

+

_
+
−~Vs Zin1 VLL

R

+
_

(b) Series RLC circuit

+
_

+
−~Vs Zin2

VR

L

R

C

+
_

Figure 9-4: Resonance occurs when the imaginary part of the
input impedance is zero. For the RL circuit, Im [Zin1 ] = 0 when
ω = 0 (dc), but for the RLC circuit, Im [Zin2 ] = 0 requires that
ZL = −ZC or, equivalently, ω2 = 1/LC.

that exhibits only a trivial resonance, such as the RL circuit in
Fig. 9-4(a), is not considered a resonator.

If the circuit contains at least one capacitor and at least one
inductor, resonance can occur at intermediate values of ω. A
case in point is the series RLC circuit shown in Fig. 9-4(b). Its
input impedance is

Zin2 = R + j

(
ωL − 1

ωC

)
. (9.10)

At resonance (ω = ω0), the imaginary part of Zin2 is equal to
zero. Thus,

ω0L − 1

ω0C
= 0,

or

ω0 = 1√
LC

(RLC circuit). (9.11)

So long as neither L nor C is zero or ∞, the transfer function
H(ω) = VR/Vs will exhibit a two-sided spectrum with a peak
at ω0—similar in shape to that of the bandpass filter response
shown in Fig. 9-2(c).

Roll-off rate Sg

Outside the passband, the rectangle-shaped idealized responses
shown in Fig. 9-2 have infinite slopes, but of course, the actual
responses have finite slopes. The steeper the slope, the more
discriminating the filter is, and the closer it approaches the
idealized response. Hence, the slope Sg outside the passband
(called the gain roll-off rate) is an important attribute of the
filter response.

9-1.2 RC Circuit Example

To illustrate the transfer-function concept with a concrete
example, let us consider the series RC circuit shown in
Fig. 9-5(a). Voltage source Vs is designated as the input phasor,
and on the output side, we have designated two voltage phasors,
namely VR and VC. We now examine the frequency responses
of the transfer functions corresponding to each of those two
output voltages.
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(b) Magnitude and phase angle of HC(ω) = VC / Vs

(a) RC circuit

(c) Magnitude and phase angle of HR(ω) = VR / Vs

+
_

+
−~Vs

VR

+
_ VC

R

C+
_

0 ωc
ω0

1

= 0.707

MR

0 ωc

π/4

π/2

ω
0

ϕR

Highpass phaseHighpass magnitude

0
ωc

−π/4

−π/2

ω0

ϕC

Lowpass phaseLowpass magnitude

0 ωc
ω0

= 0.707

MC

1

1
√2

1
√2

Figure 9-5: Lowpass and highpass transfer functions.

Lowpass filter

Application of voltage division gives

VC = VsZC

R + ZC
= Vs/jωC

R + 1
jωC

. (9.12)

The transfer function corresponding to VC is

HC(ω) = VC

Vs
= 1

1 + jωRC
, (9.13)
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where we have multiplied the numerator and denominator of
Eq. (9.12) by jωC to simplify the form of the expression.
In terms of its magnitude MC(ω) and phase angle φC(ω), the
transfer function is given by

HC(ω) = MC(ω) ejφC(ω), (9.14)

with

MC(ω) = |HC(ω)| = 1√
1 + ω2R2C2

(9.15a)

and

φC(ω) = − tan−1(ωRC). (9.15b)

Spectral plots for MC(ω) and φC(ω) are displayed in
Fig. 9-5(b). It is clear from the plot of its magnitude that the
expression given by Eq. (9.13) represents the transfer function
of a lowpass filter with a dc gain factor M0 = 1. At dc, the
capacitor acts like an open circuit—allowing no current to flow
through the loop—with the obvious consequence that VC = Vs.
At very high values of ω, the capacitor acts like a short circuit,
in which case the voltage across it is approximately zero.

Application of Eq. (9.6) allows us to determine the corner
frequency ωc as follows

M2
C(ωc) = 1

1 + ω2
cR

2C2 = 1

2
, (9.16)

which leads to

ωc = 1

RC
. (9.17)

Note that ωc is the inverse of the time constant τ = RC

introduced in Chapter 5.

Highpass filter

The output across R in Fig. 9-5(a) leads to

HR(ω) = VR

Vs
= jωRC

1 + jωRC
. (9.18)

The magnitude and phase angle of HR(ω) are given by

MR(ω) = |HR(ω)| = ωRC√
1 + ω2R2C2

(9.19a)

and

φR(ω) = π

2
− tan−1(ωRC). (9.19b)

Their spectral plots are displayed in Fig. 9-5(c).

+

_
Vs VoutR

+
_

L C2

C1

Figure 9-6: Circuit of Example 9-1.

Example 9-1: Resonant Frequency

For the circuit in Fig. 9-6, (a) obtain an expression for
H(ω) = Vout/Vs and (b) show that H(ω) becomes purely real
at ω0 = 1/

√
L(C1 + C2) .

Solution: (a) Application of KCL and KVL leads to

H(ω) = Vout

Vs
= RZC1

ZC1ZC2 + ZL(ZC1 + ZC2) + R(ZC1 + ZL)
,

where ZL = jωL, ZC1 = 1/jωC1, and ZC2 = 1/jωC2. After
a few steps of algebra aimed at transforming the expression into
a form whose denominator is purely real, we end up with

H(ω) = ω2R2C2
2 (1 − ω2LC1) + jωRC2[1 − ω2L(C1 + C2)]

[1 − ω2L(C1 + C2)]2 + ω2R2C2
2 (1 − ω2LC1)2

.

(b) At

ω = ω0 = 1√
L(C1 + C2)

,

the imaginary part of the expression becomes equal to zero and
the expression simplifies to

H(ω0) = C1 + C2

C2
.

Concept Question 9-1: Is the transfer function of a circuit
always the same as its voltage gain? (See         )

Concept Question 9-2: Is the gain factor M0 always the
peak value of M(ω)? (See         )

Concept Question 9-3: When is a circuit in a resonance
condition? (See         )
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Concept Question 9-4: Why is the corner frequency also
called the half-power frequency? (See         )

Exercise 9-1:A series RL circuit is connected to a voltage
source Vs. Obtain an expression for H(ω) = VR/Vs,
where VR is the phasor voltage across R. Also, determine
the corner frequency of H(ω).

Answer: H(ω) = R/(R + jωL), ωc = R/L. (See )

Exercise 9-2: Obtain an expression for the input
impedance of the circuit in Fig. E9.2 and then use it to
determine the resonant frequency.

Figure E9.2

Zin
L

R
C

Answer: ω0 =
√

1

LC
− R2

L2 . (See )

9-2 Scaling

When designing a frequency filter, it often is convenient to
start by designing a prototype model in which the elements
have values on the order of ohms, henrys, and farads and then
to scale the prototype circuit into a practical circuit that not
only contains elements with realistic values but also provides
the specified frequency response. A circuit can be scaled in
magnitude, in frequency, or both.

� Magnitude scaling changes the values of the elements
in the circuit, but it does not modify its frequency
response. Frequency scaling allows the designer to
translate the frequency response into higher or lower
frequency ranges while keeping the impedances of the
circuit elements unchanged. �

9-2.1 Magnitude Scaling

The transfer function of a circuit is based on the impedances
of its elements. If all impedances are multiplied (scaled) by
the same magnitude scaling factor Km, the absolute level
of the transfer function may or may not change, but its
relative frequency response will remain the same. To distinguish
between the prototype and scaled circuits, we shall:

(a) Denote elements and impedances of the prototype circuit
with unprimed symbols:

ZR = R, ZL = jωL, and ZC = 1

jωC
.

(prototype circuit) (9.20)

(b) Denote elements and impedances of the scaled circuit
with primed symbols:

Z′
R = R′, Z′

L = jωL′, and Z′
C = 1

jωC′ .

(scaled circuit) (9.21)

Magnitude scaling by a factor Km implies that:

Z′
R = KmZR, Z′

L = KmZL, and Z′
C = KmZC, (9.22)

which translates into the relations

R′ = KmR,

L′ = KmL

C′ = C

Km
,

ω = ω′.

(magnitude scaling only)

(9.23)

Thus, resistor and inductor values scale by Km, but capacitor
values scale by 1/Km.

To illustrate with an example, consider the transfer function
given by Eq. (9.18),

HR(ω) = jωRC

1 + jωRC
(9.24a)

and its scaled version

H′
R(ω) = jωR′C′

1 + jωR′C′ . (9.24b)

Applying the recipe given by Eq. (9.23) leads to

H′
R(ω) = HR(ω),

which means that the frequency response remains unchanged.
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9-2.2 Frequency Scaling

To shift the profile of a transfer function along the ω axis by a
frequency scaling factor Kf while keeping its relative shape the
same, we can replace ω in the transfer function of the prototype
circuit with ω′ = Kfω and scale the element values so that their
impedances remain unchanged. For an inductor, ZL = jωL, so
if ω is to be scaled up by Kf , L has to be scaled down by the same
factor in order for ZL to stay the same. Hence, the impedance
condition requires that

R′ = R,

L′ = L

Kf
,

C′ = C

Kf
,

ω′ = Kfω.

(frequency scaling only)

(9.25)

9-2.3 Combined Magnitude and Frequency
Scaling

To transfer the prototype circuit design into a realizable
circuit, we often apply magnitude and frequency scaling
simultaneously, in which case the relationships between the
prototype and scaled circuits become

R′ = KmR,

L′ = Km

Kf
L,

C′ = 1

KmKf
C,

ω′ = Kfω.

(magnitude and frequency scaling)

(9.26)

Example 9-2: Third-Order LP Filter

As discussed in Section 9-5, the order of a filter provides a
measure of how steep its response is as a function of ω. The
circuit in Fig. 9-7 is a prototype model of a third-order lowpass
filter with a cutoff frequency of ωc = 1 rad/s. Develop a scaled

Scaled version

C  =     nF
+

_
Vs VoutR  = 2 kΩ

+
_

2
3

L1 = 3 mH L2 = 1 mH

Prototype model

(b)

(a)

C =     F
+

_
Vs VoutR = 2 Ω

+
_

2
3

L1 = 3 H L2 = 1 H

Figure 9-7: Prototype and scaled circuits of Example 9-2.

version with a cutoff frequency of ω′
c = 106 rad/s and a resistor

value of 2 k�.

Solution: Based on the given information, the scaling factors
are

Km = R′

R
= 2k

2
= 103 and Kf = ω′

c

ωc
= 106

1
= 106.

Application of Eq. (9.26) leads to

L′
1 = Km

Kf
L1 = 103

106 × 3 = 3 mH,

L′
2 = Km

Kf
L2 = 1 mH,

and

C′ = 1

KmKf
C = 1

103 × 106 × 2

3
= 2

3
nF.

The scaled circuit is displayed in Fig. 9-7(b).

Concept Question 9-5: How is the scaling concept used
in the design of resonant circuits and filters? (See         )

Concept Question 9-6: What remains unchanged in (a)
magnitude scaling alone and (b) frequency scaling alone?
(See         )
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Technology Brief 22
Noise-Cancellation Headphones

Noise-cancellation headphones are a class of devices
that use active noise-control technology to reduce the
level of environmental noise reaching a listener’s ear.
They were invented by Amar Bose in 1978, based on
concepts developed in the mid-20th century (most notably
by Paul Lueg, who developed a system for cancelling
noise in air ducts using loudspeakers). The primary
advantage of such systems is the ability to selectively
reduce noise without having to use heavy and expensive
sound padding. Beyond hearing aids and the commercial
headphones used by airline passengers, specialized
active noise-control systems have been in use by pilots
and heavy equipment operators for several decades.
In small enclosed environments, active noise-control
systems can employ microphone and speaker arrays
to lower the amount of ambient noise experienced by
the listener. Examples of this include noise-cancellation
systems used to dampen engine noise in cockpits, active
mufflers for industrial exhaust stacks, noise reduction
around large fans and, recently, systems for reducing road
and traffic noise in automobile interiors.

Active Noise Control

In its most basic form, active noise control consists
of measuring the sound levels at certain points in
the environment and then using that data to emit
noise from speakers whose frequency, phase shift,
and amplitude are selected in order to cancel out the
incoming environmental noise (Fig. TF22-1). In noise-
cancellation headphones, small microphones outside the
headphones measure the incoming ambient noise, and
the measured signal is then fed to circuitry that produces
output noise in the headset that cancels out the ambient
sound (Fig. TF22-2). The general phenomenon whereby
one waveform is added to another to cancel it out is
called destructive interference.The basic idea is to add
a replica of the environmental noise signal, but shifted
in phase by 180◦, which is equivalent to multiplying the
added signal waveform by (−1).Consider a vibrating wave
traveling along a one-dimensional string (Fig. TF22-3),
which is analogous to a sound pressure wave moving
through the air. If we superimpose a second traveling
wave onto the string (perhaps by waving the end up and
down with a second hand), the two waves will overlap
and the result will be the sum of the two individual waves
(superposition). If we precisely time the second wave so

ENVIRONMENTAL SOUND

Microphone

Speaker

In specific region, emitted sound cancels the
environmental sound

Emitted
sound

Microphone

Control

Figure TF22-1: Active noise control. A basic active
noise-control system uses a set of microphones to sense
incoming ambient sound; the microphone signals are fed
into control circuits which drive a set of speakers. The
control circuit generates exactly the signals required to
cancel out the incoming ambient sound in a specific region.

that it is the exact mirror of the first (i.e., it is phase-shifted
by 180◦ from the first wave), the two waves will cancel out
exactly, and the string will not vibrate. This (in principle)
is what active noise control aims to do, even though (in
reality) the technology faces a number of limitations.

Limitations

In order to truly cancel out all ambient noise, the emitted
noise would have to exactly match the ambient noise in
both space and time for all audible frequencies across
a three-dimensional volume (such as the interior of a car
or an airplane cabin). This is very difficult to accomplish
in real environments. High frequencies are the hardest
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ENVIRONMENTAL
NOISE

Insulation attenuates high frequencies

Microphone

Emitted sound cancels environmental sounds

C
ontrol

Speaker

Figure TF22-2: Noise-cancellation headphones employ the active noise-control principle to eliminate noise around the ear.
Sound insulation is used commonly to remove high-frequency noise signals, while the active system removes low-frequency
sound.

y(t) = cos (ωt)
Wave 1

Traveling wave

Wave 2

Traveling wave

y(t) = cos (ωt + 180�)

Wave 1 + Wave 2
No wave

FigureTF22-3: Destructive interference via the superposition of two waves. A string can be agitated so as to generate traveling
waves along its length. In order to cancel out a wave traveling along the string (Wave 1), we simultaneously can generate a
second wave of the same amplitude and frequency with a 180◦ phase shift (Wave 2). Because the vibration of the string will be
the result of the two waves superimposed, the two waves cancel out, and no vibration occurs. This is analogous to what active
control systems do: Microphones sense ambient waves that are then canceled out by emitting an appropriately phase-shifted
wave from the speakers.
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(a)

(b)

Microphone

Microphone

Input Feedforward Output

Speaker Listener
Ambient
sound

Control

Feedback loop

Output Input

Speaker

Control

FigureTF22-4: Comparison between (a) an active noise-control system in a feedforward configuration, and (b) in a feedback
configuration.

to match, because to correctly cancel them, the system
would need to employ large arrays of microphones and
speakers. Moreover, objects within the environment will
reflect, absorb, and emit sound—further complicating
the signals required to cancel the ambient sound.
The situation is somewhat easier for headphones, as
the area of interest is simply the user’s ear (a much
smaller physical region). However, most commercial
noise-cancellation headphones do not attempt to cancel
high frequencies. Padding and passive layers are instead
used to absorb the high frequencies and the system
actively cancels out only the lower frequencies (e.g., the
airplane engine hum). In general, noise cancellation only
works well for sound that is periodic. Noise that is random
or has very fast changes is very hard to mask, because
the system cannot compute what the interfering signal
should be instantaneously.

Feedforward versus Feedback Control

Active noise-control systems provide an interesting com-
parison between feedback control (which we examined
in Chapter 4) and feedforward control (Fig. TF22-4).

Consider again Fig. TF22-1. If the microphones of
this system are positioned relatively far away from the
speakers, they sample the incoming ambient sound signal
and send it ahead to the control circuit, which then drives
the speakers. There is no microphone at the speaker
location and thus no way to measure the “output” of
the system (i.e., there is no microphone that measures
how well the system is canceling the sound at the
listener). This is an example of feedforward control.
If we were to move the microphones very close to
the speakers (or, better yet right next to the listener),
the microphones would continuously report how well
the speakers were canceling the sound. If the control
system is doing poorly, the microphones will detect some
sound, and the control circuit can attempt to correct for
this. In such a configuration, the system is operating
with feedback control. Figure TF22-4 illustrates both of
these control configurations. Some sophisticated active
noise-control systems use both modes simultaneously:
They have distant microphones as well as microphones
near the listener. In general, feedforward systems are
less practical to implement in consumer systems, and
feedback systems tend to be less stable.
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Exercise 9-3: Determine (a) Zin of the prototype circuit
shown in Fig. E9.3 at ω = 1 rad/s and (b) Z′

in of the same
circuit after scaling it by Km = 1000 and Kf = 1000.

Zin C = 1 F

R = 1 ΩR = 2 Ω

Ix

2Ix

Figure E9.3

Answer: (a) Zin = (1 − j)  �, (b) Z′
in = (1 − j)  k�.

(See                  )

9-3 Bode Plots

In the late 1930s, inventor Hendrik Bode (pronounced Boh-
dee) developed a graphical technique that has since become a
standard tool for the analysis and design of resonant circuits,
including filters, oscillators, and amplifiers.

� Bode’s technique, which generates what we today
call Bode plots or a Bode diagram, relies on using a
logarithmic scale for ω and on expressing the magnitude
of the transfer function in decibels (dB). �

To make sure the reader is fully familiar with the properties of
the dB operator, a quick review is in order.

9-3.1 The dB Scale

The ratio of the power P relative to a reference power level P0—
such as the output power generated by an amplifier, relative
to the input power supplied by the source—is called relative
or normalized power. In many engineering applications, P/P0
may vary over several orders of magnitude when plotted against
a specific variable of interest, such as the frequency ω of the
circuit. The dB scale originally was introduced as a logarithmic
conversion tool to facilitate the generation of plots involving
relative power, but its use has since been expanded to other
physical quantities. The dB operator is intended as a scale
converter of relative quantities, such as P/P0, rather than of
P itself, but it still can be applied to P by setting P0 equal to

Table 9-1: Correspondence between power ratios in
natural numbers and their dB values (left table) and between
voltage or current ratios and their dB values (right table).

P

P0
dB

10N 10N dB
103 30 dB
100 20 dB

10 10 dB
4 ≈ 6 dB
2 ≈ 3 dB
1 0 dB

0.5 ≈ −3 dB
0.25 ≈ −6 dB

0.1 −10 dB
10−N −10N dB

∣∣∣∣ V
V0

∣∣∣∣ or

∣∣∣∣ I
I0

∣∣∣∣ dB

10N 20N dB
103 60 dB
100 40 dB

10 20 dB
4 ≈ 12 dB
2 ≈ 6 dB
1 0 dB

0.5 ≈ −6 dB
0.25 ≈ −12 dB

0.1 −20 dB
10−N −20N dB

a specified value, such as 1 watt or 1 mwatt, so long as P is
expressed in the same units as P0.

If G is defined as the power gain,

G = P

P0
, (9.27)

then the corresponding gain in dB is defined as

G [dB] = 10 log G = 10 log

(
P

P0

)
(dB).

(9.28)

The logarithm is in base 10. The dB scale converts a power
ratio to its logarithmic value and then multiplies it by 10.
Table 9-1 (left side) provides a listing of some values of G and
the corresponding values of G [dB]. Note that when G varies
across six orders of magnitude, from 10−3 to 103, G [dB] varies
from −30 dB to +30 dB. Also note that the dB value of 2 is
≈ +3 dB and the dB value of 0.5 is ≈ −3 dB.

Even though the scale originally was applied to power ratios,
it now is used to express voltage and current ratios as well. If
P and P0 are the average powers absorbed by resistors of equal
value and the corresponding phasor voltages across the resistors
are V and V0, respectively, then

G [dB] = 10 log

(
1
2 |V|2/R

1
2 |V0|2/R

)
= 20 log

( |V|
|V0|

)
. (9.29)
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Similarly,

G [dB] = 20 log

( |I|
|I0|

)
. (9.30)

� Whereas the dB definition for power ratio includes a
scaling factor of 10, the scaling factor for voltage and
current is 20. �

A useful property of the log operator is that the log of the
product of two numbers is equal to the sum of their logs. That
is if

G = XY G [dB] = X [dB] + Y [dB]. (9.31)

This result follows from

G [dB] = 10 log(XY) = 10 log X+10 log Y = X [dB]+Y [dB].
By the same token, if:

G = X

Y
G [dB] = X [dB] − Y [dB]. (9.32)

Conversion of products and ratios into sums and differences
will prove to be quite useful when constructing the frequency
response of a resonant circuit.

Example 9-3: RL Highpass Filter

For the series RL circuit shown in Fig. 9-8(a):

(a) Obtain an expression for the transfer function
H = Vout/Vs in terms of ω/ωc where ωc = R/L.

(b) Determine the magnitude M [dB] = 20 log |H| and plot it
as a function of ω on a log scale with ω expressed in units
of ωc.

(c) Determine and plot the phase angle of H.

Solution: (a) Voltage division gives

Vout = jωLVs

R + jωL
,

which leads to

H = Vout

Vs
= jωL

R + jωL
= j (ω/ωc)

1 + j (ω/ωc)
, (9.33)

with ωc = R/L.

(b) The magnitude of H is given by

M = |H| = (ω/ωc)

|1 + j (ω/ωc)| = (ω/ωc)√
1 + (ω/ωc)2

. (9.34)

Since H is a voltage ratio, the appropriate dB scaling factor is
20, so to find the power gain in dB,

M [dB] = 20 log M

= 20 log(ω/ωc) − 20 log[1 + (ω/ωc)
2]1/2

= 20 log(ω/ωc) − 10 log[1 + (ω/ωc)
2]. (9.35)

1 2

In the Bode-diagram terminology introduced later in Section
9-3.2, the components of M [dB] are called factors, so in the
present case, M [dB] consists of two factors with the second
one having a negative coefficient.A magnitude plot is displayed
on semilog graph paper with the vertical axis in dB and the
horizontal axis in (rad/s). If in the expression for M [dB], ω

appears in a normalized format—as in (ω/ωc)—we may choose
to express the horizontal axis in units of ωc. Figure 9-8(b)
contains individual plots for each of the two factors comprising
M [dB] as well as a plot for their sum.

On semilog graph paper, the plot of log(ω/ωc) is a straight
line that crosses the ω axis at (ω/ωc) = 1. This is because
log 1 = 0. At (ω/ωc) = 10, 20 log 10 = 20 dB. Hence;

1 20 log

(
ω

ωc

)
straight line with slope = 20
dB/decade and ω axis cross-
ing at ω/ωc = 1.

� At ω/ωc = 10, 20 log(10) = 20 dB, at ω/ωc = 100,
20 log(100) = 40 dB, and so on. Hence, the slope is 20
dB/decade. �

Note that a decade refers to a change by a factor of 10. Thus,
the range from 1 to 10 is a decade, and so are the ranges from
3 to 30 and 10 to 100.

2 The second factor has a nonlinear plot, with the following
properties:

Low-Frequency Asymptote

2a As (ω/ωc) 0, −10 log

[
1 +

(
ω

ωc

)2
]

0.
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(a) RL circuit

+

_
Vs VoutL

R

(b) Magnitude plot (c) Phase plot

−20 dB

−3 dB

20 dB

dB

0 ω
ωc

20 log(ω/ωc)

0.1ωc 10ωc

slope = −20 dB/
             decade

slope = 20 dB/
             decade

M [dB]

−10 log[1 + (ω/ωc)2]

ϕ(ω)

Degrees

0 ωωc0.1ωc

10ωc

−tan−1(ω/ωc)

90o

90o

45o

−45o

−90o

+
_

1

1

2

2

2a

2b

Figure 9-8: Magnitude and phase plots of H = Vout/Vs.

High-Frequency Asymptote

2b As (ω/ωc) ∞,

− 10 log

[
1 +

(
ω

ωc

)2
]

− 20 log

(
ω

ωc

)
.

The plot of M [dB] is obtained by graphically adding together
the two plots of its individual factors (Fig. 9-8(b)). At low
frequencies such that (ω/ωc � 1), M [dB] is dominated by
its first factor; at ω/ωc = 1, M [dB] = −3 dB; and at high
frequencies (ω/ωc � 1), M [dB] → 0, because its two factors
cancel each other out. The overall profile (in red in Fig. 9-8(b))
is typical of the spectral response of a highpass filter with a
cutoff frequency ωc.

(c) From Eq. (9.33), the phase angle of H is

φ(ω) = 90◦ − tan−1
(

ω

ωc

)
. (9.36)

1 2

The 90◦ component is contributed by j in the numerator and the
second term is the phase angle of the denominator. The phase
plot is displayed in Fig. 9-8(c).

Concept Question 9-7: When is it helpful to use the dB
scale? (See         )

Concept Question 9-8: What is the scaling factor for
power ratio? For current ratio? (See         )
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Exercise 9-4: Convert the following voltage ratios to dB:
(a) 20, (b) 0.03, (c) 6 × 106.

Answer: (a) 26.02 dB, (b) −30.46 dB, (c) 135.56 dB.
(See                  )

Exercise 9-5: Convert the following dB values to voltage
ratios: (a) 36 dB, (b) −24 dB, (c) −0.5 dB.

Answer: (a) 63.1, (b) 0.063, (c) 0.94. (See )

9-3.2 Poles and Zeros

In polar coordinates, the transfer function H(ω) is composed of
a magnitude M(ω) and a phase angle φ(ω),

H(ω) = M(ω) ejφ(ω). (9.37)

For any circuit, the expression for H(ω) in general can be cast
as the product of multiple factors A1(ω) to An(ω),

H(ω) = A1(ω) A2(ω) . . . An(ω). (9.38)

Discussion of the functional forms of A1 to An will follow
shortly, but to clarify what we mean by Eq. (9.38), let us consider
the simple example of a transfer function given by

H(ω) = 10
1 + jω/ωz

1 + jω/ωp
. (9.39)

In this case,

A1 = 10, (9.40a)

A2 = 1 + jω/ωz , (9.40b)

and

A3 = 1

1 + jω/ωp
. (9.40c)

� The expression for H(ω) was structured intentionally
into a form—called the standard form—in which the
two terms involving ω each are written such that the real
part is unity and the coefficient of ω in the imaginary
part is defined as the reciprocal of an angular frequency
(ωz or ωp). �

For the circuit represented by the transfer function given by
Eq. (9.39), ωz and ωp are related to the circuit architecture and

the element values of the circuit. The quantity ωz (which has
the same units as ω) is called a zero of H(ω), because it appears
in a factor contained in the numerator of H(ω). Similarly, ωp
is called a pole because it is part of a factor contained in the
denominator of H(ω). If the numerator is a product of multiple
factors, H(ω) will have multiple zeros—one associated with
each factor (except for frequency independent factors, such as
A1 = 10). A transfer function also may have multiple poles if
the denominator of H(ω) is the product of multiple factors.
Moreover, the factors may assume functional forms different
from those given by A1 to A3 in Eq. (9.40).

To analyze the frequency response of the circuit, we need to
extract from Eq. (9.38) explicit expressions for the magnitude
M(ω) and the phase angle φ(ω). For any two complex numbers,
the phase angle of their product is equal to the sum of their
individual phase angles. Application of this multiplication
principle to Eq. (9.38) gives

φ(ω) = φA1(ω) + φA2(ω) + · · · + φAn(ω), (9.41)

where φA1(ω) to φAn(ω) are the phase angles of factors A1
to An, respectively. Transformation from a product form (as
in Eq. (9.38)), into a sum (as in Eq. (9.41)) allows us to
generate a phase plot for each factor separately and then add
them together graphically—rather than having to deal with a
single complicated expression all at once. The dB conversion
introduced by Bode accomplishes a similar transformation for
the magnitude M(ω). Application of the log property described
by Eq. (9.31) leads to

M [dB] = 20 log |H|
= 20 log |A1| + 20 log |A2| + · · · + 20 log |An|
= A1 [dB] + A2 [dB] + · · · + An [dB] (9.42)

where

A1 [dB] = 20 log |A1|, (9.43)

and a similar definition applies to the other factors. The
transformations represented by Eqs. (9.41) and (9.42) constitute
the basic framework for generating Bode diagrams. Our next
step is to examine the possible functional forms that factors A1
to An may assume.

Standard form refers to an arrangement in which factors
A1 to An of Eq. (9.38) each can assume any one of only
seven possible functional forms. We will examine the general
character of each of these factors individually (as if it were the
only component of H(ω)) by considering two types of plots:
exact plots based on the exact expression for H(ω) and straight-
line approximations—called Bode plots—that are much easier
to generate and yet provide reasonable accuracy. The symbol N
(which we will call the order of a factor) is an integer equal to
or greater than 1.
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9-3.3 Functional Forms

Constant factor: H = K

This is a frequency-independent constant that may be positive
or negative.

Magnitude: M [dB] = 20 log |K|
Phase: φ = 0◦ if K > 0, or ±180◦ if K < 0
Bode plots: Same as exact plots; straight horizontal

lines (Table 9-2)

Table 9-2: Bode straight-line approximations for magnitude and phase.

Factor

Constant
K

Zero @ Origin

( jω)N

Simple Zero

(1 +  jω/ωc)N

[1 + j2ξω/ωc + ( jω/ωc)2]N

Quadratic Zero

[1 + j2ξω/ωc + ( jω/ωc)2]N
1

Quadratic Pole

Bode Magnitude Bode Phase

Simple Pole

1 +  jω/ωc
( )1 N

20 log K
0 dB ω ω

180� if K < 0
∓

0� if K > 00�

0 dB 0�

1
ω ω

(90N)��
slope = 20N dB/decade

0 dB 0�

1
ω ω

(−90N)��

(−90N)��

slope = −20N dB/decade

ωc ω
slope = −20N dB/decade

0 dB 0��
ω

ωc0.1ωc 10ωc

(180N)��

ωc
ω

slope = 40N dB/decade

0 dB 0��
ω

ωc0.1ωc 10ωc

(−180N)��

ωc ω

slope = −40N dB/decade

0 dB 0��
ω

ωc0.1ωc 10ωc

(90N)��

ωc
ω

slope = 20N dB/decade
0��

ω
ωc0.1ωc 10ωc

0 dB

Pole @ Origin

( jω)−N
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Zero @ origin: H = (jω)N , (N = positive integer)
The name of this factor reflects the fact that H → 0 as ω → 0.

N is its order, so for example, (jω)2 is called a second-order
zero @ origin.

Magnitude: M [dB] = 20 log |(jω)N | = 20N log ω

Phase: φ = (90N)◦
Bode plots: Same as exact

Magnitude: Straight line through ω = 1
with slope = 20N dB/decade
Phase: Constant level (Table 9-2)

Pole @ origin: H = 1/(jω)N

This factor is called a pole because H → ∞ when ω → 0.
The function 1/(jω)3 is called a third-order pole @ origin, for
example.

Magnitude: M [dB] = 20 log

∣∣∣∣ 1

(jω)N

∣∣∣∣
= −20N log ω

Phase: φ = (−90N)◦
Bode plots: Same as exact (Table 9-2)

Magnitude and phase plots are identical to those of zero @
origin except for (−) sign in both cases.

Simple zero: H = (1 + jω/ωc)
N

Standard form requires that the real part be 1 and the
imaginary part be positive. The constant ωc is the corner
frequency of the simple-zero factor, and N is its order.

Magnitude:
M [dB] = 20 log |(1 + jω/ωc)

N |
= 10N log[1 + (ω/ωc)

2]
≈
{

0 dB, for ω/ωc � 1

20N log(ω/ωc), for ω/ωc � 1

Phase: φ = N tan−1
(

ω

ωc

)

≈
{

0, for ω/ωc � 1

(90N)◦, for ω/ωc � 1
Bode plots: Straight-line approximation is different

from exact; for magnitude, the maximum
difference is 3N dB and it occurs at
ω/ωc = 1
Magnitude: 0 dB horizontal line to
ω = ωc, followed by straight line with
slope = 20N dB/decade
Phase: 0◦ horizontal line to ω = 0.1ωc;
straight line connecting coordinates
[0.1ωc, 0] to [10ωc, (90N)◦]; followed
by horizontal line (90N)◦

Magnitude

Phase

(a)

(b)

Bode plot
20N

dB

3N
0 ω

ωc

Exact

0.1ωc 10ωc

ωc0.1ωc 10ωc

(1 +  jω/ωc)N

(90N)

(45N)

Degrees

0 ω

Bode plot
Exact

Figure 9-9: Comparison of exact plots with the Bode straight-
line approximations for a simple zero with a corner frequency ωc.

Figure 9-9 provides a comparison between the Bode straight-
line approximation and the exact solution for both magnitude
and phase. The corner frequency ωc gets its name from the Bode
magnitude plot, which turns the corner at ωc.

Simple pole: H = 1/(1 + jω/ωc)
N

Plots are mirror images (relative to ω axis) of those for the
simple zero (Table 9-2).

Quadratic zero: H = [1 + j2ξω/ωc + (jω/ωc)
2]N

N is the order of the quadratic zero, ωc is its corner frequency,
and ξ is its damping factor.

Magnitude:

M [dB] = 10N log

⎧⎨
⎩
[

1 −
(

ω

ωc

)2
]2

+ 4ξ2
(

ω

ωc

)2
⎫⎬
⎭

≈
{

0 dB for ω/ωc � 1,

40N log(ω/ωc) for ω/ωc � 1

Phase: φ = N tan−1
[

2ξ(ω/ωc)

1 − (ω/ωc)2

]

≈
{

0◦ for ω/ωc � 1,

(180N)◦ for ω/ωc � 1
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Bode plots: Magnitude: Same as simple zero except
at twice the slope
Phase: Same as simple zero except at
twice the slope and twice the level at
ω/ωc � 1

Figure 9-10 displays plots of the magnitude and phase of the
quadratic-zero factor with N = 1 for three different values
of the damping coefficient. Whereas the value of ξ has
little influence on the shape of the plots when ω/ωc � 1
or ω/ωc � 1, it exercises significant influence when ω is in
the neighborhood of ωc. In terms of the Bode straight-line
approximation, the Bode plots (Table 9-2) for a quadratic factor
of order N are identical to those for a simple factor of order
2N .

Quadratic pole: H = [1 + j2ξω/ωc + (jω/ωc)
2]−N

Plots are mirror images, relative to ω axis, as those for the
quadratic zero.

9-3.4 General Observations

A few general observations about the Bode straight-line plots
shown in Table 9-2 are in order.

(1) For N = 1, the slope of the nonhorizontal Bode
magnitude line (called gain roll-off rate) is 20 dB/decade
for both the zero @ origin and simple-zero factors. The
corresponding slope for their pole counterparts is −20 dB/
decade.

(2) For N = 1, the slopes of the nonhorizontal Bode
magnitude lines for the quadratic zero and quadratic pole factors
are 40 dB/decade and −40 dB/decade, respectively.

(3) The slopes of all Bode magnitude and phase lines are
proportional to N . For example, the slope of the magnitude of
a first-order simple-zero factor (1 + jω/ωc) is 20 dB/decade,
so the slope of a third-order simple-zero factor (1 + jω/ωc)

3

is 60 dB/decade.

Example 9-4: Bode Plots I

The voltage transfer function of a certain circuit is given by

H(ω) = (20 + j4ω)2

j40ω(100 + j2ω)
.

(a) Rearrange the expression into standard form. (b) Generate
Bode plots for the magnitude and phase of H(ω).

[1 + j2ξω/ωc + (jω/ωc)
2]

(a)

(b)

Magnitude

Bode plot

dB

ω
ωc0.1ωc 10ωc

ωc0.1ωc 10ωc

−20

−10

0

10

20

30

40

Exact
ξ = 0.1

Exact
ξ = 0.25

Exact
ξ = 0.5

Phase

Degrees

0

20

40

60

80

100

120

140

160

180

ω

Exact
ξ = 0.5

Exact
ξ = 0.1

Bode plot

Exact
ξ = 0.25

Figure 9-10: Comparison of exact plots with Bode straight-
line approximations for a quadratic zero

[1 + j2ξω/ωc + (jω/ωc)
2].

Solution: (a) By factoring out 202 from the factor in the
numerator and 100 from the factor in the denominator, we have

H(ω) = 400(1 + jω/5)2

j4000ω(1 + jω/50)
= −j0.1(1 + jω/5)2

ω(1 + jω/50)
.
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(b)

(a)

Phase
180o

Degrees

Simple pole at ωc = 50 rad/s
−90o −90o

90o

0 ω (rad/s)
0.5 5 50 100 5001

Double zero at ωc = 5 rad/s

10

ϕ(ω)

20 2002

Magnitude

Line segment 1

Line segment 2

Line segment 3

40 dB/decade

Simple pole at ωc = 50 rad/s

40 dB

20 dB

−20 dB
−20 log ω

−20 dB/decade
−20 dB/decade

dB

0 ω (rad/s)
0.5 5 20 20010 50 5001

−14dB

Double zero at ωc = 5 rad/s

M [dB]

2 100

1

1

2

2

3

3

4

Figure 9-11: Bode amplitude and phase plots for the transfer function of Example 9-4.

The corner frequency of the double-zero factor given by
(1+jω/5)2 is ωc1 = 5 rad/s, and similarly, the corner frequency
of the simple-pole factor given by (1+jω/50) is ωc2 =50 rad/s.

(b)

M [dB] = 20 log |H|
= 20 log 0.1 + 40 log |1 + jω/5|

− 20 log ω − 20 log |1 + jω/50|
= −20 dB + 40 log |1 + jω/5|

1 3

− 20 log ω − 20 log |1 + jω/50|.
2 4

The Bode line-approximations for the four terms constituting
M [dB] and their sum are shown in Fig. 9-11(a). The sum
is obtained by graphically adding the line-approximations
corresponding to the four individual terms. An alternative
method for generating the Bode magnitude plot is to start by
plotting the line-approximation of the term with the lowest
corner frequency, and then to move forward along the ω

axis while sequentially changing the slope of the line as we
encounter terms with higher corner frequencies. To illustrate
the procedure, we labeled the three line segments of M [dB] in
Fig. 9-11(a) as line segments 1, 2, 3, and 4.

(1) The constant term is −20 dB (horizontal line with zero
slope, labeled 1 in Fig. 9-11(a)).
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(2) The lowest-frequency term is the pole @ origin (1/ω). Its
Bode line goes through 0 dB at ω = 1 rad/s and has a slope
of −20 dB/decade. It is labeled 2 in Fig. 9-11(a)).

(3) The combination of (1) and (2) generates line segment 1,
which goes through ω = 1 at −20 dB.

(4) The term with the next higher corner frequency is the
double zero with ωc = 5 rad/s (labeled 3 in Fig. 9-11(a)).
A double zero has a Bode line with a slope of +40
dB/decade. Hence, at ωc = 5 rad/s, we change the slope of
line segment 1 by adding 40 dB/decade to its original slope
of −20 dB/decade. This step generates line segment 2, with
a slope of +20 dB/decade.

(5) Line segment 2 continues until we encounter the corner
frequency of the next term, namely the simple pole with
ωc = 50 rad/s (labeled 4 in Fig. 9-11(a)). Adding a slope
of −20 dB/decade leads to line segment 3, with a net slope
of 0, and a constant level of −14 dB.

The phase of H(ω) is given by

φ = −90◦ + 2 tan−1 ω

5
− tan−1 ω

50
.

1 2 3

Bode plots for φ and its three components are shown in
Fig. 9-11(b).

Example 9-5: Bode Plots II

Transfer function H(ω) is given by

H(ω) = (j10ω + 30)2

(300 − 3ω2 + j90ω)
.

(a) Rearrange H(ω) into standard form. (b) Generate Bode plots
for its magnitude and phase.

Solution: (a) Upon reversing the order of the real and
imaginary components in the numerator, factoring out 302 from
it, and factoring out 300 from the denominator, we get

H(ω) = 3(1 + jω/3)2

[1 + j3ω/10 + (jω/10)2] ,

which consists of a constant factor K = 3, a zero factor with a
corner frequency of 3 (rad/s), and a quadratic pole with a corner
frequency of 10 rad/s.

(a)

(b)

Phase

Degrees

0 ω (rad/s)
0.1 0.3 1 3 1003010

Quadratic pole 
at ωc = 10 rad/s

Double zero 
at ωc = 3 rad/s

−90o

−180o

90o

180o

ϕ(ω)

Magnitude
40 dB

M [dB]
20 dB

9.5 dB

30.4 dB

9.5 dB

−20 dB

−40 dB

−40 dB/decade

40 dB/decade

dB

0 ω (rad/s)
0.1 0.3 1 3 10030

Double zero 
@ ωc = 3 rad/s

Quadratic pole 
at ωc = 10 rad/s

10

Figure 9-12: Bode magnitude and phase plots for Example
9-5.

(b)M [dB] = 20 log |H|
= 20 log 3 + 40 log |1 + jω/3|

− 20 log |1 + j3ω/10 + (jω/10)2|
= 9.5 dB + 40 log |1 + jω/3|

− 20 log |1 + j3ω/10 + (jω/10)2|,

φ = 2 tan−1(ω/3) − tan−1
(

3ω/10

1 − ω2/100

)
.

Bode plots of M [dB] and φ are shown in Fig. 9-12. We note
that M [dB] exhibits a highpass filter-like response.
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1 3 52 10 503020 100 200 500300 1000

M [dB]

0 ω (rad/s)
0.5

30 dB

10 dB

20 dB

−40 dB/decade

−20 dB/decade

20 dB/decade

19.1 dB
40 dB/decade

Figure 9-13: Bode plot of bandreject filter of Example 9-6.

Exercise 9-6: Generate a Bode magnitude plot for the
transfer function

H = 10(100 + jω)(1000 + jω)

(10 + jω)(104 + jω)
.

Answer:

ω (rad/s)

dB

20 dB

0
10 100 1000 104

(See )

Example 9-6: Bandreject Filter

The Bode magnitude plot shown in Fig. 9-13 belongs to a
bandreject filter that provides significant gain at low and high

frequencies, but no gain to frequencies in the 10 to 50 (rad/s)
range. Obtain the transfer function H(ω).

Solution: The Bode plot consists of five segments.
The first segment, corresponding to ω ≤ 1 rad/s, is generated

by a pole @ the origin that goes through ω = 3 rad/s and has a
slope of −40 dB/decade. The slope indicates that it is a double
pole, so it must be given by

H1 =
(

1

ω/3

)2

= 9

ω2 .

To verify the validity of our expression, let us convert it to dB
as

M1 [dB] = 20 log
9

ω2 = 20 log 9 − 40 log ω

= 19.1 dB − 40 log ω.

At ω = 1 rad/s, M1 [dB] = 19.1 dB, which matches the figure.
As we progress along the ω axis, the second segment has a

slope of only −20 dB/decade, which means that a simple-zero
factor with a corner frequency of 1 rad/s has come into play.
Hence,

H2 = (1 + jω).

At ω = 10 rad/s, the slope becomes zero, signifying the
introduction of another simple-zero factor given by

H3 = (1 + jω/10).
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Similarly,

H4 = (1 + jω/50)

and

H5 = (1 + jω/200).

Hence,

H(ω) = H1H2H3H4H5

= 9(1 + jω)(1 + jω
10 )(1 + jω

50 )(1 + jω
200 )

ω2 .

Since we are not given any information about the phase
pattern of H(ω), the solution we obtained is correct within a
multiplication factor of jN , which can accommodate j (for
N = 1), −1 (for N = 2), −j (for N = 3), and 1 (for N = 4).
The magnitude of H(ω) is the same, regardless of the value
of N .

Concept Question 9-9: What does the term standard
form of a transfer function refer to, and what purpose 
does it serve? (See         )

Concept Question 9-10: For which of the seven standard 
factors are the Bode plots identical to the exact plots and 
for which are they different? (See         )

Concept Question 9-11: What is the gain roll-off rate?
(See         )

Exercise 9-7: Determine the functional form of the
transfer function whose Bode magnitude plot is shown
in Fig. E9.7, given that its phase angle at dc is 90◦.

Figure E9.7

ω (rad/s)

dB

40 dB

20 dB

0
2 20 500 5000

Answer: H = j (1 + jω/2)(1 + jω/500)

(1 + jω/20)(1 + jω/5000)
. (See )

+
_

+
_

+
_

+

_

Vs

I

VLC

VRR

L

C

VL

VC

+
_

Figure 9-14: Series RLC circuit.

9-4 Passive Filters

Filters are of two types: passive and active.

� Passive filters are resonant circuits that contain
only passive elements, namely resistors, capacitors, and
inductors. In contrast, active filters contain op amps,
transistors, and/or other active devices, in addition to the
passive elements. �

Passive and active filters are the subject of the next four sections.
Any circuit that does not have a uniform frequency response is

(by definition) a filter, simply because its output favors certain
frequency ranges over others. Of particular interest to circuit
designers are the four basic types of filters we introduced in
Section 9-1. As we mentioned there, a filter transfer function is
characterized by a number of attributes, including the following:

1. The frequency ranges of its passband(s) and stopband(s).

2. The gain factor M0.

3. The gain roll-off rate Sg.

The objective of this section is to examine the basic properties
of passive filters by analyzing their transfer functions. To that
end, we use the series RLC circuit shown in Fig. 9-14, in
which we have designated four voltage outputs, namely VR,
VL, and VC across the individual elements, and VLC across
the combination of L and C. We will examine the frequency
responses of the transfer functions corresponding to all four
output voltages.
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9-4.1 Bandpass Filter

The current I flowing through the loop in Fig. 9-15(a) is given
by

I = Vs

R + j

(
ωL − 1

ωC

) = jωCVs

(1 − ω2LC) + jωRC
,

(9.44)
where we multiplied the numerator and denominator by jωC

to simplify the form of the expression. The transfer function
corresponding to VR is

HBP(ω) = VR

Vs
= RI

Vs
= jωRC

(1 − ω2LC) + jωRC
, (9.45)

where we added the subscript “BP” in anticipation of the fact
that HBP(ω) is the transfer function of a bandpass filter. Its
magnitude and phase angle are given by

MBP(ω) = |HBP(ω)| = ωRC√
(1 − ω2LC)2 + ω2R2C2

,

(9.46)
and

φBP(ω) = 90◦ − tan−1
[

ωRC

1 − ω2LC

]
. (9.47)

According to the spectral plot displayed in Fig. 9-15(b), MBP
goes to zero at both extremes of the frequency spectrum and
exhibits a maximum across an intermediate range centered
at ω0. Hence, the circuit functions like a bandpass (BP) filter,
allowing the transmission (through it) of signals whose angular
frequencies are close to ω0 and discriminating against those
with frequencies that are far away from ω0.

The general profile ofMBP(ω) can be discerned by examining
the circuit of Fig. 9-15(a) at specific values of ω. At ω = 0, the
capacitor behaves like an open circuit, allowing no current to
flow and no voltage to develop across R. At ω = ∞, it is the
inductor that acts like an open circuit, again allowing no current
to flow. In the intermediate frequency range when the value of ω

is such that ωL = 1/ωC, the impedances of L and C cancel
each other out, reducing the total impedance of the RLC circuit
to R and the current to I = Vs/R. Consequently, VR = Vs, and
HBP = 1. To note the significance of this specific condition, we
call it the resonance condition, and we refer to the frequency
at which it occurs as the resonant frequency ω0, which is given
by

ω0 = 1√
LC

. (9.48)

(a) RLC circuit

+

_
Vs VR

ICL

R
+
_

B
ω0 2ω0 3ω0ωc1

ωc2

1

0.707

MBP

0
0

ω

Idealized

Actual

Bandpass

(b) MBP(ω)

(c) ϕBP(ω)

ω

−90o

0
3ω0ω0 2ω0

90o

ϕBP

Figure 9-15: Series RLC bandpass filter.

The phase plot in Fig. 9-15(c) conveys the fact that φBP is
dominated by the phase of C at low frequencies and by the
phase of L at high frequencies, and φBP = 0 at ω = ω0.
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At resonance, the energy in the circuit oscillates back and
forth between L and C.

Filter bandwidth

The bandwidth of the bandpass filter is defined as the
frequency range extending between ωc1 and ωc2 , where ωc1

and ωc2 are the values of ω at which M2
BP(ω) = 0.5 or

MBP(ω) = 1/
√

2 = 0.707. As we will see shortly, M2
BP is

proportional to the power delivered to the resistor in the RLC
circuit. At resonance, the power is at its maximum, and at
ωc1 and ωc2 , the power delivered to R is equal to 1/2 of
the maximum possible, which explains why ωc1 and ωc2 also
are referred to as the half-power frequencies (or the −3 dB
frequencies on a dB scale). Thus,

M2
BP(ω) = 1

2
@ ωc1 and ωc2 . (9.49)

Upon inserting the expression for MBP(ω) given by Eq. (9.46)
and carrying out several steps of algebra, we obtain the solutions

ωc1 = − R

2L
+
√(

R

2L

)2

+ 1

LC
(9.50a)

and

ωc2 = R

2L
+
√(

R

2L

)2

+ 1

LC
. (9.50b)

The bandwidth then is given by

B = ωc2 − ωc1 = R

L
. (9.51)

It is worth noting that ω0 is equal to the geometric mean of ωc1

and ωc2 :

ω0 = √
ωc1ωc2 . (9.52)

0.5ω0

0.5ω0 2ω0

2ω0ω0 ω

MBP [dB]

ω0

B2

B1

B3

0
−3
−5

−10

−15

−20

−25

−30

Poor selectivity
Q = 2

Bandwidth B3

Medium
      selectivity

Q = 5

Bandwidth B2

High selectivity
Q = 20

Bandwidth B1

Figure 9-16: Examples of bandpass-filter responses.

Quality factor

According to the foregoing discussion, the choice of values we
make for R, L, and C will specify the overall shape of the
transfer function completely, as well as its center frequency ω0
and bandwidth B.

� The quality factor of a circuit Q is an attribute
commonly used to characterize the degree of selectivity
of the circuit. A high Q circuit has a narrow bandwidth
(relative to the center frequency) and high selectivity. �

Figure 9-16 displays frequency responses for three circuits, all
with the same ω0. The high-Q circuit exhibits a sharp response
with a narrow bandwidth (relative to ω0), the medium-Q circuit
has a broader pattern, and the low-Q circuit has a pattern with
limited selectivity.

For the bandpass-filter response, Q obviously is related to
the ratio ω0/B, but the formal definition of Q applies to any
resonant circuit and is based on energy considerations, namely

Q = 2π

(
Wstor

Wdiss

)∣∣∣∣
ω=ω0

, (9.53)
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where Wstor is the maximum energy that can be stored in the
circuit at resonance (ω = ω0), and Wdiss is the energy dissipated
by the circuit during a single period T . The stored energy is
stored in L and C and the dissipated energy is dissipated in R.
The factor 2π is an artificial multiplier introduced solely so that
the expression for Q (that we will be deriving shortly) is simple
in form and easy to remember.

In the RLC circuit of Fig. 9-15(a), the source is represented
by the phasor voltage Vs. In order to obtain expressions for the
stored and dissipated energies at resonance, we need to (a) go
back to the time domain and (b) specify ω as ω0. For the sake
of convenience and without loss of generality, we will assign
the source the functional form

υs(t) = V0 cos ω0t Vs = V0. (9.54)

At resonance, ω0L = 1/ω0C, so the expressions for the total
impedance of the circuit and the current flowing through it
simplify to

Z = R+jω0L−j/ω0C = R (@ ω0 = 1/
√

LC) (9.55)

and

I = Vs

Z
= Vs

R
= V0

R
. (9.56)

The time-domain current then is given by

i(t) = Re

[
V0

R
ejω0t

]
= V0

R
cos ω0t. (9.57)

At any instant in time, the instantaneous energies stored in the
inductor and the capacitor are given by

wL(t) = 1

2
L i2

L(t) = V 2
0 L

2R2 cos2 ω0t (J) (9.58a)

and

wC(t) = 1

2
C υ2

C(t) = 1

2
C

(
1

C

∫
i dt

)2

= 1

2
C

(
V0

ω0RC
sin ω0t

)2

= V 2
0 L

2R2 sin2 ω0t (J). (9.58b)

Even though both wL and wC vary with time, their sum is
always a constant and equal to the maximum energy stored
in the circuit,

Wstor = wL(t) + wC(t)

= V 2
0 L

2R2 [cos2 ω0t + sin2 ω0t] = V 2
0 L

2R2 . (9.59)

The energy dissipated by R during a single period is obtained
by integrating the expression for the power pR over a period
T = 1/f0 = 2π/ω0 so that

Wdiss =
T∫

0

pR dt

=
T∫

0

i2R dt =
2π/ω0∫

0

V 2
0

R
cos2 ω0t dt = πV 2

0

ω0R
. (9.60)

Upon substituting Eqs. (9.59) and (9.60) into Eq. (9.53), we
obtain the result

Q = ω0L

R
(bandpass filter). (9.61)

Using the relation given by Eq. (9.51), the expression for the
quality factor becomes

Q = ω0

B
(bandpass filter), (9.62)

which is dimensionless. Thus, for a bandpass filter, Q is
the inverse of the bandwidth B normalized to the center
frequency ω0.

To highlight the role of Q, we can use the expressions for Q

and ω0 to rewrite Eqs. (9.46) and (9.47) for the magnitude and
phase angle of HBP(ω) in the forms

MBP(ω) = (ω/Qω0)

{[1 − (ω/ω0)2]2 + (ω/Qω0)2}1/2 (9.63a)

and

φBP(ω) = 90◦ − tan−1
{

(ω/ω0)

Q[1 − (ω/ω0)2]
}

. (9.63b)

Hence, the spectral response of the transfer function is specified
completely by the combination of Q and ω0.

Also, in view of Eq. (9.61), the expressions given by
Eq. (9.50) for the half-power frequencies ωc1 and ωc2 can be
rewritten as

ωc1

ω0
= − 1

2Q
+
√

1 + 1

4Q2 (9.64a)
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Table 9-3: Attributes of series and parallel RLC bandpass circuits.

RLC Circuit
+

_
Vs VR

CL

R
+
_

+

_
Is VRCL R

+
_

Transfer Function H = VR

Vs
H = VR

Is

Resonant Frequency, ω0
1√
LC

1√
LC

Bandwidth, B
R

L

1

RC

Quality Factor, Q
ω0

B
= ω0L

R

ω0

B
= R

ω0L

Lower Half-Power Frequency, ωc1

[
− 1

2Q
+
√

1 + 1

4Q2

]
ω0

[
− 1

2Q
+
√

1 + 1

4Q2

]
ω0

Upper Half-Power Frequency, ωc2

[
1

2Q
+
√

1 + 1

4Q2

]
ω0

[
1

2Q
+
√

1 + 1

4Q2

]
ω0

Notes: (1) The expression for Q of the series RLC circuit is the inverse of that for Q of the parallel circuit.
(2) For Q ≥ 10, ωc1 ≈ ω0 − B

2 , and ωc2 ≈ ω0 + B
2 .

and

ωc2

ω0
= 1

2Q
+
√

1 + 1

4Q2 . (9.64b)

For a circuit with Q > 10, the expressions for ωc1 and ωc2

simplify to

ωc1 ≈ ω0−B

2
, ωc2 ≈ ω0+B

2
, (if Q > 10) (9.65)

thereby forming a symmetrical bandpass centered at ω0. Table
9-3 provides a summary of the salient features of the series
RLC bandpass filter. For comparison, the table also includes
the corresponding list for the parallel RLC circuit.

Example 9-7: Filter Design

(a) Design a series RLC bandpass filter with a center
frequency f0 = 1 MHz (Fig. 9-17) and a quality factor
Q = 20, given that L = 0.1 mH.

3 dB bandwidth
−10 dB

0
−3 dB

MBP [dB]

B

10 dB bandwidth

ω
ωc1

ωc2
ωa ωbω0

ω0 = 2π    106

Figure 9-17: 10 dB bandwidth extends from ωa to ωb,
corresponding to MBP (dB) = −10 dB.

(b) Determine the 10 dB bandwidth of the filter, which is
defined as the bandwidth between frequencies at which
the power level is 10 dB below the peak value.

Solution: (a) Application of

ω0 = 2πf0 = 2π × 106 = 1√
LC

= 1√
10−4C



“book” — 2015/5/4 — 7:20 — page 527 — #28

9-4 PASSIVE FILTERS 527

leads to C = 0.25 nF.
Solving Eq. (9.61) for R gives

R = ω0L

Q
= 2π × 106 × 10−4

20
= 31.4 �.

(b) Voltage is proportional to MBP, and power is proportional
to M2

BP. The definition for power in dB is

P [dB] = 10 log P = 10 log M2
BP = 20 log MBP = MBP [dB].

We seek to find angular frequencies ωa and ωb corresponding
to MBP [dB] = −10 dB (Fig. 9-17). If

20 log MBP = −10 dB,

it follows that

MBP = 10−0.5 = 0.316.

The expression for MBP is given by Eq. (9.46) as

MBP = ωRC√
(1 − ω2LC)2 + ω2R2C2

.

With MBP = 0.316, R = 31.4 �, L = 10−4 H, and
C = 0.25 nF, solution of the expression yields

ωa

ω0
= 0.93 and

ωb

ω0
= 1.08.

The corresponding bandwidth in Hz is

B10 dB = (1.08 − 0.93) × 1 MHz = 0.15 MHz.

Example 9-8: Two-Stage Bandpass Filter

Determine H(ω) = Vo/Vs for the two-stage BP-filter circuit
shown in Fig. 9-18. If Q1 = ω0L/R is the quality factor of a
single stage alone, what is Q2 for the two stages in combination,
given that R = 2 �, L = 10 mH, and C = 1 μF?

Solution: For each stage alone,

ω0 = 1√
LC

= 1√
10−2 × 10−6

= 104 rad/s

and

Q1 = ω0L

R
= 104 × 10−2

2
= 50.

The loop equations for mesh currents I1 and I2 are

−Vs + I1

(
jωL + 1

jωC
+ R

)
− RI2 = 0

(a) Two-stage circuit

(b) M(ω)

R

L C L C

+
_

+
_ I1 RI2Vs Vo

M(ω)

0.707
0.8

0.6

0.4

0.2

1

0 ω (rad/s)

ωc1
 = 9963 rad/s ωc2

 = 10037 rad/s
10200101001000099009800

Figure 9-18: Two-stage RLC circuit of Example 9-8.

and

−RI1 + I2

(
2R + jωL + 1

jωC

)
= 0.

Simultaneous solution of the two equations leads to

H(ω) = Vo

Vs

= ω2R2C2

ω2R2C2 − (1 − ω2LC)2 − j3ωRC(1 − ω2LC)

= ω2R2C2[ω2R2C2 − (1 − ω2LC)2 + j3ωRC(1 − ω2LC)]
[ω2R2C2 − (1 − ω2LC)2]2 + 9ω2R2C2(1 − ω2LC)2 .

Resonance occurs when the imaginary part of H(ω) is zero,
which is satisfied either when ω = 0 (which is a trivial
resonance) or when ω = 1/

√
LC . Hence, the two-stage circuit

has the same resonance frequency as a single-stage circuit.
Using the specified values of R, L, and C, we can calculate

the magnitude M(ω) = |H(ω)| and plot it as a function of ω.
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The result is displayed in Fig. 9-18(b). From the spectral plot,
we have

ωc1 = 9963 rad/s,

ωc2 = 10037 rad/s,

B2 = ωc2 − ωc1 = 10037 − 9963 = 74 rad/s,

and

Q2 = ω0

B2
= 104

74
= 135,

where B2 is the bandwidth of the two-stage BP-filter response.
The two-stage combination increases the quality factor from 50
to 135.

Exercise 9-8: Show that for the parallel RLC circuit
shown in Fig. E9.8, the transfer-impedance transfer
function HZ = VR/Is exhibits a bandpass-filter response.

Figure E9.8

C
+

_
Is VRRL

+
_

Answer:

HZ = VR

Is
= jωL

(1 − ω2LC) + jωL/R
.

The functional form of HZ(ω) is identical to that given by
Eq. (9.45) for the series RLC bandpass filter. Moreover,
both circuits resonate at ω = 1/

√
LC . (See C3 )

9-4.2 Highpass Filter

At low frequencies, the capacitor C in the circuit of Fig. 9-19(a)
acts like an open circuit, so VL across the inductor is essentially
zero. Conversely, at high frequencies, the capacitor acts like
a short circuit and the inductor acts like an open circuit.
Consequently, VL ≈ Vs. This behavior constitutes a highpass
filter.

Transfer function HHP(ω), corresponding to VL in the circuit
of Fig. 9-19(a), is given by

HHP(ω) = VL

Vs
= jωLI

Vs
= −ω2LC

(1 − ω2LC) + jωRC
(9.66)

(a) HHP = VL / Vs

+

_
Vs VL

ICR

L
+
_

(b) Magnitude spectrum

0.1ω0 10ω0

0

ω0
ω

MHP [dB]

10

20

−10

−20

−30

−40

Q = 10
(moderate
  resonance)

slope = 40 dB/decade

Passband

Stopband

Q = 2
(weak resonance)

Bode approximation

Figure 9-19: Plots of MHP [dB] for Q = 2 (weak resonance)
and Q = 10 (moderate resonance).

with magnitude and phase angle

MHP(ω) = ω2LC

[(1 − ω2LC)2 + ω2R2C2]1/2

= (ω/ω0)
2

{[1 − (ω/ω0)2]2 + (ω/Qω0)2}1/2 (9.67a)

and

φHP(ω) = 180◦ − tan−1
[

ωRC

1 − ω2LC

]

= 180◦ − tan−1
{

(ω/ω0)

Q[1 − (ω/ω0)2]
}

, (9.67b)

)
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where ω0 and Q are defined by Eqs. (9.48) and (9.61),
respectively. Figure 9-19(b) displays logarithmic plots of
MHP [dB] for two values of Q. Because MHP(ω) has a quadratic
zero, its slope in the stopband is 40 dB/decade.

Exercise 9-9: How should R be related to L and C so that
the denominator of Eq. (9.66) becomes a simple pole of
order 2? What will the value of Q be in that case?

Answer: R = 2
√

L/C , Q = 1/2. (See C3 )

+

_
+
−~Vs VCC

R L

+
_

I

(a) HLP = VC / Vs

(b) Magnitude spectrum

0.1ω0 10ω0

0

ω0
ω

MLP [dB]

10

20

−10

−20

−30

−40

  Q = 10
(moderate resonance)

slope = −40 dB/decade

Passband

Stopband

Q = 2
(weak resonance)

Bode
approximation

Figure 9-20: RLC lowpass filter.

9-4.3 Lowpass Filter

The voltage across the capacitor in Fig. 9-20(a) generates a
lowpass-filter transfer function given by

HLP(ω) = VC

Vs
= (1/jωC)I

Vs
= 1

(1 − ω2LC) + jωRC
,

(9.68)
with magnitude and phase angle given by

MLP(ω) = 1

[(1 − ω2LC)2 + ω2R2C2]1/2

= 1

{[1 − (ω/ω0)2]2 + (ω/Qω0)2}1/2 , (9.69a)

and

φLP(ω) = − tan−1
(

ωRC

1 − ω2LC

)

= − tan−1
{

(ω/ω0)

Q[1 − (ω/ω0)2]
}

. (9.69b)

The spectral plots of MLP [dB] shown in Fig. 9-20(b) are mirror
images of the highpass filter plots displayed in Fig. 9-19(b).

9-4.4 Bandreject Filter

The output voltage across the combination of L and C in
Fig. 9-21(a) generates a bandreject filter transfer function and
is equal to Vs − VR:

HBR(ω) = VL + VC

Vs
= Vs − VR

Vs
= 1 − HBP(ω), (9.70)

where HBP(ω) is the bandpass filter transfer function given by
Eq. (9.45). The spectral response of HBP passes all frequencies
except for an intermediate band centered at ω0, as shown in
Fig. 9-21(b). The width of the stopband is determined by the
values of ω0 and Q.

Exercise 9-10: Is MBR = 1 − MBP?

Answer:    No,  because  MBR = |HBR| = |1 − HBP| �= 
1 − |HBP| = 1 − MBP. (See                   )

)
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(a) HBR = VLC / Vs

+

_
Vs VLC

I

C

R

L+
_

(b) Spectral response

0.5ω0 2ω0ω0

0.5ω0 2ω0ω0
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MBR [dB]

0

−10

−15

−5
−3

−20

−30

−25
Bandreject

Bandstop for Q = 10

Bandstop for Q = 2

Q = 2
Q = 10

Figure 9-21: Bandreject filter.

9-5 Filter Order

In Section 9-3, we associated the term order with the power
of ω, so a factor given by (1 + jω/ωc)

2 was called a second-
order zero because the highest power of ω in the expression
is 2. Similarly, (1 + jω/ωc)

−2 was called a second-order pole
because the highest power of ω is also 2, but the expression
appears in the denominator. The term order also is used to
describe the overall filter response, which may be composed of
the product of several zero and pole factors—each with its own
order. Multiple, different characterizations have been used over

the years to define the order of a filter, so to avoid ambiguity,
we adopt the following definition.

� The order of a filter is equal to the absolute value of
the highest power of ω in its transfer function when ω is
in the filter’s stopband(s). �

Let us examine this definition for three circuit configurations.

9-5.1 First-Order Lowpass RC Filter

The transfer function of the RC circuit shown in Fig. 9-22(a) is
given by

H1(ω) = VC

Vs
= 1/jωC

R + 1/jωC

= 1

1 + jωRC

= 1

1 + jω/ωc1

(first-order), (9.71)

where we multiplied both the numerator and denominator by
jωC so as to rearrange the expression into the standard form we
discussed in Section 9-3.2. The expression given by Eq. (9.71)
is a simple pole with a corner frequency given by

ωc1 = 1

RC
(RC filter). (9.72)

It is evident from the expression given by Eq. (9.71) that the
highest order of ω is 1, and therefore the RC circuit is a first-
order filter. Strict application of the definition for the order of
a filter requires that we evaluate the power of ω when ω is
in the stopband of the filter. In the present case, the stopband
covers the range ω ≥ ωc1 . When ω is well into the stopband
(ω/ωc1 � 1), Eq. (9.71) simplifies to

H1(ω) ≈ −jωc1

ω
(for ω/ωc1 � 1), (9.73)

which confirms the earlier conclusion that the RC circuit is
first-order.

�A circuit containing a single reactive element (capacitor
or inductor) generates a first-order transfer function.
Generally speaking, the order of a filter depends on the
number of reactive elements contained in the circuit. The
order may be smaller or equal to the number of reactive
elements, but not greater. �
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Figure 9-22: Comparison of magnitude responses of the first-order RC filter and the second-order RLC filter. The corner frequencies are
given by ωc1 = 1/RC and ωc2 = 1.28/RC.

The magnitude of H1(ω) is given by

M1 = |H1(ω)| = 1

|1 + jω/ωc1 |
= 1√

1 + (ω/ωc1)
2
. (9.74)

At ω = ωc1 ,

M1(ωc1) = 1√
1 + 1

= 0.707. (9.75)

When expressed in dB, M1 becomes

M1 [dB] = 20 log M1

= −10 log[1 + (ω/ωc1)
2]

=

⎧⎪⎨
⎪⎩

0 dB @ ω = 0,

−3 dB @ ω/ωc1 = 1,

−20 log(ω/ωc1) @ ω/ωc1 � 1.

(9.76)

On the semilog scale of Fig. 9-22(b), M1 [dB] starts out at
0 dB—corresponding to M1 = 1 in natural units—decreases
to −3 dB at ω = ωc1 , and then its slope accelerates towards a

steady-state value of −20 dB/decade at much greater values
of ω. As noted earlier, the steepness (slope) of the transfer
function after it has transitioned from its passband to its
stopband is called its gain roll-off rate Sg.

� For a first-order filter, Sg = −20 dB/decade. To achieve
a faster rate of decay, second- or higher-order filters are
called for. �

Example 9-9: Filter Transmission Spectrum

An RC lowpass filter uses a capacitor C = 10 μF. (a) Specify
R so that ωc1 = 1 krad/s. (b) The filter is considered acceptably
transparent to a signal if the signal’s voltage amplitude is
reduced by no more than 12 dB as it passes through the filter.
What is the filter’s transmission spectrum according to this
criterion?

Solution: (a) Application of Eq. (9.72) leads to

R = 1

ωc1C
= 1

103 × 10−5
= 100 �.
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(b) If

M1 [dB] = 20 log M1 = −12 dB,

then

log M1 = −12

20
= −0.6

and

M1 = 10−0.6 = 0.25.

Equating this value of M1 to the expression given by Eq. (9.74)
leads to

M1 = 1√
1 + (ω/ωc1)

2
= 0.25,

which yields the solution

ω

ωc1

= 3.87 or ω = 3.87 krad/s.

Hence, the transmission spectrum of the filter extends from 0
to 3.87 krad/s or equivalently from 0 to 616 Hz.

9-5.2 Second-Order Lowpass Filter

For the RLC circuit shown in Fig. 9-22(c), we determined in
Section 9-4.3 that its transfer function is given by Eq. (9.68) as

H2(ω) = VC

Vs
= 1

(1 − ω2LC) + jωRC
(RLC filter).

(9.77)
The magnitude spectrum of the RLC lowpass filter was
presented earlier in Fig. 9-20(b), where it was observed
that the response may exhibit a resonance phenomenon in
the neighborhood of ω0 = 1/

√
LC, and that it decays with

Sg = −40 dB/decade in the stopband (ω ≥ ω0). This is
consistent with the fact that the RLC circuit generates a second-
order lowpass filter when the output voltage is taken across the
capacitor. In terms of our definition for the order of a filter in
the stopband (ω2 � 1/LC), Eq. (9.77) reduces to

H2(ω) ≈ −1

ω2LC
(for ω � ω0), (9.78)

which assumes the form of a second-order pole.
The ripple-like effect exhibited by the RLC filter in Fig. 9-20

can be avoided through a judicious choice of the values of R,

L, and C. By replacing the minus sign in Eq. (9.77) with j2 and
selecting R such that

R = 2

√
L

C
(no-ripple condition), (9.79)

the expression given by Eq. (9.77) can be converted into a
perfect square:

H2(ω) = 1

1 + j2ω2LC + j2
√

LC

= 1

(1 + jω
√

LC)2
(second order). (9.80)

The constraint given by Eq. (9.79) allowed us to convert H2(ω)

from a quadratic pole into a simple pole of second-order. Its
magnitude response is displayed in Fig. 9-22(d).

The corner frequency of the RLC lowpass filter (ωc2 ) is
determined by setting the magnitude of H2(ω) equal to 1/

√
2.

Thus,

|H2(ωc2)| = 1

1 + ω2
c2

LC
= 1√

2
,

which leads to

ωc2 =
{√

2 − 1

LC

}1/2

= 0.64√
LC

. (9.81)

From Eq. (9.79), L = R2C/4. When used in Eq. (9.81), the
expression for ωc2 becomes

ωc2 = 1.28

RC
(RLC filter). (9.82)

The foregoing analysis warrants the following observations:

1. The RC lowpass filter is first-order, its corner frequency
is ωc1 = 1/RC, and its gain roll-off rate is Sg = −20 dB/
decade.

2. By adding a series inductor whose value is specified
by L = R2C/4, the filter becomes second-order, its
corner frequency shifts upward to 1.28/RC, and its slope
becomes twice as steep.
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Technology Brief 23
Spectral and Spatial Filtering

Filtering is applied in electrical systems, sound systems,
optical systems, mechanical systems, and more. It is so
ubiquitous that we often are unaware of the filtering that
occurs in every day life. This Technology Brief provides
an overview of how filters are applied in sight and
photography, and how this affects what we see. There
are two major types of filters in what we see—spectral
filters that control color and spatial filters that control
smoothing and edges.

Spectral Filters

Our eye is, itself, a spectral filter. The colors we can see
range in wavelength from about 750 nm (400 THz, red) to
400 nm (750 THz, violet). Other frequencies, such as the
ultraviolet (UV) and infrared (IR), are not detectable by the
human eye.Thus, our eye is a spectral bandpass filter with
a bandwidth of about 350THz.But we do not see all colors
equally well. Our eye’s frequency response is nonlinear.
Figure TF23-1 shows the relative response of the eye to

1 mm
3 μm

1.4 μm
750 nm

700 nm
600 nm

500 nm
650 nm

400 nm
320 nm

280 nm
200 nm

450 nm
550 nm

Visible light

Infrared

Near Near

A
B

C
Far
(vacuum)

Ultraviolet

Figure TF23-1: Visible, infrared, and ultraviolet parts of the electromagnetic spectrum.

Figure TF23-2: The eyes are a nonlinear bandpass filter.
Greenish yellow provides high visibility in both dim and bright
conditions because of the nonlinear sensitivity of our eyes to this
color. (Credit: Agoora.co.uk.)

different colors of light.The eye is more sensitive to colors
in the yellow-green region than to red and blue colors.This
is why neon-yellow clothing provides high visibility under
both dim and bright conditions (Fig. TF23-2).
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Figure TF23-3: Field of view (spatial filter) for humans, dogs, horses, and birds. (Courtesy of Wordpress.com.)

Our eyes are also a spatial filter. Humans can see
across an angular range of about 180◦, including a narrow
range where we focus and see colors, and a much wider
peripheral field of view where vision is not as clear and
colors are more limited (Fig. TF23-3). The field of view
is controlled mainly by the placement of the eyes on the
head. Some birds have 360◦ fields of view. Some animals
(horses, for instance) do not see directly in front of them,

but have broader fields of view that let them see along
both of their sides and even almost behind them. Prey
animals tend to have larger fields of view than predators,
whose eyes have more focus in front of them.

Tinted lenses and photo editing are spectral filters
that can selectively filter out various parts of the optical
spectrum (Fig. TF23-4), acting as band pass or band
reject filters. Gray tinted lenses are most common,

(c) Rose filter (d) Blue filter

(a) Grey filter (a) Amber filter

Figure TF23-4: Color filters. (Credit: SunglassWarehouse.com and Krista Ward.)
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Normal vision (92%)

Deuteranomaly (2.7%)

Deuteranopia (0.56%)

Protanomaly (0.66%)

Protanopia (0.59%)

Tritanopia (0.016%)

Tritanomaly (0.01%)

Achromatopsia (<0.0001%)

FigureTF23-5: Percentage of people with various types
of color blindness.

because they absorb all colors roughly equally, thus
reducing the overall brightness with minimal change to
the color vision. They act like optical attenuators. Amber
or brown lenses reduce brightness, but they also absorb
(filter out) blue and UV light. The blue hues in an image
often appear to us as hazy or blurry, so absorbing this
range brings out the apparent contrast and sharpnes
in an image, and absorbing UV helps reduce the risk
of cataracts. Yellow lenses, often used in ski goggles,
absorb almost all of the blue light, making the image
appear bright and sharp, but colors are significantly
distorted. Green lenses also absorb the blue range, thus
enhancing contrast and sharpness, and they have the
highest color contrast. Purple and Rose colored lenses
give emphasis to objects outdoors against green and
blue backgrounds, thus raising the contrast in an image,
especially in low light conditions. These images are
often perceived as more beautiful, and seeing the world
“through rose colored glasses” has become synonymous
with optimism.

Color blindness is a natural type of filtering that occurs
when the eyes are less sensitive to color. Figure TF23-5
shows color filtering and the incidence of different types
of color blindness in people.

Spatial Filters

When we use a camera to record a digital image, we want
that image to reflect what we see in real life. Or do we?

(a) Lowpass filtering is a smoothing
(averaging) operation

(b) Edge detection is highlighted by high-frequency
spatial filtering

Figure TF23-6: (a) Lowpass filters remove small
imperfections and (b) highpass filters accentuate edges.

PhotoshopTM and other photo editing tools allow us to
control just how “real” our photos appear. One common
spatial filter applied to images after the fact is a smoothing
filter.This allows us to remove blemishes from the skin by
smoothing or averaging the skin tones as in Fig. TF23-6.
Smoothing (or blurring) is, effectively, a spatial lowpass
filter. By contrast, a highpass filter emphasizes the outline
and provides edge detection. It makes things less blurry.
Things that change suddenly (edges) represent the high-
frequency spatial content in an image.
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9-5.3 RLC Bandpass Filter

We just concluded that the RLC lowpass filter is second-order.
The RLC circuit also behaves like a bandpass filter when the
output voltage is taken across R instead of C. Does it then
follow that the RLC bandpass filter is second-order?

To answer the question, we start by examining the expression
for the transfer function when ω is in the stopbands of the filter.
The expression for HBP(ω) is given by Eq. (9.45) as

HBP(ω) = jωRC

1 − ω2LC + jωRC
, (9.83)

and the spectral plot of its magnitude is shown in
Fig. 9-15(b). For ω � ω0 and ω � ω0 (where ω0 = 1/

√
LC),

the expression simplifies to

HBP(ω) ≈

⎧⎪⎨
⎪⎩

jωRC   (for ω � ω0 and ω � 1/RC),

−jR

ωL
(for ω � ω0).

(9.84)

At the low-frequency end, HBP(ω) reduces to a first-order zero
@ origin, and at the high-frequency end, it reduces to a first-
order pole @ origin.

� Hence, the RLC bandpass filter is first-order, not
second-order. �

Concept Question 9-12: How does Sg of a third-order
filter compare with that of a first-order filter? (See         )

Concept Question 9-13: When is a series RLC circuit a
first-order circuit, and when is it a second-order circuit?
(See         )

Exercise 9-11: What is the order of the two-stage
bandpass filter circuit shown in Fig. 9-18(a)?

Answer: Second-order. (See )

Exercise 9-12: Determine the order of

H(ω) = Vout/Vs

for the circuit in Fig. E9.12.

Figure E9.12

+

_
Vs VoutR

+
_ L

CC

Answer:

H(ω) = jω3RLC2

ω2LC − (1 − ω2LC)(1 + jωRC)
,

which describes a highpass filter. In the stopband (very 
small values of ω), H(ω) varies as ω3. Hence, it is third-
order. (See                   )

9-6 Active Filters

The four basic types of filters we examined in earlier sections
(lowpass, highpass, bandpass, and bandreject) are all relatively
easy to design, but they do have a number of drawbacks. Passive
elements cannot generate energy, so the power gain of a passive
filter cannot exceed 1. Active filters (by comparison) can be
designed to provide significant gain in addition to realizing
the specified filter performance. The “active” part of the name
refers to the fact that op amps require external dc sources to
operate. A second drawback of passive filters has to do with
inductors. Whereas capacitors and resistors can be fabricated
easily in planar form on machine-assembled printed circuit
boards, inductors generally are more expensive to fabricate and
more difficult to integrate into the rest of the circuit, because
they are bulky and three-dimensional in shape. In contrast, op-
amp circuits can be designed to function as filters without the
use of inductors. The intended operating-frequency range is
an important determining factor with regard to what type of
filter is best to design and use. Except for a few specially
designed op-amp models, most op amps do not perform reliably
at frequencies above 1 MHz, so their use as filters is limited
to lower frequencies. Fortunately, inductor size becomes less
of a problem above 1 MHz (because ZL = jωL necessitating
a smaller value for L, and consequently a physically smaller
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(a) Inverting amplifier

(b) Phasor domain with impedances
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Figure 9-23: Inverting amplifier functioning like a lowpass
filter.

inductor), so passive filters are the predominant type used at
the higher frequencies.

One of the major assets of op-amp circuits is that they easily
can be cascaded together (both in series and in parallel) to
realize the intended function. Moreover, by inserting buffer
circuits (see Section 4-7) between successive stages, impedance
mismatch and loading problems can be minimized or avoided
altogether.

9-6.1 Single-Pole Lowpass Filter

Consider the circuit shown in Fig. 9-23(a), which essentially is
a replica of the inverting amplifier circuit of Fig. 4-11(a) and
for which the input and output voltages are related by

υout = −Rf

Rs
υs. (9.85)

Let us now transform the circuit into the phasor domain and
generalize it by replacing resistors Rs and Rf with impedances

Zs and Zf , respectively, as shown in Fig. 9-23(b). Further, let
us retain Zs as Rs, but specify Zf as the parallel combination
of a resistor Rf and a capacitor Cf . By analogy with Eq. (9.85),
the equivalent phasor relationship for the circuit in Fig. 9-23(b)
is

Vout = −Zf

Zs
Vs, (9.86)

with

Zs = Rs (9.87a)

and

Zf = Rf ‖
(

1

jωCf

)
= Rf

1 + jωRfCf
. (9.87b)

The transfer function of the circuit, which we soon will
recognize as that of a lowpass filter, is given by

HLP(ω) = Vout

Vs
= −Zf

Zs
= −Rf

Rs

(
1

1 + jωRfCf

)

= GLP

(
1

1 + jω/ωLP

)
, (9.88)

where

GLP = −Rf

Rs
and ωLP = 1

RfCf
. (9.89)

The expression for GLP is the same as that of the original
inverting amplifier, and ωLP is the cutoff frequency of the
lowpass filter. Except for the gain factor, the expression given by
Eq. (9.88) is identical in form to Eq. (9.71), which is the transfer
function of the RC lowpass filter. A decided advantage of the
active lowpass filter over its passive counterpart is that ωLP is
independent of both the input resistance Rs and any nonzero
load resistance RL that may be connected across the op amp’s
output terminals.

9-6.2 Single-Pole Highpass Filter

If in the inverting amplifier circuit we were to specify the input
and feedback impedances as

Zs = Rs − j

ωCs
and Zf = Rf , (9.90)

as shown in Fig. 9-24, we would obtain the highpass-filter
transfer function given by

HHP(ω) = Vout

Vs
= −Zf

Zs
= − Rf

Rs − j/ωCs

= GHP

[
jω/ωHP

1 + jω/ωHP

]
, (9.91)
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Figure 9-24: Single-pole active highpass filter.

where

GHP = −Rf

Rs
and ωHP = 1

RsCs
. (9.92)

The expression given by Eq. (9.91) represents a first-order
highpass filter with a cutoff frequency ωHP and a gain
factor GHP.

Concept Question 9-14: What are the major advantages
of active filters over their passive counterparts?
(See         )

Concept Question 9-15:Are active filters used mostly at
frequencies below 1 MHz or above 1 MHz? (See         )

Exercise 9-13: Choose values for Rs and Rf in the circuit
of Fig. 9-23(b) so that the gain magnitude is 10 and the
corner frequency is 103 rad/s given that Cf = 1 μF. 

Answer: Rs = 100 �, Rf = 1 k�. (See                   )

9-7 Cascaded Active Filters

The active lowpass and highpass filters we examined thus
far—as well as other op-amp configurations that provide
these functions—can be regarded as basic building blocks that
easily can be cascaded together to create second- or higher-
order lowpass and highpass filters or to design bandpass and
bandreject filters (Fig. 9-25).

� The cascading approach allows the designer to work
with each stage separately and then combine all of the
stages together to achieve the desired specifications. �

Moreover, inverting or noninverting amplifier stages can be
added to the filter cascade to adjust the gain or polarity of the
output signal, and buffer circuits can be inserted in between
stages to provide impedance isolation, if necessary.

� Throughout the multistage process, it is prudent to
compare the positive and negative peak values of the
voltage at the output of every stage with the op amp’s
power-supply voltages VCC and −VCC to make sure that
the op amp will not go into saturation mode. �

Example 9-10: Third-Order Lowpass Filter

For the three-stage active filter shown in Fig. 9-26, generate
dB plots for M1, M2, and M3, where M1 = |V1/Vs|,
M2 = |V2/Vs|, and M3 = |V3/Vs|.
Solution: Since all three stages have the same values for Rf
and Cf , they have the same cutoff frequency give by

ωLP = 1

RfCf
= 1

104 × 10−9 = 105 rad/s.

The input resistance of the first stage is 10 �, but the input
resistances of the second and third stages are 10 k�. Hence,

G1 = −10k

10
= −103 and G2 = G3 = −10k

10k
= −1.

Transfer function M1 therefore is given by

M1 =
∣∣∣∣V1

Vs

∣∣∣∣ =
∣∣∣∣ G1

1 + jω/ωLP

∣∣∣∣ = 103√
1 + (ω/105)2

and

M1 [dB] = 20 log

[
103√

1 + (ω/105)2

]

= 60 dB − 10 log[1 + (ω/105)2].

The transfer function corresponding to V2 is

M2 =
∣∣∣∣V2

V1
· V1

Vs

∣∣∣∣ =
∣∣∣∣ G1

1 + jω/ωLP

∣∣∣∣
∣∣∣∣ G2

1 + jω/ωLP

∣∣∣∣
= 103

1 + (ω/105)2
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(a) Bandpass filter (note that ωLP > ωHP) (b) Bandreject filter

Bandpass Filter Bandreject Filter

Bandstop

LP filter HP filterHP filter

M

ω
ωLP ωHP

Vs Vout

LP filter
with ωLP

HP filter 
with ωHP

Summing
amplifier

Bandpass

LP filter

M

ω
ωHP ωLP

Vs Vout
LP filter
with ωLP

HP filter
with ωHP

Figure 9-25: (a) In-series cascade of a lowpass and a highpass filter generates a bandpass filter; (b) in-parallel cascading generates a
bandreject filter.

and

M2 [dB] = 20 log

[
103

1 + (ω/105)2

]

= 60 dB − 20 log[1 + (ω/105)2].

Similarly,

M3 [dB] = 60 dB − 30 log[1 + (ω/105)2].

The three-stage process is shown in Fig. 9-26(b) in block-
diagram form, and spectral plots of M1 [dB], M2 [dB], and
M3 [dB] are displayed in Fig. 9-26(c). We note that the gain
roll-off rate Sg is −20 dB for M1 [dB], −40 dB for M2 [dB],
and −60 dB for M3 [dB]. We also note that the −3 dB corner
frequencies are not the same for the three stages.

Concept Question 9-16: Why is it more practical to 
cascade multiple stages of active filters than to cascade 
multiple stages of passive filters? (See         )

Concept Question 9-17: What determines the gain
factors of the highpass and lowpass op-amp filters?
(See         )

Exercise 9-14: What are the values of the corner
frequencies associated with M1, M2, and M3 of Example
9-10?

Answer:  ωc1 = 105 rad/s, ωc2 = 0.64ωc1 = 6.4 × 104 

rad/s, ωc3 = 0.51ωc1 = 5.1 × 104 rad/s. (See                  )

Analogy to AND and OR gates

An AND logic gate has two inputs (whose logic states can each
be either 0 or 1) and one output. Its output state is 1 if and only
if both input states are 1. Otherwise, its output state is zero.
Hence, the output of an AND gate is equal to the product of
its input states. The cascaded bandpass filter diagrammed in
Fig. 9-25(a) is analogous to an AND gate. The filter consists of
an idealized lowpass filter with cutoff frequency ωLP connected
in series with an idealized highpass filter with cutoff frequency
ωHP. The frequency of the input signal has to be in the passband
of both filters in order for the signal to make it to the output. The
filter passband is defined by the bandwidth extending from ωHP
to ωLP, as illustrated in Fig. 9-25(a). The combination of the
two filters when cascaded in series is equivalent to anAND gate,
because the final output is proportional to the product of their
transfer functions, HLPHHP. The process is illustrated through
Example 9-11.
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(b) Block diagram

(c) Transfer function plots

(a) Circuit diagram
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Figure 9-26: Three-stage lowpass filter and corresponding transfer functions.

In contrast, the bandreject filter (Fig. 9-25(b)) is analogous
to an OR gate, for which the state of its output is 1 if either one
or both of its inputs has a state of 1. The cascade configuration
of the bandreject filter consists of a lowpass filter connected in

parallel with a highpass filter—thereby offering the input signal
to pass through either or both of them—and then their outputs
are added by a summing amplifier. Example 9-12 provides more
details.
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(a) Two-stage bandpass filter (b) M [dB]
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Figure 9-27: Active bandpass filter of Example 9-11.

Example 9-11: Bandpass Filter

The block diagram shown in Fig. 9-27(a) is a two-stage
bandpass filter with the following elements: Rs1 = 1 k�,
Rf1 = 10 k�, Cf1 = 9 nF, Rs2 = 12 k�, Cs2 = 9 nF, and
Rf2 = 96 k�. Determine and plot the magnitude of the transfer
function and obtain the values of ω0, ωc1 , ωc2 , B, and Q.

Solution: The first stage is a lowpass filter with a transfer
function given by Eq. (9.88) as

HLP(ω) = GLP

(
1

1 + jω/ωLP

)

with

GLP = −Rf1

Rs1

= −104

103 = −10

and

ωLP = 1

Rf1Cf1

= 1

104 × 9 × 10−9 = 11.11 krad/s.

The transfer function of the highpass filter in the second stage
is characterized by Eq. (9.91) as

HHP(ω) = GHP

(
jω/ωHP

1 + jω/ωHP

)

with

GHP = −Rf2

Rs2

= −96 × 103

12 × 103 = −8

and

ωHP = 1

Rs2Cs2

= 1

12 × 103 × 9 × 10−9 = 9.26 krad/s.

The combined transfer function is then given by

H(ω) = HLPHHP

= G1G2

[
jω/ωHP

(1 + jω/ωLP)(1 + jω/ωHP)

]
, (9.93)

and its magnitude is

M = |H(ω)|

=
∣∣∣∣ 80ω/(9.26 × 103)

[1 + jω/(11.11 × 103)][1 + jω/(9.26 × 103)]
∣∣∣∣

= 80ω/(9.26 × 103)

{[1 + (ω/11.11 × 103)2][1 + (ω/9.26 × 103)2]}1/2 .

(9.94)

The angular frequency ω0 of a bandpass filter is defined as
the frequency at which the transfer function is a maximum.
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For a high-Q filter, ω0 is approximately midway between the
lower and upper cutoff frequencies ωc1 and ωc2 , but ω0 may
be significantly closer to ω1 or ω2 if Q is not very large. We
do not yet know the value of Q for the present filter, but we
can generate an approximate estimate from knowledge of the
values of ωLP and ωHP. The estimated bandwidth is

B (est) = ωLP − ωHP = (11.11 − 9.26)k = 1.85 krad/s,

and if we assume that ω0 is midway between ωHP and ωLP, then

ω0 (est) =
(

9.26 + 1.85

2

)
k = 10.185 krad/s

and

Q (est) = ω0 (est)

B (est)
= 10.185

1.85
= 5.5.

Since Q is not greater than 10, the estimated values of B, ω0,
and Q are not likely to be very accurate, so we should return to
the expression for M given by Eq. (9.94) and use it to determine
the exact values of ω0, ωc1 , and ωc2 . We can do so by calculating
(or plotting) M as a function of ω to identify: (a) M0 and ω0,
the maximum value of M(ω) and the corresponding value of ω

at which it occurs, respectively, and (b) ωc1 and ωc2 , the corner
frequencies at which M = M0/

√
2 (or −3 dB below the peak

on a dB scale). According to the spectral plot of M [dB] shown
in Fig. 9-27(b),

M0 [dB] = 32.8 dB, ω0 (exact) = 10.14 krad/s,

ωc1 = 4.19 krad/s, and ωc2 = 24.56 krad/s.

Hence,

B (exact) = ωc2 − ωc1 = 20.37 krad/s

and

Q (exact) = ω0

B
= 10.14

20.37
≈ 0.51.

The obvious conclusion is that our estimated values for B and Q

are way off in comparison with their exact counterparts. We
assumed that the corner frequencies ωLP and ωHP associated
with functions HLP and HHP, respectively, are good estimates
of the corner frequencies ωc1 and ωc2 of the product of the two
functions. That was obviously a poor assumption.

Example 9-12: Bandreject Filter

Design a bandreject filter with the specifications: (a)
Gain = −50, (b) bandstop extends from 20 kHz to 40 kHz, and

(c) gain roll-off rate = −40 dB/decade along both boundaries
of the bandstop.

Solution: The specified roll-off rate requires cascading two
identical lowpass filters and two identical highpass filters.
To minimize performance variations among identical pairs,
identical resistors will be used in all four units (Fig. 9-28(b)),
which means that they all will have unity gain. The overall gain
of −50 will be provided by the summing amplifier.

Somewhat arbitrarily, we select R = 1 k�, and the value
of Rf is specified by the gain of the summing amplifier as

G = −50 = −Rf

R
Rf = 50 k�.

The transfer function of the bandreject filter is given by

H(ω) = G[H2
LP + H2

HP]

= −50

[(
1

1 + jωRCLP

)2

+
(

jωRCHP

1 + jωRCHP

)2
]

.

Next, we need to specify values for CLP and CHP. As an
approximation, we assume that over the passband of the lowpass
filters, the highpass filters exercise minimal impact, and vice
versa. This allows us to deal with the transfer functions of the
lowpass and highpass filters separately. The magnitude of the
transfer function of the two cascaded lowpass filters is

MLP = |H2
LP| =

∣∣∣∣∣
(

1

1 + jωRCLP

)2
∣∣∣∣∣ = 1

1 + ω2R2C2
LP

.

The specifications call for a lower corner frequency of 20 kHz
or, equivalently, ω1 = 2π × 2 × 104 = 4π × 104 rad/s. Setting
MLP = 1/

√
2 , R = 1 k�, and ω = ω1 leads to

CLP ≈ 5 nF.

A similar analysis for the highpass filter chain with f2 = 40
kHz (or ω2 = 8π × 104 rad/s) leads to

ω2R2C2
HP

1 + ω2R2C2
HP

= 1√
2

∣∣∣∣
at ω=ω2

,

which provides the solution

CHP ≈ 6 nF.

The spectrum of M [dB] = 20 log |H| is displayed   in 
Fig. 9-28(c).
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Exercise 9-15:The bandreject filter of Example 9-12 uses
two lowpass-filter stages and two highpass-filter stages.
If three stages of each were used instead, what would the
expression for H(ω) be in that case?

Answer:
H(ω) = 50

[(
1

1 + jω/4π × 104

)3

+
(

jω/8π × 104

1 + jω/8π × 104

)3
]

.

(See )
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Technology Brief 24
Electrical Engineering and the
Audiophile
The reproduction of high-quality music with sufficient
fidelity to sound like a live performance in one’s living room
was one of the technological hallmarks of the 20th century.
In these days of iPods and online music distribution,
good music is increasingly accessible to many people.
The price of good quality tuners, amplifiers, and speakers
continues to drop, and driven mostly by demand for home
entertainment audio/video systems, audio equipment is
increasingly “user-friendly.” The reproduction of theater-
quality or live-performance sound in a confined space is
challenging enough to be a profession unto itself. It also
can be a very rewarding technical hobby for the well-
versed electrical engineer. In this Technology Brief, we
will cover some of the basics of audio equipment and
relate them directly to the concepts taught in this book.
Several good audiophile websites exist with more in-depth
treatments of these (and other) topics; beyond the audio-
phile community, the sub-field of audio engineering has an
extensive academic and professional literature to consult.

The Basics

Reproduced sound starts out as an analog (e.g., the vinyl
record) or digital (e.g., the mp3 file) recording. How that

Figure TF24-1: Schematic of a basic audio-reproduction system.

recording is made from real sound with high fidelity is
beyond the scope of this Brief (and is a large component
of the audio engineering profession). That recording is
converted into an electrical signal that is first amplified and
then transmitted via cables to speakers. Figure TF24-1
shows a schematic of the process.

The audible spectrum of the human ear extends from
about 20 Hz to 20 kHz, although the frequency response
may vary among different individuals depending on age
and other factors. An audio signal is a superposition of
many sinusoids oscillating at different frequencies—each
with its own individual amplitude. When we say a sound
has a lot of bass, for example, we mean that the low-
frequency segment of its spectrum (20 to 100 Hz) has
a large amplitude when compared with higher-frequency
components. Conversely, very shrill or high-pitched
sounds have large-amplitude components in the high-
frequency range (10 kHz to 20 kHz). When converting
an electrical recording back into the original sound that
generated it in the first place, the reproduction fidelity is
determined by the degree of distortion that the spectrum
undergoes during the playback process. In practice,
minimizing spectral distortion can be quite a challenge!

Each component of the sound-reproduction system
shown in Fig. TF24-1 is characterized by its own transfer
function relating its output to its input, and since each
of these components is equivalent to a circuit composed
of resistive and reactive elements, its transfer function
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is bound to exhibit a non-uniform spectral response. The
amplifier, for example, may act like a filter, favoring parts
of the audible spectrum over others. The cables, which
behave (electrically) like the RC transmission line of
Fig. 7-35, will favor low-frequency spectral components
over high-frequency components. Thus, unless the
components of an audio-reproduction system are well
designed in order to generate a transfer function with a
nearly flat spectral response over the audible range, the
reproduced sound will exhibit a distorted spectrum when
compared with the original spectrum. While there are
many objective metrics by which to judge the fidelity of au-
dio equipment, every listener processes a given sound dif-
ferently, introducing a subjective component into the expe-
rience. A great way to appreciate the concepts introduced
in this Technology Brief is to walk into a high-end audio-
systems store with three favorite CDs and then to listen to
them on many different amplifier-speaker combinations.

Amplifiers

It takes quite a bit of power to drive speakers to produce
sound in a room.The function of an amplifier is to boost the
audio signal’s power high enough to drive the speakers.
In doing so, the amplifier must:

• keep frequency distortion to a minimum, and

• introduce as little noise as possible into the signal.

In order to keep frequency distortion to a minimum, the
amplifier’s response must be as uniform as possible; in
other words, signals of different frequencies and different
amplitudes must be amplified with exactly the same gain.
To address this, many different transistor–amplifier topolo-
gies have been developed over the years. These ampli-
fiers are grouped into classes based on behavior and
topology; the principal differences lie in circuit complexity,
power consumption, and the degree of fidelity with which
the circuit reproduces an input signal. Audio-amplifier
circuit topologies are categorized by letter—currently from
A to G. Although a description of each class lies beyond
the scope of this discussion, very succinct overviews can
be found in many places online. In order to reduce the
noise during the amplification step, two-amp stages often
are used. The first stage is called the pre-amplifier. Pre-
amps have very good noise characteristics and amplify
the signal partway (this mid-level signal is called the line
signal).Often, this is simply an amplification of the voltage
level. The power amp then boosts this signal (which does
not have much noise) to a level high enough to drive

speakers; this usually requires significant current amplifi-
cation to provide enough overall power to the speakers.

Cables

The cables that transfer a signal between sources,
amplifiers, crossovers, and speakers can themselves
distort the signal. Cables behave exactly like the
transmission line of Fig. 7-35; the distributed resistance
and capacitance act like a filter with an associated
frequency response. In general, cables should be:

• as short as possible,

• properly impedance-matched to both the output of
the amplifier and the input of the speakers, and

• properly terminated so the cable connections to the
equipment do not introduce capacitances.

All three of these objectives easily are accomplished
using industry-standard cables and connectors. In some
modern systems, transmission of audio signals between
non-speaker components (e.g., from a tuner to an amp or
from an amp to a TV) is often performed in digital form so
as to eliminate both noise issues and frequency distortion.

Speakers

A speaker is any electro-mechanical device or
transducer that converts an electrical signal into sound.
Electromagnetic transducers are the most commonly
used type for consumer audio applications (Fig. TF24-2),

+

_
υin

iin

Zin
Motion

Wire coil

Magnet

Mechanical
suspension (spider)

Cone

FigureTF24-2: Conceptual illustration of an electromag-
netic speaker transducer. The current from the amplifier
runs through a coil that induces an electromagnetic force
on the cone in proportion to the amplitude of the input
signal. The cone motion produces pressure waves and,
hence, sound.
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Figure TF24-3: Electrostatic speakers consist of a very
thin (∼ 20 μm) polymer membrane, called a diaphragm,
which is coated with a conductor. This membrane
is suspended between two perforated electrodes. The
diaphragm is held at a dc potential of several kV. The
voltage between the electrodes and the diaphragm is
driven by the amplified audio signal so as to displace
the diaphragm and move air (which produces sound). The
principle behind actuation is very similar to that discussed
in Technology Brief 10: Micromechanical Sensors and
Actuators. Most electrostatic speakers have poor base
response, so they are usually paired with subwoofers (like
the one shown here). (Image courtesy of MartinLogan,
Ltd.)

although several other technologies, such as electrostatic
speakers (Fig.TF24-3), exist as well.The principal metric
when choosing a speaker is arguably its frequency
response (Fig. TF24-4). Ideally, a speaker will provide a
very flat response. This means that signals at different
frequencies recreated into sound all at the same audio
level. Generally speaking, very small speakers have
difficulty reproducing very low frequencies (i.e., bass); a
deep drum or baseline may be lost entirely when listening
through a small speaker.

Speaker frequency response

Figure TF24-4: Frequency response of a good
consumer-quality speaker consisting of a tweeter and
woofer.

The most common method for obtaining a nice
flat frequency response is to drive several speakers
together—each with a different but complementary
frequency response. When listened to as a group,
the frequency response is close to flat. For example,
tweeters are small speakers intended for reproducing
high-frequency sound, while woofers only reproduce
the lowest frequencies. A common entry-level speaker
consists of a tweeter, a mid-range speaker, and a woofer
all housed together. With appropriate crossover circuits
the ensemble can exhibit a good response.

Crossover circuits

As we noted earlier, most speakers cannot handle the
entire range of frequencies in the audio range. In order
to split the signal for use by the different speakers (such
as a tweeter, a mid-range speaker, and a sub-woofer),
passive filters are used. The signal is applied to a set of
filters that produce three outputs:one output contains only
low frequencies in some range, a second contains mid-
range frequencies and a third output contains only high-
frequency harmonics. In this way, each speaker receives
a dedicated signal that contains only the frequencies it
can reproduce properly. Designing crossovers can be an
involved process that takes into account many variables,
including the amount of current in the input signal,
the input impedances of all of the speakers, and the
frequency range of each speaker. Without careful design,
the crossover circuit can provide too much signal power
to one speaker and too little to another, thereby distorting
the overall frequency response heard by the listener.
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(a) AM

Amplitude modulated waveform

AM
Signal υs(t)

Carrier υc  = A cos 2πfct

Carrier υc  = A cos 2πfct

υam(t) = A(t) cos 2πfct,
with:  A(t) = a0 + υs(t)

  fc = constant

(b) FM

Frequency modulated waveform

FM
Signal υs(t)

υfm(t) = A cos 2πfct,
with:  fc = f0 + b0 υs(t)

A = constant

Figure 9-29: Overview of AM and FM.

9-8 Application Note: Modulation and
the Superheterodyne Receiver

9-8.1 Modulation

In the language of electronic communication, the term signal
refers to the information to be communicated between two dif-
ferent locations or between two different circuits, and the term

carrier refers to the sinusoidal waveform that carries the
information. The latter is of the form

υc(t) = A cos 2πfct, (9.95)

where A is its amplitude and fc is its carrier frequency.
The sinusoid can be used to carry information by modulating
(varying) its amplitude—in which case A becomes A(t)—while
keeping fc constant. In the example shown in Fig. 9-29(a),
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Figure 9-30: Block diagram of superheterodyne receiver.

multiplication of the signal waveform by the sinusoidal
carrier generates an amplitude-modulated (AM) carrier whose
envelope is identical to the signal waveform. Alternatively, we
can apply frequency modulation (FM) by keeping A constant
and varying fc in a fashion that mimics the variation of the
signal waveform, as illustrated by Fig. 9-29(b). FM usually
requires more bandwidth than AM, but it is also more immune
to noise and interference, thereby delivering a higher-quality
sound than AM. Many other types of modulation techniques
also are available, including phase modulation (changing the
phase of the carrier) and pulse-code modulation.

9-8.2 The Superheterodyne Receiver

Let us assume the signal υs(t) in Fig. 9-29(a) is an audio signal
and the carrier frequency fc = 1 MHz. Let us also assume
that the signal was used to generate an amplitude-modulated
waveform, which was then fed into a transmit antenna. After
propagating through the air along many different directions
(as dictated by the antenna radiation pattern), part of the AM
waveform was intercepted by a receive antenna connected to
an AM receiver. Prior to 1918, the receiver would have been
a tuned-radio frequency receiver or a regenerative receiver,
both of which suffered from poor frequency selectivity and

low immunity to noise. In either case, the receiver would
have demodulated the AM signal by suppressing the carrier
and preserving the envelope, thereby retrieving the original
signal υs(t) (or more realistically, some distorted version
of υs(t)). To overcome the shortcomings of such receivers,
Edwin Armstrong introduced the heterodyne receiver in 1918
by proposing the addition of a receiver stage to convert
the carrier frequency of the AM signal fc to a fixed lower
frequency (now called the intermediate frequency fIF) before
detection (demodulation). [Armstrong also invented frequency
modulation in 1935.] The superheterodyne concept proved
to be one of the foundational enablers of 20th-century radio
transmission. It is still in use in most AM and FM analog
receivers, although it slowly is getting supplanted by digital
techniques (Section 9-8.4).

Figure 9-30 shows a basic block diagram of a superhetero-
dyne receiver. The tuner is a bandpass filter whose center
frequency can be adjusted to allow the intended signal at
fc = 1 MHz (for example) to pass through, while rejecting
signals at other carrier frequencies. After amplification by the
radio-frequency (RF) amplifier, the AM signal either can be
demodulated directly (which is what receivers did prior to 1918)
or it can be converted into an IF signal by mixing (multiplying)
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it with another locally generated sinusoidal signal provided by
a local oscillator. As will be explained in Section 9-8.3, the
mixer is a device that multiplies the two signals available at its
input and generates an output signal whose frequency is

fIF = fLO − fc, (9.96)

where fLO is the local-oscillator frequency. The frequency
conversion given by Eq. (9.96) assumes that fLO ≥ fc;
otherwise, fIF = fc − fLO if fLO < fc. It is important to note
that frequency conversion changes the carrier frequency of the
AM waveform from fc to fIF, but the audio signal υs(t) remains
unchanged; it merely is getting carried by a different carrier
frequency.

The diagram in Fig. 9-30 indicates that the tuning knob
controls the center of the adjustable tuner as well as the local
oscillator frequency. By synchronizing these two frequencies to
each other, the IF frequency remains always a constant. This is
an important feature of the superheterodyne receiver, because it
insures that the same IF filter/amplifier can be used to provide
high-selectivity filtering and high-gain amplification, regardless
of the carrier frequency of theAM signal. In the AM radio band,
the carrier frequency of the audio signals transmitted by an AM
radio station may be at any frequency between 530 and 1610
kHz. Because of the built-in synchronization between the tuner
and the local oscillator, the IF frequency of an AM receiver
is always at 455 kHz, which is the standard IF for AM radio.
Similarly, the standard IF for FM radio is 10 MHz, and the
standard IF for television is 45 MHz.

It is impractical to design and manufacture high-performance
components at every frequency in the radio spectrum. By
designating certain frequencies as IF standards, industry was
able to develop devices and systems that operate with very high
performance at those frequencies. Consequently, frequency
conversion to an IF band is very prevalent not only in radio and
TV receivers but also in radar sensors, satellite communication
systems and transponders, among others.

9-8.3 Frequency Conversion

Regardless of the specific type of modulation used in a modern
communication system, it will employ one or more steps of
frequency conversion, whereby the carrier frequency is changed
from an initial frequency f1 to a new frequency f2. If f2
is higher than f1, it is called up-conversion, and the reverse
is called down-conversion. In the AM example of Fig. 9-30,
f1 = fc = 1 MHz and f2 = fIF = 455 kHz. To explain how

the conversion takes place, consider the general case of two
signals given by

υin(t) = A(t) cos 2πfct (9.97a)

and

υLO(t) = ALO cos 2πfLOt, (9.97b)

where A(t) represents the amplitude of the audio signal
waveform, υs(t) (Fig. 9-29(a)), and ALO is a constant amplitude
associated with the local oscillator (LO) signal.

A mixer is a diode circuit that has two inputs and one output
with its output voltage υout(t) being equal to the product of its
input voltages:

υout(t) = υin(t) × υLO(t) = A(t) ALO cos 2πfct cos 2πfLOt.

(9.98)
Application of the trigonometric identity

cos x cos y = 1
2 [cos(x + y) + cos(x − y)] (9.99)

leads to

υout(t) = A(t) ALO

2
cos[2π(fc + fLO)t]

+ A(t) ALO

2
cos[2π(fLO − fc)t]. (9.100)

Let us consider the case where fc = 1 MHz and fLO = 1.445
MHz. The expression for υout(t) becomes

υout(t) = A′(t) cos 2πfst + A′(t) cos 2πfdt, (9.101)

where

A′(t) = A(t) ALO

2
, (9.102)

and fs and fd are the sum and difference frequencies:

fs = fc + fLO = 2.445 MHz (9.103a)

and

fd = fLO − fc = 0.445 MHz. (9.103b)

Thus, υout(t) consists of two signal components with markedly
different carrier frequencies. By selecting a narrow IF filter/
amplifier in Fig. 9-30 with a center frequency fIF = fd, only the
difference-frequency component of υout(t) will make it through
the filter. Consequently, its output is given by

υIF(t) = gIF A′(t) cos 2πfIFt,
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where gIF is the voltage gain factor of the IF filter/amplifier.
Demodulation, which is a low-frequency filtering process,
removes the IF carrier, leaving behind a detected signal given
by

υd(t) = gdgIF A′(t),

where gd is a demodulator constant. Since A′(t) is directly
proportional to the original audio signal υs(t), υd(t) becomes
(ideally) a replica of υs(t).

9-8.4 Software Radio

The steady increase in the speed of digital circuits has made it
possible to perform all of the functions of a superheterodyne
receiver directly in the digital domain. Some implementations
consist of little more than an antenna connected to the input pin
of a digital chip. The chip converts the input signal into digital
format and then performs all of the mixing, filtering, amplifying,
and demodulating functions by direct computation. This digital
approach, first proposed in the 1980s, is sometimes called
software radio. In practice, analog-to-digital converters do
not usually have the specifications required to directly sample
signals coming from an antenna, and low-noise amplifiers are
needed at the front end of the digital system.Additionally, many
software radio implementations still use mixers at the front end,
and simply digitize the signal coming out of the mixer.

Concept Question 9-18: What are the advantages of FM
over AM? (See         )

Concept Question 9-19: What is the fundamental 
contribution of the superheterodyne receiver, and why is 
it significant? (See         )

Concept Question 9-20: What does a mixer do?
(See         )

9-9 Spectral Response with Multisim

The AC Analysis and Parameter Sweep tools are very
useful when analyzing the frequency response of a circuit. The
Network Analyzer, first introduced in Chapter 8, also provides

Figure 9-31: A series RLC filter implemented in Multisim.

a convenient way to evaluate the frequency response of a circuit
using Multisim. These tools are illustrated in the next three
examples.

Example 9-13: RLC Circuit

Design a series RLC bandpass filter with a center frequency of
10 MHz and Q = 50. Use Multisim to generate magnitude and
phase plots covering the range from 8 to 12 MHz.

Solution: The specified filter can be designed with an infinite
number of different combinations of R, L, and C. We will
choose a realistic value for L, namely 0.1 mH, which will dictate
that C be

C = 1

ω2
0L

= 1

(2π × 107)2 × 10−4

= 2.53 pF.

Next, we select the value of R to satisfy the requirement
on Q. From Table 9-3, we obtain

R = ω0L

Q

= 2π × 107 × 10−4

50

= 125.7 �.

With all three elements specified, we construct the Multisim
circuit shown in Fig. 9-31. Before performing AC Analysis, we
should double-click on the ac source and change its value to 1 V
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Figure 9-32: Magnitude and phase plots for the circuit of Fig. 9-31 generated by AC Analysis for Example 9-13.

(rms). Next, we select Simulate→Analyses→AC Analysis,
and then we set FSTART to 8 MHz and FSTOP to 12 MHz.
With both the Sweep Type and Vertical Scale set to Linear,
the number of points set to 1000, and the variable selected for
analysis is V(3), AC Analysis generates the plots displayed in
Fig. 9-32.The magnitude plot exhibits a peak at 10 MHz, and the
phase goes through 0◦ at that frequency. To verify that the circuit
has a Q = 50, we use the cursors to establish the locations at
which the vertical value of the curve is 1/

√
2 = 0.707 V. The

separation between the two cursors (labeled “dx” in the cursor
box) is 200.0699 kHz. This is the half-power bandwidth B. The
quality factor is

Q = ω0

B

= 107

200.0699 × 103

= 49.98,

which is approximately equal to the specified value.

Example 9-14: Parameter Sweep

Apply Parameter Sweep to the circuit in Fig. 9-31 to generate
spectral responses for C1 = 1 pF, 4 pF, 7 pF, and 10 pF.

Solution: Starting with the circuit in Fig. 9-31, we set
V1 = 1 V. Next, we select Simulate → Analyses →
Parameter Sweep. Upon selecting the parameter we wish to
vary (capacitance C1), its minimum (1 pF), maximum (10 pF),
step size (3 pF), and number of points (4), we select AC
Analysis in the More Options box. This allows us to set the
frequency range, the type of sweep (linear), and the number of
points—just as we did previously in Example 9-13, except that
the frequency range is 0 to 20 MHz. The Simulate command
generates the plots shown in Fig. 9-33.

Example 9-15: Bode Plots

Reproduce the circuit of Fig. 9-26(a) in Multisim and generate
Bode plots corresponding to the outputs of the three stages.
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C1 = 4 pF
C1 = 1 pF

C1 = 7 pF

C1 = 10 pF

Figure 9-33: AC analysis plots for the circuit in Fig. 9-31 generated with the Parameter Sweep tool in Example 9-14. The capacitance
was varied from 1 to 10 pF.

Solution: The circuit is reproduced in Fig. 9-34(a), and
part (b) displays the results. In order to generate these plots,
we use AC Analysis with
FSTART = 104 (rad/s)/2π = 1.592 kHz
and
FSTOP = 107/2π = 1.592 MHz.
The number of points was set to 200,
Sweep Type = Decade,
and
Vertical Scale = Decibel.

Example 9-16: Bode Plotter Instrument

Use the Bode Plotter Instrument to generate magnitude and
phase plots of the circuit in Fig. 9-31 over the frequency range
of 8 to 12 MHz.

Solution: Go to Simulate → Instruments → Bode
Plotter. Connect the “IN” terminals across the V1 source and
connect the “OUT” terminals across the resistor R1. Bring
up the Bode Plotter Instrument window. With the Magnitude
Mode selected, set the horizontal scale to Lin (for linear), set I
(initial frequency) to 8 MHz, and set F (final frequency) to 12
MHz. For the vertical scale, leave it on Log, set I to −50 dB,
and set F to 5 dB. Select the Phase mode and for the vertical
scale set I to −100 deg and F to 100 deg. Run the Interactive
Simulation by pressing F5 or the appropriate button or toggle
switch on the toolbar. In the Magnitude and Phase mode, you
will generate plots similar to those shown in Fig. 9-35(a) and
(b), respectively.
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(a) Three-stage circuit of Fig. 9-26(a)

(b) Bode plots

Single stage

Two stages

Three stages

1 mVrms

15

(d
B

)

−10

−35

−60

−85

−110

−135

−160

Figure 9-34: Three-stage op-amp circuit of Fig. 9-26(a) reproduced in Multisim for Example 9-15.
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(a) Magnitude plot

(b) Phase plot

Figure 9-35: Output of Bode Plotter Instrument for Example 9-16.
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Summary

Concepts

• The transfer function of a circuit is the ratio of a phasor
output voltage or current to a phasor input voltage or
current.

• The transfer function is characterized by magnitude
and phase plots describing the spectral response of the
circuit.

• At the resonant frequency ω0, the input impedance of
the circuit is purely real.

• The Bode diagram uses straight-line approximations
on a semilog-scale to display the magnitude and phase
spectra of the transfer function.

• The quality factor Q of a bandpass filter defines the
degree of frequency selectivity of the filter.

• The order of a filter defines the gain roll-off rate of the
magnitude spectrum in the stopband.

• Active filters are used primarily at frequencies below
1 MHz, whereas passive filters are better suited at higher
frequencies.

• Active filters can provide power gain, and they easily
can be cascaded in series or in parallel to generate the
desired frequency response.

• In a superheterodyne receiver, the RF frequency is
converted into an IF frequency for amplification and
filtering prior to demodulation.

• Parameter sweep can be used in Multisim to compare the
circuit response for different values of a key parameter.

Mathematical and Physical Models
Resonant Frequency ω0

�{Zin(ω)} = 0 @ ω = ω0

Magnitude and Frequency Scaling

R′ = KmR, L′ = Km

Kf
L

C′ = 1

KmKf
C, ω′ = Kfω

dB Scale

If G = XY G [dB] = X [dB] + Y [dB]
If G = X

Y
G [dB] = X [dB] − Y [dB]

Series and Parallel Bandpass RLC Filters

ω0 = √
ωc1ωc2 = 1√

LC

Q = ω0L

R
(series)

Q = R

ω0L
(parallel)

Active Filters

Sections 9-6 and 9-7

Important Terms Provide definitions or explain the meaning of the following terms:

−3 dB frequency
active filter
amplitude modulation
AM radio band
AND logic gate
bandpass filter

bandreject filter
bandwidth
Bode plot
Bode diagram
carrier
carrier frequency

connected in parallel
connected in series
corner frequency
cutoff frequency
damping factor
dc gain

degree of selectivity
demodulate
down-conversion
Edwin Armstrong
energy dissipated
exact plots
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Important Terms (continued)

factor
filter order
frequency conversion
frequency modulation
frequency response
frequency scaling
frequency scaling factor
frequency-selective circuits
gain factor
gain roll-off rate
half-power frequency
heterodyne receiver
high-frequency gain
highpass filter
idealized response
IF
IF filter/amplifier

intermediate frequency
local oscillator
lowpass filter
magnitude
magnitude scaling
magnitude scaling factor
magnitude response
mix
mixer
normalized power
order
OR gate
passband
passive filter
phase angle
phase response
pole

pole @ origin factor
pole factor
practical circuit
prototype model
quadratic-pole factor
quadratic-zero factor
quality factor
radio-frequency
regenerative receiver
relative power
resonance condition
resonant frequency
RF
signal
simple-pole factor
simple-zero factor
software radio

standard form
store
straight-line approximation
stopband
transfer function
trivial resonance
tuned-radio frequency

receiver
tuner
unity input
up-conversion
voltage transfer function
zero
zero factor
zero @ origin factor

PROBLEMS

Section 9-1: Transfer Function

*9.1 Determine the resonant frequency of the circuit shown in
Fig. P9.1, given that R = 100 �, L = 5 mH, and C = 1 μF.

RC

L

Figure P9.1: Circuit for Problem 9.1.

9.2 Determine the resonant frequency of the circuit shown in
Fig. P9.2, given that R = 100 �, L = 5 mH, and C = 1 μF.

R

C

L

Figure P9.2: Circuit for Problem 9.2.

∗
Answer(s) available in Appendix G.

*9.3 Determine the resonant frequency of the circuit shown in
Fig. P9.3, given that R = 1 k�, L = 10 mH, and C = 10 nF.

R CL

Figure P9.3: Circuit for Problem 9.3.

9.4 Determine the resonant frequency of the circuit shown in
Fig. P9.4, given that R = 1 k�, L = 10 mH, and C = 10 nF.

R C

L

Figure P9.4: Circuit for Problem 9.4.

*9.5 Determine the resonant frequency of the circuit shown in
Fig. P9.5, given that R1 = 10 �, R2 = 100 �, L = 5 mH,
and C = 0.1 μF.
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CLR1

R2

Figure P9.5: Circuit for Problem 9.5.

9.6 For the circuit shown in Fig. P9.6, determine (a) the
transfer function H = Vo/Vi and (b) the frequency ωo at which
H is purely real.

R

C L2

L1
+

_
Vi

+

_
Vo

Figure P9.6: Circuit for Problem 9.6.

9.7 For the circuit shown in Fig. P9.7, determine (a) the
transfer function H = Vo/Vi and (b) the frequency ωo at which
H is purely real.

C

R1

R2LVi
+

_
Vo

+
_

Figure P9.7: Circuit for Problem 9.7.

Section 9-2: Scaling

*9.8 What values of the scaling factors Km and Kf should be
applied to scale a circuit containing a 1 F capacitor and 4 H
inductor into one containing 1 μF and 10 mH, respectively?

9.9 The corner frequency of the highpass-filter circuit shown
in Fig. P9.9 is approximately 1 Hz. Scale the circuit up in
frequency by a factor of 105 while keeping the values of the
inductors unchanged.

Vs
+

_
Vo

+
_

1 Ω 1 F 0.3 F

0.04 H 0.04 H

1 F

1 Ω

Figure P9.9: Circuit for Problem 9.9.

9.10 For the circuit shown in Fig. P9.10:

(a) Obtain an expression for the input impedance Zin(ω).

(b) If R1 = R2 = 1 �, C = 1 F, and L = 5 H, at what angular
frequency is Zin purely real?

(c) Scale the circuit by Km = 20 and write down the new
expression for the input impedance.

(d) Is the value of ω at which the input impedance of the
scaled circuit is real the same or different from the answer
of part (b)?

C

L R2

R1

Zin

Figure P9.10: Circuit for Problem 9.10.

9.11 For the circuit shown in Fig. P9.11:

(a) Obtain an expression for the input impedance Zin(ω).

*(b) If R1 = 1 �, R2 = R3 = 2 �, L = 1 H, and C = 1 F, at
what angular frequency is Zin purely real?

(c) Redraw the circuit after scaling it by Km = 103 and
Kf = 105. Specify the new element values.

C

L
R3

R2

R1

Zin

Figure P9.11: Circuit for Problem 9.11.
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9.12 Circuit (b) in Fig. P9.12 is a scaled version of circuit (a).
The scaling process may have involved magnitude or frequency
scaling, or both simultaneously. If R1 = 1 k� gets scaled to
R′

1 = 10 k�, supply the impedance values of the other elements
in the scaled circuit.

(a) Original circuit

C2
L2L1 C1

R2R1

−j50 Ω−j5 Ω

j10 Ω j20 Ω

2 kΩ

(b) Scaled circuit

10 kΩ

1 kΩ

C2
L2L1 C1

R2R1

Figure P9.12: Circuits for Problem 9.12.

Section 9-3: Bode Plots

9.13 Convert the following power ratios to dB.

(a) 3 × 102

*(b) 0.5 × 10−2

(c)
√

2000

(d) (360)1/4

9.14 Convert the following power ratios to dB.

*(a) 6e3

(b) 2.3 × 103 + 60

(c) 24(3 × 107)

(d) 4/(5 × 103)

9.15 Convert the following voltage ratios to dB.

(a) 2 × 10−4

(b) 3000

(c)
√

30

(d) 6/(5 × 104)

9.16 Convert the following dB values to voltage ratios.

(a) 46 dB

(b) 0.4 dB

*(c) −12 dB

(d) −66 dB

9.17 Generate Bode magnitude and phase plots (straight-line
approximations) for the following voltage transfer functions.

(a) H(ω) = j100ω

10 + jω

(b) H(ω) = 0.4(50 + jω)2

(jω)2

(c) H(ω) = (40 + j80ω)

(10 + j50ω)

(d) H(ω) = (20 + j5ω)(20 + jω)

jω

9.18 Generate Bode magnitude and phase plots (straight-line
approximations) for the following voltage transfer functions.

(a) H(ω) = 30(10 + jω)

(200 + j2ω)(1000 + j2ω)

(b) H(ω) = j100ω

(100 + j5ω)(100 + jω)2

(c) H(ω) = (200 + j2ω)

(50 + j5ω)(1000 + jω)

9.19 Generate Bode magnitude and phase plots (straight-line
approximations) for the following voltage transfer functions.

(a) H(ω) = 4 × 104(60 + j6ω)

(4 + j2ω)(100 + j2ω)(400 + j4ω)

(b) H(ω) = (1 + j0.2ω)2(100 + j2ω)2

(jω)3(500 + jω)

(c) H(ω) = 8 × 10−2(10 + j10ω)

jω(16 − ω2 + j4ω)

(d) H(ω) = 4 × 104ω2(100 − ω2 + j50ω)

(5 + j5ω)(200 + j2ω)3

9.20 Generate Bode magnitude and phase plots (straight-line
approximations) for the following voltage transfer functions.

(a) H(ω) = j5 × 103ω(20 + j2ω)

(2500 − ω2 + j20ω)

(b) H(ω) = 512(1 + jω)(4 + j40ω)

(256 − ω2 + j32ω)2

(c) H(ω) = j (10 + jω) × 108

(20 + jω)2(500 + jω)(1000 + jω)

*9.21 Determine the voltage transfer function H(ω) corre-
sponding to the Bode magnitude plot shown in Fig. P9.21. The
phase of H(ω) approaches 180◦ as ω approaches 0.
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ω (rad/s)

M [dB]

26 dB

20 dB

10 dB
6 dB

0
0.1 1 100 1000

Figure P9.21: Bode magnitude diagram for Problem 9.21.

9.22 Determine the voltage transfer function H(ω) corre-
sponding to the Bode magnitude plot shown in Fig. P9.22. The
phase of H(ω) is 90◦ at ω = 0.

ω (rad/s)

M [dB]

20 dB

40 dB

60 dB

0
0.5 5 50 500

Figure P9.22: Bode magnitude plot for Problem 9.22.

*9.23 Determine the voltage transfer function H(ω) corre-
sponding to the Bode magnitude plot shown in Fig. P9.23. The
phase of H(ω) is 180◦ at ω = 0.

ω (rad/s)

M [dB]

20 dB

10 dB

0
102 20 100

20 dB/decade

−20 dB/decade

Figure P9.23: Bode magnitude plot for Problem 9.23.

9.24 Determine the voltage transfer function H(ω) corre-
sponding to the Bode magnitude plot shown in Fig. P9.24. The
phase of H(ω) is −90◦ at ω = 0.

ω (rad/s)

M [dB]

20 dB

30 dB
36 dB

0
200100 2000 4000

Figure P9.24: Bode magnitude plot for Problem 9.24.

9.25 Determine the voltage transfer function H(ω) corre-
sponding to the Bode magnitude plot shown in Fig. P9.25. The
phase of H(ω) is 0◦ at ω = 0.

ω (rad/s)

M [dB]

20 dB
14 dB

−46 dB
−40 dB

−20 dB

−6 dB
0

500505

Figure P9.25: Bode magnitude plot for Problem 9.25.

Sections 9-4 and 9-5: Passive Filters

9.26 The element values of a series RLC bandpass filter are
R = 5 �, L = 20 mH, and C = 0.5 μF.

*(a) Determine ω0, Q, B, ωc1 , and ωc2 .

(b) Is it possible to double the magnitude of Q by changing the
values of L and/or C while keeping ω0 and R unchanged?
If yes, propose such values, and if no, why not?
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9.27 A series RLC bandpass filter has half-power frequencies
at 1 kHz and 10 kHz. If the input impedance at resonance is
6 �, what are the values of R, L, and C?

9.28 A series RLC circuit is driven by an ac source with
a phasor voltage Vs = 10 30◦ V. If the circuit resonates at
103 rad/s and the average power absorbed by the resistor at
resonance is 2.5 W, determine the values of R, L, and C, given
that Q = 5.

*9.29 The element values of a parallel RLC circuit are
R = 100 �, = L = 10 mH, and C = 0.4 mF. Determine ω0,
Q, B, ωc1 , and ωc2 .

9.30 Design a parallel RLC filter with f0 = 4 kHz, Q = 100,
and an input impedance of 25 k� at resonance.

9.31 For the circuit shown in Fig. P9.31:

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R1 = 1 �, R2 = 2 �, C1 = 1 μF, and
C2 = 2 μF.

(c) Determine the cutoff frequency ωc and the slope of the
magnitude (in dB) when ω/ωc � 1 and when ω/ωc � 1.

C2

C1

R1

R2
+

_
Vi

+

_
Vo

Figure P9.31: Circuit for Problem 9.31.

9.32 For the circuit shown in Fig. P9.32:

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

*(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R1 = 1 �, R2 = 2 �, L1 = 1 mH, and
L2 = 2 mH.

(c) Determine the cutoff frequency ωc and the slope of the
magnitude (in dB) when ω/ωc � 1 and when ω/ωc � 1.

L2

L1

R1

R2
+

_
Vi

+

_
Vo

Figure P9.32: Circuit for Problem 9.32.

9.33 For the circuit shown in Fig. P9.33:

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R = 100 �, L = 0.1 mH, and C = 1 μF.

(c) Determine the cutoff frequency ωc and the slope of the
magnitude (in dB) when ω/ωc � 1.

C

L

R
+

_
Vi

+

_
Vo

Figure P9.33: Circuit for Problem 9.33.

9.34 For the circuit shown in Fig. P9.34:

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R = 10 �, L = 1 mH, and C = 10 μF.

(c) Determine the cutoff frequency ωc and the slope of the
magnitude (in dB) when ω/ωc � 1.

L

C

R
+

_
Vi

+

_
Vo

Figure P9.34: Circuit for Problem 9.34.

9.35 For the circuit shown in Fig. P9.35:

*(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R = 50 � and L = 2 mH.

(c) Determine the cutoff frequency ωc and the slope of the
magnitude (in dB) when ω/ωc � 1.

L

R

R
+

_
Vi

+

_
Vo

Figure P9.35: Circuit for Problem 9.35.
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9.36 For the circuit shown in Fig. P9.36:

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R = 50 � and L = 2 mH.

L

R

R
+

_
Vi

+

_
Vo

Figure P9.36: Circuit for Problem 9.36.

Sections 9-6 and 9-7: Active Filters

9.37 For the op-amp circuit of Fig. P9.37:

*(a) Obtain an expression for H(ω) = Vo/Vs in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R1 = 1 k�, R2 = 4 k�, and C = 1 μF.

(c) What type of filter is it? What is its maximum gain?

+

_
VoVs

R2

R1

C

+

_

+
_

Figure P9.37: Circuit for Problem 9.37.

9.38 For the op-amp circuit of Fig. P9.38:

(a) Obtain an expression for H(ω) = Vo/Vs in standard form.

(b) Generate spectral plots for the magnitude and phase
of H(ω), given that R1 = 99 k�, R2 = 1 k�, and
C = 0.1 μF.

(c) What type of filter is it? What is its maximum gain?

+

_
VoVs

R1

C

R2
+

_

+
_

Figure P9.38: Circuit for Problem 9.38.

9.39 For the op-amp circuit of Fig. P9.39:

*(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R1 = R2 = 100 �, C1 = 10 μF, and
C2 = 0.4 μF.

(c) What type of filter is it? What is its maximum gain?

+

_
VoVs

R2R1
C1

C2

+

_

+
_

Figure P9.39: Circuit for Problems 9.39 and 9.40.

9.40 Repeat Problem 9.39 after interchanging the values of
C1 and C2 to C1 = 0.4 μF and C2 = 10 μF.

9.41 For the op-amp circuit of Fig. P9.41:

*(a) Obtain an expression for H(ω) = Vo/Vs in standard form.

(b) Generate spectral plots for the magnitude and phase of
H(ω), given that R1 = 1 k�, R2 = 20 �, C1 = 5 μF,
and C2 = 25 nF.

(c) What type of filter is it? What is its maximum gain?
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+

_
Vo

Vs

R2

C2

C1R1

+

_

+
_

Figure P9.41: Circuit for Problem 9.41.

9.42 Design an active lowpass filter with a gain of 4, a corner
frequency of 1 kHz, and a gain roll-off rate of −60 dB/decade.

9.43 Design an active highpass filter with a gain of 10, a corner
frequency of 2 kHz, and a gain roll-off rate of 40 dB/decade.

9.44 Show that the transfer function of the circuit shown in
Fig. P9.44 is given by

H(ω) = Vo

Vs
= −G

(
1 + j

ω

ωc

)
,

and relate G and ωc to R1, R2, and C.

R2

Vs V0

C

R1 +

_

Figure P9.44: Circuit for Problem 9.44.

9.45 Repeat Problem 9.41 after replacing the series combina-
tion of R1 and C1 with a parallel combination.

*9.46 Consider the circuit shown in Fig. P9.46. Obtain its
transfer function H(ω) = Vo/Vs for R1 = 1 k�, R2 = 10 k�,
and C = 1 μF. What role, if any, does the capacitor play?
Explain.

+

_

+
_

V0

Vs

+

_R1

C

R2

Figure P9.46: Circuit for Problem 9.46.

9.47 Use resistors, capacitors, and a single op amp to design
a circuit with input voltage Vs, output voltage Vo, and transfer
function

H(ω) = Vo

Vs
= −10

(
1 + j

ω

100

)
.

9.48 The element values in the circuit of the
second-order  bandpass  filter  shown  in   Fig.  P9.48   are   
Rf1 = 100 k�,   Rs1 = 10 k�,  Rf2 = 100 k�,  Rs2 = 10 k�,  
Cf1 = 3.98 × 10−11 F, and Cs2 = 7.96 × 10−10 F. Generate a 
spectral plot for the magnitude of H(ω) = Vo/Vs. Determine 
the frequency locations of the maximum value of M [dB] and 
its half-power points. 

Section 9-8: Superheterodyne Receiver

9.49 Using the circuit layout shown in Fig. 9-15, design a 
tuner that uses a variable inductor, a capacitor, and a resistor. 
The input impedance of the tuner should be 377 � at 1 MHz, 
and its bandwidth should be 2 percent.

*9.50 What range of frequencies should the local oscillator be
able to provide to mix the FM radio range (88 to 108 MHz)
down to 10 MHz?

Section 9-9: Multisim

9.51 Generate plots in Multisim for the magnitude and phase 
of the transfer function for a series bandpass filter with 
L = 1 mH, f0 = 1 MHz, and Q = 10. Choose 
FSTART = 100 kHz and FSTOP = 10 MHz.

9.52 Perform a Parameter Sweep in Multisim for capacitor
Cs2 of the two-stage bandpass filter shown in Fig. 9-27. 
Generate response plots from 10 Hz to 100 kHz for each of
five equally spaced values of Cs2 starting at 1 nF and ending at 
15 nF.

9.53 Use Multisim to generate spectral plots for the 
magnitudes and phases of voltages VC and Vo in the circuit of
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+

_
+

_

Vs
+
_ +

_

+

_

Vo

+

_

Rs1 Rs1 Rs2
Cs2 Cs2Rs2

Cf1 Cf1

Rf1 Rf1 Rf2 Rf2

Figure P9.48: Circuit for Problem 9.48.

Fig. P9.53. The circuit is a second-order passive lowpass filter
followed by an active highpass filter. Use the following element
values: R1 = 20.3 �, R2 = R3 = 1.592 k�, L1 = 100 nH,
C1 = C2 = 1 nF, and υs(t) = cos 2πf t V.

Vo
Vs

VC

+

_

+

_

R3
R2

C2

C1

R1 L1

+
_

Figure P9.53: Circuit for Problem 9.53.

9.54 For the circuit in Fig. P9.54, use Multisim to generate
spectral plots for the magnitude and phase of H(ω) = Vo/Vi
over the range from 100 Hz to 100 kHz. When performing
the AC Analysis, use 200 points per decade. Determine the
frequencies at which M [dB] is a maximum or a minimum.

+

_

Vi

+

_

Vo

10−2 H1
12 10−2 H1

12

10−2 H1
8

1 kΩ

0.5 μF

Figure P9.54: Circuit for Problem 9.54.

9.55 For the circuit in Fig. P9.55, use Multisim to generate
spectral plots for the magnitude and phase of H(ω) = Vo/Vi

over the range from 1 to 15 kHz. When performing the
AC Analysis, use 104 points in linear scan. Determine the
frequencies at which M [dB] is a maximum or a minimum.

+

_

Vi

+

_

Vo

10−2 H1
6

1 kΩ1
2

μF

3
8

μF

1
2

μF

Figure P9.55: Circuit for Problem 9.55.

9.56 For the circuit in Fig. P9.56, use Multisim to generate
spectral plots for the magnitude and phase of H(ω) = Vo/Vi
over the range from 100 Hz to 10 kHz. When performing theAC
Analysis, use 200 points per decade. Determine the frequencies
at which M [dB] is a maximum or a minimum.

+

_

Vi

+

_

Vo100 Ω
16
15 μF

8 μF 8 μF

0.15 H

Figure P9.56: Circuit for Problem 9.56.
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9.57 Figure P9.57 depicts a band-stop filter composed
of a high-pass filter, a low-pass filter, and a summing
amplifier. Construct it in Multisim using the values R = 5 k�,
CLP = 26 nF, and CHP = 1 nF. Using Multisim’s AC Analysis,
plot the transfer function from 100 Hz to 100 kHz for the high-
pass component alone, the low-pass component alone, and the
overall filter all on the same graph. Find the frequency where
minimum gain occurs for the overall filter.

Vout

+

_

R

R
R

CLP

R

+

_

+

_

R

R
R

CHP

Vin

Figure P9.57: Circuit for Problem 9.57.

9.58 Build the circuit shown in Fig. 9-15 in Multisim with 
values C = 1 pF and R = 377 �. Simulate the circuit with 
L = 5 mH, 10 mH, and 15 mH. Plot the output of the filter at 
the three tunings on the same plot from 100 kHz to 100 MHz.

Potpourri Questions

9.59 What role does phase play in the operation of noise-
cancelling headphones?

9.60 What does high-frequency filtering do to an image?What 
about low-frequency filtering?

9.61 What is the range of the audible spectrum?

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest 
via your computer. [myDAQ tutorials and videos are available 
on                           .]

m9.1 Scaling: Figure m9.1 shows a prototype bandreject 
filter with center frequency ω0 = 1 rad/s. The prototype

+

_

υs υout

L

C

R

~+_

Figure m9.1 Circuit for Problem m9.1.

component values are R = 1 �, L = 1.817 H, and
C = 0.5505 F.

(a) Apply magnitude and frequency scaling to the bandreject
filter so that R′ = 100 � and L′ = 33 mH. Draw the
finished circuit diagram.

(b) Determine the center frequency in Hz of the scaled
bandreject filter.

m9.2 Bode Plots: For the circuit in Fig. m9.2:

(a) Determine the voltage transfer function H(ω) of the filter
circuit. Write your finished result in standard form for
creating a Bode plot.

(b) Substitute ω = 2πf to express the voltage transfer
function in terms of oscillation frequency f in Hz.

(c) Generate Bode magnitude and phase plots for H(f )

using oscillation frequency f as the independent variable.
Use the following component values: R1 = 3.3 k�,
R2 = 10 k�, C1 = 0.01 μF, and C2 = 0.1 μF.

υout

υs

C1

R1

~+_
+
_

R2

C2

Figure m9.2 Circuit for Problem m9.2.
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(d) Determine the following filter circuit properties by
inspecting the Bode plot:

(1) Low-frequency asymptotes for magnitude and phase

(2) High-frequency asymptotes for magnitude and phase

(3) Corner frequencies (this filter circuit has two such
frequencies)

m9.3 Filter Order: The filter circuit shown in Fig. m9.3 uses
the component values R = 1.0 k� and C = 1.0 μF.

(a) Obtain an expression for H(ω) = Vo/Vi in standard form.

(b) Substitute ω = 2πf to express H(ω) in terms of the
oscillation frequency f in Hz.

(c) Generate spectral plots for the magnitude and phase of
H(f ).

(d) Determine the cutoff frequency fc.

+

_

R

C

υi

+

_

υo

Figure m9.3 Circuit for Problem m9.3.

m9.4 Cascaded Active Filters: A telephone line provides
sufficient bandwidth (3 kHz) for intelligible voice conver-
sations, but human hearing has a much higher bandwidth,
typically 20 Hz to 20,000 Hz

(a) Design an active bandpass filter to mimic the bandwidth 
of a telephone line subject to the following constraints:

(1) Cascade a first-order active lowpass filter and a 
first-order active highpass filter,

(2) Set the corner frequencies to 300 Hz and 3.0 kHz,

(3) Set the passband gain to 0 dB,

(4) Choose resistors in the range 1.0 k� to 100 k�, and

(5) Use the total of four fixed-value resistors and two 
fixed-value capacitors selected from the parts listed 
in Appendix A of the tutorial on                   .    

Draw the schematic diagram of your finished design.

(b) Predict the performance of your finished design by
calculating the following values:

(1) Low-frequency passband corner in Hz,

(2) High-frequency passband corner in Hz, and

(3) Passband gain in dB.

m9.5 Bode Plot for an RLC Circuit I
(a) Determine the transfer function of the RLC circuit in

Fig. m9.5. Compute the magnitude and phase of the
transfer function at 100, 1,000, 5,000, and 10,000 Hz.

(b) Using Multisim and myDAQ, capture the Bode plot for the
circuit. How does your answer from part (b) verify your
answer from part (a)?

(c) Determine υout when the input is 0.5 cos(200πt) V.
(d) Determine υout when the input is 0.5 cos(103πt) V.

1.5 Ω 1 μF3.3 mH
+

_

+

_υin(t)
υoutC

R L

Figure m9.5 Circuit for Problem m9.5.

m9.6 Bode Plot for an RLC Circuit II The circuit in
Fig. m9.6 is an RLC circuit. For this problem, there are separate
directions for the handwritten, Multisim, and myDAQ portions.

(a) The transfer function for the circuit in Fig. m9.6 is given
by

H(ω) = jωRC

(1 − ω2LC) + jωRC
.

Using the transfer function, compute the magnitude and
phase at each of the following frequencies: 100, 500, 1,000,
2,000, 5,000, and 10,000 Hz. Plot the magnitude and phase
on separate graphs.

(b) For the Multisim and myDAQ portions of this problem,
capture a Bode plot for this circuit. Do your answers from
part (a) and part (b) agree?

(c) Determine υout when υin = 1 cos(5000πt) V.

1 kΩ10 μF33 mH
+

_

+

_υin(t)
υout

C

R

L

Figure m9.6 Circuit for Problem m9.6.
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Objectives

Learn to:

� Analyze both balanced and unbalanced three-
phase circuits.

� Convert a Y-source configuration into a �-source
configuration, and vice versa.

� Convert a Y-load configuration into a �-load
configuration, and vice versa.

� Compute complex power delivered by a three-
phase source or extracted by a three-phase load.

� Apply power-factor compensation.

� Calculate power quantities based on wattmeter
measurements.

Large factory

Distribution
substation

10:1 step down

20:1 step-down
pole transformer

ShopsHouses

All voltage values
are rms

Nuclear power
station

Primary
substation

Transmission lines
48,000 V 3-phase

480,000 V 3-phase

Transmission lines
48,000 V 3-phase

Distribution lines
4,800 V 3-phase

Service wire
120 V / 240 V
single phase

Service wire
120 V / 240 V
single phase

Between the power generating station and a residence or shop,
power is transferred across transmission lines in a form known
as three-phase power. What is three-phase power and why is
it used? The intent of the present chapter is to answer these
questions and to provide the tools for analyzing three-phase
networks.

CHAPTER 10
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Overview

How does the electrical power generated by a power station
get distributed to users with diverse voltage-level and power-
consumption requirements? The requirements of a large factory
are very different from those of a building or a single residence.
The power distribution network—often called the power grid—
uses above- or underground transmission lines to transfer power
between different locations, and employs step-up and step-
down transformers to change voltage levels at specific nodes
in the grid. As explained later in this chapter, at a typical
large electrical station, power is generated by spinning a large
electromagnet past three separate stationary coils arranged
evenly around a circular tube. The energy used to spin the
electromagnet may come from a hydroelectric dam, diesel or
gas engine, or a steam turbine driven by burning coal, oil, or

Large factory

Distribution
substation

10:1 step down

Building

20:1 step-down
pole transformer

Building

ShopsHouses

All voltage values
are rms

Nuclear power
station

Intermediate
substation

Primary
substation

Large factory

Transmission lines
48,000 V 3-phase

480,000 V 3-phase
Transmission lines

48,000 V

Transmission lines
48,000 V 3-phase

Underground distribution lines
4,800 V

3-phase

Distribution lines
4,800 V

3-phase
Distribution lines
4,800 V 3-phase

Service wire
120 V / 240 V
single phase

Service wire
120 V / 240 V
single phase

Distribution lines
16,000 V 3-phase

Figure 10-1: Typical electrical power grid.

natural gas, or generated by a nuclear reactor. By spinning the
electromagnet at 60 revolutions per second, magnetic induction
generates an ac voltage across the terminals of each of the three
coils. The three induced voltages have the same amplitude and
frequency (60 Hz), but their phase angles are staggered by
360◦/3 = 120◦ between any two of them. Hence, the power
generated by this arrangement is called three-phase.

In the power-distribution model shown in Fig. 10-1, the
nuclear power station uses large transformers to step-up each
of the coil voltages from its initial level to 480,000 V (rms).
This is done before distributing the power across the grid. The
conversion changes the voltage level, but not the amount of
power made available by the transmission line. As noted in
Section 7-10, when a transformer steps up the voltage by the
turns ratio N2/N1, it simultaneously steps down the current
by the same ratio. By stepping up the voltage at the power
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120 V ac

4800 V

Earth ground

180 turns

Power lines

3600 turns

120 V ac
Neutral

Residence

Connected to Earth ground

Residential 
service cable

TV Computer Stove

Vacuum cleaner Light bulb

Transformer

All voltage values are rms
120 V ac

120 V ac

240 V ac

Figure 10-2: A 4800 V rms single-phase ac source connected to a residential user through a 20 : 1 step-down transformer.

station to a very high level, the current that flows along the
transmission line gets reduced significantly. Since the power
loss in the transmission line is Ploss = I 2

rmsR, where R is
the total resistance of the transmission line, the voltage up-
conversion step serves to reduce the power loss by several orders
of magnitude.

The power grid includes several substations designed to
convert power from transmission to distribution. This is
accomplished through the use of step-down transformers and a
bus circuit that can split the power into multiple directions. For
a single residence, a center-tapped pole transformer is used to
step-down one of the three-phase lines to a level manageable
by household applicances (Fig. 10-2). The power carried to the
house from the transformer is called three-wire single phase,
with the middle wire assuming the role of the neutral wire.
It is single phase because the two 120 V rms voltages at the
secondary side of the transformer have the same frequency
and phase.

Instead of providing a return path to the generating station
through an actual wire, the earth ground is used to provide
the feedback path for electrons. This is accomplished by using
a cable to connect the middle wire at the transformer output
to ground (Fig. 10-2). Use of the ground cable is a safety
measure to prevent charging up machinery to dangerous levels,
as well as for the discharging of high-voltage events (like
lightning) and to prevent current-related heating of wires due
to unbalanced loads.

10-1 Balanced Three-Phase
Generators

Figure 10-3(a) is a representative cross-sectional view of a
typical three-phase ac generator. The generator consists of
a rotating electromagnet, called the rotor, and three separate
stationary coils distributed evenly around a circular tube called
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(a) Three-phase generator

(b) Phasor voltages V1 to V3 in the complex plane (c) Voltage waveforms

Stator

Rotor

n

N

ω

1 1

3

2

2 3

V1

V2

V3
V23

V31

V12+
_

+

_
+
_
+
_

+

_ +

_

S

−120o

120o

V1

V3

V2

Im

Re

V

t

υ1
υ2 υ3VYs√2

Figure 10-3: Three-phase ac generator and associated voltage waveforms.

the stator. The rotor is spun around by a turbine or some
other external force. The three coils are arranged 120◦ apart
over the circumference of the stator. As the electromagnet
rotates, its magnetic field induces a sinusoidal voltage at the
terminals of each of the three coils. If the coils are identical in
shape and number of turns, the three induced phasor voltages,
V1 to V3, will all have the same amplitude and their time-
domain counterparts, υ1(t) to υ3(t), will vary sinusoidally at
the same frequency f = ω/2π , where ω is the angular rotation
frequency of the rotor. However, because the coils are physically
distributed 120◦ apart, the voltages induced in adjacent coils
will be delayed in time and shifted in phase by 120◦ relative
to one another. By designating the common terminal n as the
neutral (ground) terminal with Vn = 0 and selecting V1 in
Fig. 10-3(a) as the reference voltage with zero phase, the phase
of V2 will be either 120◦ or −120◦, relative to the phase of V1,
depending on the relative directions of the two windings. If

all windings are the same, which usually is the case, common
practice is to adopt a positive (123) phase sequence in which
case the phase of V2 follows behind that of V1 by 120◦ and
the phase of V3 follows behind that of V2 by 120◦. Hence,
the phases of V1, V2, and V3 are 0, −120◦, and −240◦ (or
equivalently, +120◦) (Fig. 10-3(b)), and their waveforms are
shifted in time accordingly (Fig. 10-3(c)). We will refer to this
arrangement as a balanced three-phaseY-source configuration
with a positive phase sequence:

Y-Source Configuration

V1 = VYs 0◦ ,

V2 = VYs −120◦ ,

V3 = VYs −240◦ ,

(10.1)
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with rms magnitude VYs.Voltages V1 to V3 are called the phase
voltages of the Y-source configuration, and they all have the
same magnitude, VYs.

� Throughout the remaining material in this chapter, all
magnitudes of phasor voltages and currents will denote
rms values. �

In a positive phase sequence, clockwise rotation between
sources in the complex plane (Fig. 10-3(b)) entails an
incremental phase shift of −120◦. In a negative phase
sequence, the phase-shift increment is +120◦.

We should note that for a balanced three-phase source

V1 + V2 + V3 = 0, (10.2)

which can be verified numerically by inserting Eq. (10.1) into
Eq. (10.2) or graphically by summing the three vectors in
Fig. 10-3(b).

In the wiring configuration of Fig. 10-3(a), which is redrawn
diagrammatically in Fig. 10-4(a), the three voltage sources
share neutral terminal n and a common wire called the neutral
wire. This configuration, which may or may not include the
neutral wire, is the most common in North America.

� In reality, associated with each source is a complex
source impedance, but the three source impedances
usually are ignored because their values are much smaller
than those of the impedances of the loads connected to the
generator circuit. �

The time-domain counterpart of phasor voltage V1 of the
Y-source configuration is

υ1(t) = Re[√2 V1e
jωt ] = √

2 VYs cos ωt,

where we included the factor
√

2 because VYs was specified as
an rms value. Similarly, for the other two phasor voltage sources

υ2(t) = √
2 VYs cos(ωt − 120◦)

and

υ3(t) = √
2 VYs cos(ωt − 240◦).

A common alternative to the Y-source configuration is the
�-source configuration shown in Fig. 10-4(b). Note that the
�-source configuration does not have a neutral wire. The

(a) Y-source configuration

(b) Δ-source configuration

1

23

neutral wire

I1

I2I3

n

+

_ +_
+
_ V1 = VYs 0o

V2 = VYs −120oV3 = VYs −240o

3 2

1

I23

I12

I31

+

_ +
_

+_

V31 =      VYs 150o

V23 =      VYs −90o

V12 =      VYs 30o√3

√3

√3

Figure 10-4: Y- and �-source configurations, with VYs = rms
value of the phase-voltage magnitude of the Y-source. The rms
magnitude of the �-source phase voltages is

√
3 VYs.

relationships between voltages V12, V23, and V31 of the �

configuration and the three voltages of the Y configuration are

�-Source Configuration

V12 = V1 − V2

= VYs 0◦ − VYs −120◦

= √
3 VYs 30◦ = V�s 30◦ ,

V23 = V2 − V3 = V�s −90◦ ,

V31 = V3 − V1 = V�s 150◦

with V�s = √
3 VYs.

(10.3)

We note that the magnitude of the �-source, V�s, is
√

3 times
larger than that of theY-source, and the phases of the � sources
are 30◦ ahead of theirY counterparts (see Fig. E10.1 of Exercise
10-1).
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� It is important to remember that the phase angle of a
phasor is defined relative to a reference. In Fig. 10-4,
we assigned V1 a phase angle of zero, and all of the
other voltages are defined relative to V1. Had its phase
angle been φ instead, the phases of all of the other
voltages would have had to be adjusted accordingly
(V2 = VYs φ − 120◦ , etc.). �

Example 10-1: Y-� Sources

If in a balanced �-source configuration with a positive phase
sequence, υ12(t) = 440 cos(120πt + 45◦) V, determine υ1(t),
υ2(t), and υ3(t) of the equivalent Y-source configuration.

Solution: The rms phasor counterpart of υ12(t) is

V12 = 440√
2

45◦ V (rms).

From Fig. 10-4, we observe that V1 can be obtained from V12
by reducing the magnitude of the latter by

√
3 and decrementing

its phase by 30◦:

V1 = V12√
3

−30◦ = 440√
2
√

3
45◦ − 30◦ = 179.63 15◦ (rms).

Hence,

υ1(t) = √
2 × 179.63 cos(120πt + 15◦)

= 254.03 cos(120πt + 15◦) V.

By extension,

υ2(t) = 254.03 cos(120πt − 105◦) V,

υ3(t) = 254.03 cos(120πt + 135◦) V.

Concept Question 10-1: Why are the voltage sources of 
a three-phase source separated by 120◦ increments in 
phase? (See         )

Concept Question 10-2: In a Y-source configuration, 
each voltage source is measured across one of the 
generator’s three coils, with one terminal serving as a 
common neutral terminal for all three. How are the 
sources of a � configuration measured? (See         )

Exercise 10-1: Superimpose onto Fig. 10-4(b) the three
source voltages of the � configuration.

Answer:

Figure E10.1

V31

V23

V12

V1

V3

V2

−120o

120o

30o

30o

30o

Im

Re

(See )

Exercise 10-2: Given a balanced �-source configuration
with a positive phase sequence and V12 = 208 45◦ V
(rms), determine (a) phase voltages V23 and V31, and (b)
V1, V2, and V3 of the equivalent Y-source configuration.

Answer: (a) V23 = 208 −75◦ V (rms),
V31 = 208 −195◦ V (rms), (b) V1 = 120 15◦ V (rms),
V2 = 120 −105◦ V (rms), V3 = 120 −225◦ V (rms).
(See C3 )

Exercise 10-3: Show graphically why the phase
magnitude of V12 of the �-source is

√
3 times larger than

the phase magnitude of the Y-source.

Answer:

Figure E10.3

V2

V1

30˚

V12 = V1 − V2
−V2

VYs

V∆s

Im

Re

(See )

)
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10-2 Source-Load Configurations

The three-phase generator is equivalent to three separate single-
phase generators, each one of which can be connected to
a separate load. Transmission of three-phase power from the
generator to loads is more efficient than three separate, single-
phase transmissions. A three-phase �-source configuration
uses 3 transmission wires and a Y-source configuration uses
3 or 4 wires (the neutral wire is not always used), whereas
6 wires are required to support three separate single-phase
transmissions. The three loads connected to the three sources
may be arranged in either a Y- or a �-load configuration
(with the � configuration being more common). Hence, the
source-load connections may assume any one of four possible
combinations: Y-Y, Y-�, �-Y, and �-� (Fig. 10-5).

� By applying equivalent-circuit transformations, any
one of the four connection configurations can be
converted into any of the other three. �

10-2.1 Y and � Notation

In view of the several sources, currents, and impedances
involved in the four source-load topologies, it will prove helpful
to summarize our notation. We will be guided by the circuits in
Fig. 10-5.

Nodes

1, 2, 3 nodes in source circuit
a, b, c nodes in load circuit
n and N neutral node in source and load

(Y-Y configuration only)

Voltages

V1, V2, V3 phase voltages of Y-source,
with rms magnitude VYs

V12, V23, V31 phase voltages of �-source,
with rms magnitude V�s = √

3 VYs
Vn = 0 neutral node in Y-source
Vab, Vbc, Vca line voltages (voltages between

transmission-line pairs), with rms
magnitude VL; same as phase
voltages of �-load

VaN , VbN , VcN phase voltages of Y-load

Currents

I1, I2, I3 phase currents in Y-source
configuration

I12, I23, I31 phase currents in �-source
configuration

IL1 , IL2 , IL3 line currents through transmission
lines, same as phase currents Ia , Ib, Ic

of Y-load
Iab, Ibc, Ica phase currents of �-load

Impedances

ZTL1 , ZTL2 , ZTL3 transmission-line impedances
Zn impedance of neutral line

(Y-Y configuration only)
Za , Zb, Zc impedances of Y-load

configuration (for balanced load
Za = Zb = Zc = ZY)

Zab, Zbc, Zca impedances of �-load
configuration (for balanced load
Zab = Zbc = Zca = Z�)

� We should note that the term line voltage is short-hand
for line-to-line voltage at the point of use (i.e., at the
load). �

In the present context, the line voltages are the voltages between
transmission-line pairs, namely the voltages between nodes a

and b, b and c, and c and a in Fig. 10-5. The associated line
currents are the currents flowing through the transmission lines.
The terms phase voltages and phase currents usually refer to
the voltages across and currents through the load impedances,
but often they are also used in connection with the source circuit.
To avoid confusion, it is best to specify whether it is the source
circuit or the load circuit that the phase voltages and currents
belong to.

10-2.2 Balanced Conditions

• In view of how the voltage sources are induced, it is safe
to assume that the three Y or � sources are balanced,
meaning that they have the same amplitude and frequency
and their phases are separated by 120◦ increments.

• The load circuit, however, may or may not be balanced. The
load circuit is considered balanced if all of its impedances
are the same. Three-phase motors are one such example.
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(a) Y-Y configuration
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(b) Y-∆ configuration
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_
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Load Phase Voltages
    VaN, VbN, VcN

Y-source
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Transmission
lines

Y-source
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Figure 10-5: The three-phase source and load circuits can be connected in four possible arrangements: Y-Y, Y-�, �-Y, and �-�. In each
arrangement, the source and load circuits are connected via transmission lines carrying line currents IL1 , IL2 , and IL3 . [Parts (c) and (d)
follow on the next page.]

• A network is said to be balanced if its source voltages
are balanced and if it has identical transmission lines and
identical loads.

The techniques presented in Chapters 7–9 are more
than sufficient to analyze any three-phase circuit, for any
combination of source and load configurations.

Concept Question 10-3: What is a balanced source?
Balanced load? Balanced network? (See         )

Concept Question 10-4: Which line(s) do the line
voltages refer to? (See         )

Concept Question 10-5: For which load configuration 
are (a) the phase voltages the same as the line voltages?
and (b) the phase currents the same as the line currents?
(See         )
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(c) ∆-Y configuration

(d) ∆-∆ configuration
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c b
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_
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, and IL3
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    VaN, VbN, VcN
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V23

V31 V12
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IL3

IL2
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c b

Ica Iab

Ibc

ZabZca

Zbc
23

I23

I12

I31

+
_ +

_
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Load Phase Currents
    Iab, Ibc, Ica

Load Phase Voltages
    Vab, Vbc, Vca
(same as source voltages
 if ZTL is negligible)

∆-source
Y-load

Transmission
lines

∆-source
∆-load

Transmission
lines

(Fig. 10-5 continued)

10-3 Y-Y Configuration
In the Y-Y configuration depicted in Fig. 10-6, the Y-load
network is connected to the Y-source circuit through four wires
(transmission lines). The transmission lines, which may or
may not be identical, are characterized by impedances ZTL1 ,
ZTL2 , and ZTL3 , connecting sources V1 through V3 to loads Za

to Zc. In addition, a fourth transmission line of impedance Zn

connects node n of the source configuration to node N of the
load configuration.

Example 10-2: Balanced Y-Y Network

With reference to the network shown in Fig. 10-6:

(a) Develop a node voltage equation for VN , the voltage at
node N , with node n treated as (the ground) reference.

(b) Determine line currents iL1(t) to iL3(t) and in(t)

for a balanced network, given that VYs = 120 V (rms),
f = 60 Hz, ZTL1 = ZTL2 = ZTL3 = (1 + j1) �, and
Za = Zb = Zc = (29 + j9) �.

(c) Determine line voltages υab(t), υbc(t), and υca(t).

Solution: (a) Relative to node n (i.e., with Vn = 0), the node
equation at node N is:

In − IL1 − IL2 − IL3 = 0, (10.4)
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Figure 10-6: Three-phase Y source connected to a Y load circuit via transmission lines.

or equivalently

VN

Zn

− (V1 − VN)

ZTL1 + Za

− (V2 − VN)

ZTL2 + Zb

− (V3 − VN)

ZTL3 + Zc

= 0. (10.5)

(b) For a balanced network, the denominators of terms 2 to 4
in Eq. (10.5) become identical, which we shall denote as Z0:

Z0 = ZTL1 + Za = (1 + j1) + (29 + j9) = (30 + j10) �.

(10.6)
The node voltage equation given by Eq. (10.5) simplifies to:

VN

(
1

Zn

+ 3

Z0

)
= V1 + V2 + V3

Z0
. (10.7)

According to Eq. (10.2), for a balanced source,
V1 + V2 + V3 = 0. Hence,

VN = 0 (balanced network). (10.8)

Consequently,

In = VN

Zn

= 0, (10.9)

IL1 = V1 − VN

Z0
= 120

30 + j10
= 3.80e−j18.4◦

A (rms),

IL2 = V2 − VN

Z0
= 120e−j120◦

30 + j10
= 3.80e−j138.4◦

A (rms),

and

IL3 = V3 − VN

Z0
= 120e−j240◦

30 + j10
= 3.80ej101.6◦

A (rms).

The numerical values of phasor currents IL1 to IL3 are in rms,
so to obtain their corresponding time-domain expressions, we
need to multiply them by

√
2:

iL1(t) = Re[√2 IL1e
jωt ] = 5.37 cos(2πf t − 18.4◦) A,

iL2(t) = Re[√2IL2e
jωt ] = 5.37 cos(2πf t − 138.4◦) A,

and

iL3(t) = Re[√2IL3e
jωt ] = 5.37 cos(2πf t + 101.6◦) A,

with f = 60 Hz.
(c)

Vab = IL1 Za − IL2 Zb

= (3.80e−j18.4◦ − 3.80e−j138.4◦
)(29 + j9)

= 200ej28.8◦
V (rms).

Similarly,

Vbc = IL2 Zb − IL3 Zc = 200e−j91.2◦
V (rms)

Vca = IL3 Zc − IL1 Za = 200ej148.8◦
V (rms).
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The corresponding time-domain line voltages are

υab(t) = 282.2 cos(2πf t + 28.8◦) V,

υbc(t) = 282.2 cos(2πf t − 91.2◦) V,

and

υca(t) = 282.2 cos(2πf t + 148.8◦) V.

Concept Question 10-6: What is the magnitude of In in
a balanced Y-Y configuration (Fig. 10-6)? (See         )

Exercise 10-4: Were we to repeat Example 10-2, but with
the transmission-line impedances set to zero, which of the
following line-current quantities will change and which
will remain the same: (a) amplitudes, (b) absolute phases,
and (c) phases relative to each other?

Answer: (a) Amplitudes will change, (b) absolute 
phases will change, but (c) relative phases will continue 
to be 120◦ apart (between pairs). (See                  )

10-4 Balanced Networks

A three-phase network is balanced if it has a balanced three-
phase source, transmission lines with identical impedances,
and a balanced three-phase load (with equal impedances). The
inherent symmetry associated with a balanced network allows
us to simplify the circuit analysis considerably.

10-4.1 Transformation Between Balanced
Sources

A balanced, three-phase Y-source with a positive phase
sequence is completely specified by two parameters: (a) VYs,
the rms magnitude of the phase voltages and (b) φ1, the phase
of V1. That is,

Balanced Y-source =

⎧⎪⎨
⎪⎩

V1 = VYs φ1 ,

V2 = VYs φ1 − 120◦ ,

V3 = VYs φ1 + 120◦ .

(10.10)

According to our earlier discussion in connection with
Fig. 10-4, the Y-source can be transformed into an equivalent
�-source,

Balanced �-source =

⎧⎪⎨
⎪⎩

V12 = V1 × √
3 30◦ ,

V23 = V2 × √
3 30◦ ,

V31 = V3 × √
3 30◦ .

(10.11)

a

c b
Z∆

Z∆Z∆

Z∆ = 3ZY

ZY

ZY ZY

a

c b

Figure 10-7: Y-� transformation for balanced load circuits.

� Transformation of (V1, V2, V3) of the Y-source into
(V12, V23, V31) of the �-source involves multiplication
of the magnitudes by

√
3 and advancing the phases by

30◦. �

Z� = 3ZY. (10.12)
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Technology Brief 25
Miniaturized Energy Harvesting

Energy is present in our environment in many forms.
One can think of energy as a quantity that measures
the ability of a system to do some amount of work
on its environment (or other systems). For example,
moving objects possess kinetic energy, objects within
gravity wells possess potential energy, and charged
particles within an electric field possess electrical energy.
Real systems often transduce energy from one form
to another as part of normal operation: photodiodes
(solar cells) convert electromagnetic waves (light) into the
movement of charge particles in a potential field (thus
providing a system like your phone with the ability to
do work), sensors often transduce chemical energy into
electrical energy to measure the state of a system, an
electrostatic actuator might transduce electrical energy
into mechanical energy to perform mechanical work, etc.
There is useful energy present all around you, in the gentle
mechanical vibrations moving through your building, in the
radio frequency waves generated by radio emitters, and
even in the heat that your body or your car engine emits.

As computation and communication technologies
miniaturize and become ever-more pervasive, many
everyday computing objects require less and less power
to operate. A typical circa-2012 laptop might consume
50–100 W (joules per second) during normal operation,
a smartphone might consume 0.5–4 W (depending on
what the user is doing, whether the radio is on, etc.), and
a good low power wristwatch might consume 10 μW down
to ∼100 nW.

As power consumption decreases for some functions, it
turns out that there is, in many cases, just enough energy
in the environment to power these systems. This is often
known as energy harvesting or energy scavenging.
Below, we’ll look at some interesting devices that have
been built to scavenge energy from the environment
to power everyday systems. A great many scavenging
systems have been built in recent years, so we’ll focus on
general classes of scavenging. It is also important to note
that the line between power scavenging and conventional
power generation can become blurred: is a normal solar
cell scavenging light to produce power? Sure! Is a wind
turbine scavenging wind power to produce electricity? Of
course. The idea is to focus on technologies that convert
very small sources of power which, in the past, were often
too small to be useful or were ignored.

∆V

∆T
∆V = (s1 − s2) ∆T

Figure TF25-1: The most common class of thermoelec-
tric materials operate according to the Seebeck effect.
When two conductors are joined at one end and exposed
to a temperature gradient (�T ), a potential difference (�V )
is measurable across the free ends of the two conductors.
The relationship between �V and �T depends on (s1−s2),
where s1 and s2 are the Seebeck coefficients of the two
materials. The Seebeck coefficient is a material-specific
property thet depends on the molecular structure of the
material. This potential difference can be used to drive
a current through an external load and thus do work.
Interestingly, the effect can be run in reverse—known as
the Peltier effect—such that an applied voltage can be
used to create a temperature difference. This is the basis
of cryogenic cooling systems.

Thermoelectric

Almost every system that does useful work also produces
heat. This “waste heat” is often exhausted to the
environment but, since time immemorial, humans have
also used heat to do work. Steam engines, internal
combustion engines, the turbine systems at power plants
and thousands of other heat engines extract useful
energy from a heat source. Modern, top of the line
power plants contain combined heat and power (CHP)
systems that internally recover waste heat to increase
efficiency.

A number of miniaturized technologies have been
explored for scavenging tiny amounts of waste heat.
Although these efforts have included making tiny heat
engines, fundamental physical limitations have so far
prevented successful scaling down of mechanical heat
engines down to the millimeter. A different approach is to
use materials that convert heat directly to electrical power;
thermoelectric materials are in this category.

In the early 19th century Thomas Johann See-
beck observed that a voltage was induced when
two dissimilar conductors were placed in a thermal
gradient (Fig. TF25-1). Thermoelectric materials are
used extensively to sense temperature. More recently,
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Figure TF25-2: (top) A tiny micromechanical harvesting
system developed at the University of Michigan. It occupies
27 mm3 and can harvest > 200 μW delivered at 1.85 V
when exposed to 1.5 g’s of acceleration when vibrating at
or near ∼155 Hz.

researchers have built tiny thermoelectric systems that
scavenge power from small thermal gradients (such
as is found between the surface of your skin and the
environment); the small temperature difference (usually
1◦–5 ◦C) and the low efficiency of existing thermoelectric
materials has limited this to low scavenged energy
densities (<1–10 mW per ◦C of temperature gradient per
cm2 of converter area) when compared to batteries or
other conventional sources.

The efficiency of conversion (that is, how much of the
heat energy is successfully converted to electrical power)
hovers in the 1–6% range for implemented systems and
this limitation comes from the thermomelectric material
itself. A number of material-science efforts are under
way to produce thermoelectric materials with higher
efficiencies.

Mechanical Harvesting

A number of technologies have been developed to
harvest the small motions present in everyday life.

Perpetual motion watches use the regular motion of
your arm to power tiny spring mass systems which
either charge a battery or drive clockwork. Similar spring-
mass systems (similar to those presented in Technology
Brief 15: Micromechanical Sensor and Actuators) have
been developed to power sensor motes deployed in
areas with continuous environmental force or vibrations
(Fig. TF25-2). As the environmental vibrations (which are
usually very small, like those caused by the whirring of
gears, the hum of an engine or the regular force applied
by your heel to the rubber sole of your shoe) move the
scavenger system, that force or motion can be converted
to electrical power.

The conversion of mechanical work to electrical power
can occur via the motion of charged conductor plates,
electromagnetic windings or even a class of materials
called piezoelectrics. A piezoelectric material converts
mechanical deformation into a voltage or current (and
vice versa as described in Technology Brief 19: Crystal
Oscillators). Several technology development groups,
for example, have introduced piezoelectric flexures to
the soles of running shoes. The amount of energy
scavenged depends on acceleration or force experienced
by the system, but typical systems can range from
∼1 μW/cm for normal vibrations encountered in daily
life to ∼ 100 μW/cm2 in industrial or high impact settings
(such as the vibrations given off by heavy machinery).
Figure TF25-2 shows an example of a complete energy
scavenging system that employs a cantilever beam (the
diving board structure in Fig. TF25-2) that acts as a
spring with a proof mass at its tip.The cantilever structure
oscillates when external vibrations are applied, deforming
the cantilever. A piezoelectric film on the cantilever
converts the oscillating mechanical energy to oscillating
electrical energy that can power a circuit or sensor.

Radio Frequency Scavenging

A more recent class of devices attempts to scavenge
power from the radio frequency electromagnetic energy.
One common approach involves coupling oscillating
radio frequency signals between (usually flat) conductive
coils placed very close to each other; this is the basis
of radio frequency identification (RFID) systems. A
different approach is to collect or scavenge energy form
electromagnetic energy present in our environment (from
radio transmitters, phones, Wifi, etc.). Many working
systems have been demonstrated in this second class
over the years. One popular concept is the rectifying
antenna, or rectenna.
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10-4.3 Single-Phase Equivalent Circuits

� A balanced three-phase network can be subdivided
into three, independent, single-phase equivalent circuits
(Fig. 10-8). �

In the solution of Example 10-2, we discovered that VN = 0 and
In = 0, both a consequence of the balanced-network condition.
Since there is no voltage drop across the transmission line
between nodes n and N (Fig. 10-8(a)), we can treat those
two nodes as the same node, even when no neutral line exists
between them. Hence, the balancedY-Y network is equivalent to
the sum of three, independent, single-phase circuits as shown in

2
3

n N

V1

V2V3

VN

b

aIL1

IL3

IL2

ZY

ZY ZY

ZTL

ZTL

ZTL

Vn = 0

1

c

InZn

+
_

+
_

+
_

IL2
 loop IL3

 loopIL1
 loop

n N

V1

a

ZY

1 ZTL IL1

+
_

n N

V2

b

ZY

2 ZTL

+
_

n N

V3

c

ZY

3 ZTL

+
_

IL3
IL2

Figure 10-8: The balanced Y-Y network is equivalent to the sum of three, independent single-phase circuits.

Fig. 10-8(b). The equivalency allows us to analyze each single-
phase circuit separately.

The equivalence afforded by the balanced condition to the
Y-Y network can be extended to the three other topologies by
transforming them into Y-Y networks:

• For a balanced Y-� network, transform its �-load into a
Y-load using Eq. (10.12).

• For a balanced �-Y network, transform its �-source into
a Y-source using the recipe of Section 10-4.1.

• For a balanced �-� network, transform both its �-source
and �-load to Y-configurations.
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(a) Y-∆ network

(b) Single-phase equivalent circuit
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2
3

n

+
_

+_+ _

a

c b

Ica Iab

Ibc

170            V−120o

170       V0o

170            V−240o

(20 + j5) Ω (20 + j5) Ω

(20 + j5) Ω

170       V0o
20 + j5

n N

a

ZY = =Z∆

1 IL1

+
_ 3 3 Ω( )

Figure 10-9: Circuit of Example 10-3 (voltage values are rms).

Example 10-3: Balanced Y-� Network

In the balanced Y-� network shown in Fig. 10-9(a),
transmission-line impedances have been ignored. Determine
line currents IL1 to IL3 , and compare them with those of the
phase currents in the load circuit.

Solution:

Method 1: Y-� Network

Application of KVL to loop (n1ab2n) in Fig. 10-9 leads to

−170 0◦ + (20 + j5)Iab + 170 −120◦ = 0.

Solving for phase current Iab gives

Iab = 170 0◦ − 170 −120◦

20 + j5
= 14.28 16◦ A (rms).

Similarly,

Ibc = 170 −120◦ − 170 −240◦

20 + j5
= 14.28 −104◦ A (rms)

and

Ica = 170 −240◦ − 170 0◦

20 + j5
= 14.28 136◦ A (rms).

The line currents are

IL1 = Iab − Ica

= 14.28 16◦ − 14.28 136◦

= 14.28
√

3 −14◦ = 24.74 −14◦ A (rms),

IL2 = Ibc − Iab = 24.74 −134◦ A (rms),

and

IL3 = Ica − Ibc = 24.74 106◦ A (rms).

We observe that the amplitudes of the line currents are
√

3 times
the amplitudes of the phase currents in the load circuit.



“book” — 2015/5/4 — 7:23 — page 581 — #16

10-4 BALANCED NETWORKS 581
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Figure 10-10: �-� network of Example 10-4.

Method 2: Equivalent Single-Phase

After transforming the �-load into an equivalent Y-load with
ZY = Z�/3, we can apply the single-phase equivalency to
generate three single-phase circuits. The single-phase circuit
associated with line current IL1 is shown in Fig. 10-9(b). Hence,

IL1 = 170 0◦

ZY
= 3 × 170 0◦

20 + j5
= 24.74 −14◦ A (rms),

which is identical to the result provided by Method 1. Line
currents IL2 and IL3 can then be obtained successively by
subtracting a phase angle of 120◦ in each step.

Example 10-4: Unbalanced �-Load

The unbalanced �-load circuit in Fig. 10-10 is connected
to a balanced �-source with a positive phase sequence. If
V12 = 416 60◦ V (rms), determine the line currents IL1 to IL3 .

Solution: Given that the generator has a positive-sequence
source, its phase voltages are

V12 = 416 60◦ = (208 + j360) V (rms),

V23 = V12 × 1 −120◦

= 416 −60◦ = (208 − j360) V (rms),

V31 = V12 × 1 −240◦

= 416 −180◦ = (−416 + j0) V (rms).

The mesh-current equations for loops 1, 2, and 3 are

−V12 + (2 + j1)IL1 + (4 + j6)Iab − (2 + j1)IL2 = 0,

−V23 + (2 + j1)IL2 + (10 + j4)Ibc − (2 + j1)IL3 = 0,

V31 + (2 + j1)IL1 − (20 + j8)Ica − (2 + j1)IL3 = 0.

At nodes a, b, and c:

IL1 = Iab − Ica,

IL2 = Ibc − Iab,

IL3 = Ica − Ibc.

Making these substitutions in the three mesh-current equations,
and then solving the three simultaneous equations, leads to

Iab = (33.31 + j5.95) A (rms),

Ibc = (6.38 − j25.37) A (rms),

Ica = (−11.25 + j4.72) A (rms).

The line currents are then

IL1 = (33.31 + j5.95) − (−11.25 + j4.72)

= (44.56 + j1.23) A (rms),

IL2 = (6.38 − j25.35) − (33.30 + j5.94)

= (−26.94 − j31.32) A (rms),

IL3 = (−11.25 + j4.72) − (6.38 − j25.35)

= (−17.63 + j30.09) A (rms).
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Note that even though the load circuit is unbalanced,

IL1 + IL2 + IL3 = 0.

Concept Question 10-7: What conditions must apply in 
order to use the equivalent single-phase method? What 
advantage does it offer? (See         )

Exercise 10-5: Determine IL1 in the balanced Y-Y
network of Fig. 10-8, given that V1 = 120 0◦ V,
ZTL = (2 + j1) � and ZY = (28 + j9) �. 

Answer:    IL1 = 3.80 −18.4◦   A.  (See         )

10-5 Power in Balanced Three-Phase
Networks

Having examined the relationships for the currents through and
voltages across the loads in balancedY- and �-load circuits, we
will now consider the power quantities associated with them.

10-5.1 Y-Load Configuration

The balanced Y-load circuit shown in Fig. 10-11 has equal
impedances ZY. Using VaN as a reference, the circuit’s three
phase voltages can be expressed as

VaN = VYL 0◦ , (10.13a)

VbN = VYL −120◦ , (10.13b)

VcN = VYL −240◦ , (10.13c)

where VYL is the rms magnitude of the phase voltages of
the Y-load. Their phase sequence is consistent with the phase
sequence of theY-source circuit (Fig. 10-6). Current Ia flowing
through impedance ZY = ZY φY is

Ia = VaN

ZY
= VYL 0◦

ZY φY
= VYL

ZY
−φY = IYL −φY ,

(10.14a)
where

IYL = VYL

ZY

is the rms magnitude of the phase current. Similarly,

Ib = IYL −120◦ − φY , (10.14b)

Ic = IYL −240◦ − φY . (10.14c)
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Figure 10-11: Balanced Y-load circuit with line voltages Vab

to Vca , line currents IL1 to IL3 , phase voltages VaN to VcN ,
and phase currents Ia to Ic.

In accordance with Eq. (8.32), the complex power associated
with an impedance carrying current Ia is

Sa = VaN I∗
a = VYL(IYL −φY)∗ = VYLIYL φY . (10.15)

The real and imaginary components of Sa represent Pa , the
average real power dissipated in ZY, and the reactive power
stored in it, Qa :

Pa = Re[Sa] = VYLIYL cos φY, (10.16a)

Qa = Im[Sa] = VYLIYL sin φY. (10.16b)

It is a straightforward exercise to show that

Pa = Pb = Pc = VYLIYL cos φY (10.17a)

and

Qa = Qb = Qc = VYLIYL sin φY. (10.17b)

Hence, for the overall balancedY-load circuit, the total average
power PT and total reactive power QT are

PT = 3VYLIYL cos φY,

QT = 3VYLIYL sin φY.

(balanced network)

(10.18a)

(10.18b)
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The power factor of the overall load circuit is

pf = PT

|ST| = PT√
P 2

T + Q2
T

= cos φY, (10.18c)

which is also the power factor of the individual loads. From the
circuit in Fig. 10-11, it is evident that the phase currents in theY-
load circuit are identical to the line currents (IL1 = Ia , IL2 = Ib,
and IL3 = Ic). Hence, the rms magnitude of the line currents,
IL, is equal to the rms magnitude of the phase currents, IYL.
Moreover, it is easy to show that the rms magnitude VL of the
three line voltages is related to the rms magnitude of the phase
voltages by VL = √

3 VYL. Consequently, Eq. (10.18) can be
expressed in terms of the line voltages and currents as

PT = 3

(
VL√

3

)
IL cos φY = √

3 VLIL cos φY (10.19a)

and

QT = √
3 VLIL sin φY. (10.19b)

Moreover, the two expressions can be combined into

ST = PT + jQT = √
3 VLIL φY

(balanced Y-load).

(10.20)

10-5.2 �-Load Configuration

In the Y-load circuit of the preceding subsection, the line and
phase currents were the same, and the amplitudes of the line
and phase voltages were different but related by a factor of

√
3.

The opposite is true for the �-load circuit shown in Fig. 10-12;
the line and phase voltages are the same (V�L = VL) and the
corresponding currents are related by I�L = IL/

√
3. Hence,

with

|Vab| = |Vbc| = |Vca| = V�L, (10.21a)

and

|Iab| = |Ibc| = |Ica| = I�L, (10.21b)

the total complex power is

ST = PT + jQT = 3V�LI�L φ� , (10.22)

where φ� is the phase angle of Z�. In terms of the rms
amplitudes of the line voltages and currents, ST is

ST = 3VL

(
IL√

3

)
φ� = √

3 VLIL φ� . (10.23)

(balanced �-load)

IL1

IL3

IL2

a

c b
Ica

Iab

Ibc

Z∆

Z∆

Z∆

Vab

Vbc

Vca

+

+
+

_
_

_

B
al

an
ce

d 
Y-

so
ur

ce

Figure 10-12: Balanced �-load circuit connected to a balanced
Y-source.

The form of Eq. (10.23) for the �-load circuit is the same
as that of Eq. (10.20) for the Y-load circuit. If we transform
a balanced �-load into a balanced Y-load, the magnitude of
the Y-impedances decreases by a factor of 3, but their phase
angles remain the same (φ� = φY). Consequently, Eq. (10.18c)
applies to bothY- and �-loads. Table 10-1 provides a summary
of the voltage and power relations for balanced Y- and
�-networks.

10-5.3 Total Instantaneous Power

For the Y-load circuit of Fig. 10-11, the instantaneous power
Pa(t) extracted by the load with phasor voltage VaN across it
and current Ia through it is

Pa(t) = υaN(t) ia(t)

= Re[√2 VaNejωt ] Re[√2 Iae
jωt ]

= Re[√2 VYLejωt ] Re[√2 IYLe−jφYejωt ]
= 2VYLIYL cos ωt cos(ωt − φY), (10.24a)

where we used the expressions for VaN and Ia given by
Eqs. (10.13a) and (10.14a), respectively , and introduced a
factor of

√
2 in both to convert their magnitudes from rms to

peak amplitude.
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Table 10-1: Balanced networks.

V1 = VYs φ1
V2 = VYs φ1 − 120◦
V3 = VYs φ1 + 120◦

1

23
+

_ +_

+
_ V1

V2
V3

Y-source

3 2

1

+

_ +
_

+_

V31

V23 

V12

∆-source

V12 = V1 × √
3 30◦

V23 = V2 × √
3 30◦

V31 = V3 × √
3 30◦

N

Vbc

VabVca

b

a
IL1

IL2

IL3

ZY

ZYZY

Ia

IbIc

c

+

+

+
+

+ _

_
+

_

_

_

_
V bN

VaN

V
cN

Y-load

Z� = 3ZY

IL1

IL3

IL2

c b

a

Vbc

Ica

Iab

Ibc

Z∆

Z∆

Z∆

VabVca

+

+
+

_
_

_

∆-load

VaN = (VL/
√

3) 0◦ Vab = VL 30◦†

VbN = (VL/
√

3) −120◦ Vbc = VL −90◦

VcN = (VL/
√

3) −240◦ Vca = VL 150◦

VL = rms magnitude of line-to-line voltage

IL = √
3 VL/|ZY| IL = √

3 VL/|Z�|
ST = √

3 VLIL φY ST = √
3 VLIL φ�

†Phase relative to VaN of Y-load
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Similarly, for the other two loads of the Y-load configuration

Pb(t) = 2VYLIYL cos(ωt − 120◦) cos(ωt − 120◦ − φY),

(10.24b)

and

Pc(t) = 2VYLIYL cos(ωt − 240◦) cos(ωt − 240◦ − φY).

(10.24c)

The total instantaneous power of the Y-load circuit, PT(t), is
the sum of the three expressions given by Eqs. (10.24a to c),

PT(t) = 2VYLIYL[cos ωt cos(ωt − φY)

+ cos(ωt − 120◦) cos(ωt − 120◦ − φY)

+ cos(ωt − 240◦) cos(ωt − 240◦ − φY)].
(10.25)

Upon using the identities

cos x cos y = 1

2
[cos(x + y) + cos(x − y)], (10.26a)

and

cos θ + cos(θ − 120◦) + cos(θ − 240◦) = 0 (10.26b)

for any θ , the expression for PT(t) reduces to

PT(t) = 3VYLIYL cos φY. (10.27)

This is a very significant result.

� The instantaneous power extracted by a balanced three-
phase load from a balanced three-phase source is not a
function of time. �

The power extracted by each load impedance individually varies
sinusoidally with time at an angular frequency of 2ω, but the
total power extracted by the three loads in combination does not
oscillate at all. Consequently, the power generated by a balanced
three-phase source is very steady, as is the power delivered to
a balanced three-phase load, such as a three-phase motor. This
observation is true for both Y and � configurations.

Example 10-5: Power in Balanced �-Load

A balanced Y-source connected to the �-load circuit of
Fig. 10-12 generates line currents with rms magnitude

IL = 5 A. If the total power consumed by the load is 3120 W
and the phase angle of the individual load impedances is 30◦
leading, determine the magnitude of the line voltage and the
load impedances Z�.

Solution: From Eq. (10.23), the total power PT is

PT = Re[ST] = √
3 VLIL cos φ�.

Since the impedance phase angle is leading, φ� = −30◦.
Solving for VL:

VL = PT√
3 IL cos φ�

= 3120√
3 5 cos(−30◦)

= 416 V (rms).

In the �-load circuit, IL = √
3 IYL and VL = VYL. Hence,

Z� = VYL

IYL
= VL

(IL/
√

3)
= √

3
416

5
= 144.11 �,

and

Z� = Z� −30◦ = (124.8 − j72.1) �.

Example 10-6: Power in Unbalanced �-� Network

This is a reexamination of the circuit analyzed earlier in
Example 10-4, but from the standpoint of the power supplied
by its source. For the sake of convenience, the circuit is
reintroduced in Fig. 10-13, along with the values of the line
currents and the phase currents in the load circuit. Determine
the complex power supplied by the three-phase source, and the
associated power factor.

Solution: The total complex power supplied by the
source equals the sum of the complex powers extracted
by the transmission-line impedances and by the three load
impedances:

S = (2 + j1)[|IL1 |2 + |IL2 |2 + |IL3 |2] + (4 + j6)|Iab|2
+ (10 + j4)|Ibc|2 + (20 + j8)|Ica|2.

Using the values listed in Fig. 10-13 leads to

S = (24.2 + j15.7) kVA

and

pf = P

|S| = 24.2

|24.2 + j15.7| = 0.84 lagging.
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Technology Brief 26
Inside a Power Generation Station

Many of the other Technology Briefs in this book are about
small circuits with high component densities, such as
Technology Brief 1 on Nano- and Microtechnology and
Technology Brief 7 on Integrated Circuit Fabrication. In
contrast, thisTechnology Brief is about big circuits used to
support high-voltage and high-power systems.Household
power sources provide 120—240 V. As seen in Fig. 10-1,
the voltages in local distribution systems are on the order
of 1–10 kV, in transmission systems they are on the order
of 10s of kV, and in power generation stations they are
on the order of 100s of kV. As the power increases, the
wires and electrical components must be physically larger
to accommodate the heat generated by large currents
passing through even small resistances. They must also
be physically separated by greater distances, to prevent
breakdown across the air gap between them.

High-power systems use many of the same electrical
components as other electrical circuits, but the physical
scale of high-power components is much bigger.
Consider, for example, the very large iron-core inductor
at the utility substation shown in Fig. TF26-1. Each of
its three phases is connected via cables at the top. A
bank of capacitors is shown in Fig. TF26-2. Both the
capacitor and inductor are physically isolated from the
ground below them in order to prevent them from arcing
or shorting to the ground.

As noted in Section 10-2, 3-phase circuits are arranged
in either a Y or a � configuration. Figure TF26-3 shows
photos of inductors connected in both configurations.

Not only are the inductors and capacitors used in
the distribution substations very large in size, but so

Figure TF26-1: A large 50 MVAR (Mega-Volts-Amps
Reactive) loading inductor.

is the power generator. As described in Section 10-1,
3-phase electrical power is generated by creating a
rotating magnetic field (often with rotor coils) inside three
stator coils. FigureTF26-4 shows one of the large stator
coils for a coal-fired power generation station.The sheer
scale of the coils is evident from the fact that several
technicians are working inside of it.

The large size theme also applies to electrical
insulation, connections, and fuses used in high power
applications. When connecting any electrical system,
physical/mechanical connections are needed to hold the
system together, and electrical connections to provide
the appropriate paths for current. It is best practice to
separate the mechanical connections from the electrical
connections (similar to a smaller system where the
electrical solder should not serve as the mechanical
support). High-power systems use ceramic or glass
insulator strings to electrically isolate the mechanical
system that holds wires in place. These are seen and
labeled in Fig. TF26-3(a), and a close-up is shown in
Fig. TF26-5.

Opening a switch in a high power system requires
special care, as illustrated in Fig. TF26-6. A fuse for high
voltage systems is shown in Fig. TF26-7. Unlike smaller
fuses where the metal component is meant to melt away,
this type of fuse snaps open when the current gets too
high. This is useful when maintaining long transmission
lines, for instance, because a maintainer can visually ob-
serve which fuse is open, indicating the location for repair.

High-power systems provide exciting jobs for electrical
engineers. Unlike commercial products, where circuits
are designed to be used in thousands or millions of
identical devices, most power systems are built for a single
individualized application.

FigureTF26-2: A bank of large capacitors for three phase
power. (Note the 3 lines going in and out of each capacitor.



“book” — 2015/5/4 — 7:23 — page 587 — #22

TECHNOLOGY BRIEF 26: INSIDE A POWER GENERATION STATION 587

(a) ∆ configuration

(b) Y configuration

FigureTF26-3: 3-phase Y and � inductor configurations
in a 345 kV substation. (Photos courtesy of Intermountain
Power Project.)

Figure TF26-4: Maintenance technicians working inside
one of the generator coils at the Intermountain Power
Project, a coal-fired power generation station. (Photo
courtesy of Intermountain Power Project.)

Figure TF26-5: Cap and pin insulator string (the vertical
string of discs) on a 275 kV suspension pylon.

Figure TF26-6: Opening a switch using a fiberglass-
insulated pole with a grounding wire. (Credit: IECACA.)

Figure TF26-7: Expulsion fuse cutout for 15 kV–27 kV.
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V23

V31

V12

IL1

IL2

IL3

1
a

c

b

Ica

Iab

Ibc

2

(2 + j1) Ω

Loop 1

(2 + j1) Ω

(4 + j6) Ω

(10 + j4) Ω

(20 + j8) Ω

(2 + j1) Ω
3

+
_

+ _

+_ Loop 2

Loop 3

IL1
 = (44.56 + j1.23) A (rms)

IL2
 = (−26.94 − j31.32) A (rms)

IL3
 = (−17.63 − j30.09) A (rms)

Iab = (33.31 + j5.95) A (rms)
Ibc = (6.38 − j25.37) A (rms)
Ica = (−11.25 + j4.72) A (rms)

Figure 10-13: Circuit of Example 10-4 with calculated values of the currents.

Concept Question 10-8: According to Eq. (10.27), the
total instantaneous power supplied by a balanced three-
phase source to a balanced three-phase load does not 
change with time. Why is such an attribute significant?
(See         )

Concept Question 10-9: In each source of a three-phase
configuration, the voltage varies sinusoidally at an angular
frequency ω, and so does the current. At what angular 
frequency does the power vary and why? (See         )

Exercise 10-6: Prove Eq. (10.26b).

Answer: (See )

10-6 Power-Factor Compensation

In Section 8-4.2, we examined how a shunt capacitor can be used
to improve the power factor of single-phase inductive loads. By
way of illustration, we showed in Example 8-6 that the addition
of a 4.62 mF capacitor changes the power factor from 0.8 for
the load alone to 0.95 for the load-capacitor combination. The
circuit specifications included the rms voltage supplied by the
source (220 V) and the power consumed by the load (200 kW).

The pf -compensation technique can be extended to balanced
three-phase circuits. Figure 10-14(a) and (b) display the single-
phase network and its three-phase extension. Note that the per-
phase line voltage in Fig. 10-14(b) is the same (220 V rms) as
the input voltage in the single-phase circuit, as is the per-phase
consumed power (600 kW/3 = 200 kW). From the standpoint
of pf -compensation, the circuit in Fig. 10-14(b) is equivalent
to three identical single-phase circuits. Hence, the values of the
three compensation capacitors are all the same as the value of C

in the single-phase circuit.

Example 10-7: Balanced Source Connected to Multiple

Loads

A balanced three-phase source supplies a 1200 V (rms)
line voltage to three separate, balanced, three-phase loads,
connected in parallel as shown in Fig. 10-15(a). Determine:

(a) the total complex power supplied by the source,

(b) the power factor at the source end,

(c) the line currents, and

(d) the capacitance of the three shunt capacitors added to raise
the source’s power factor to 0.92 lagging (Fig. 10-15(b)).
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CC

C

(b) Three-phase

(a) Single-phase

C = 4.62 mF

C

C = 4.62 mF

Complex load
200 kW

pfold = 0.8 lagging 
pfnew = 0.94 lagging

Single-phase
source

V = 220 V (rms)

+

_
V

Balanced
three-phase load

600 kW
pfold = 0.8 lagging 

pfnew = 0.94 lagging

Balanced
three-phase

source
VL = 220 V (rms)

Figure 10-14: A balanced three-phase load can be compensated by treating it as three individual circuits each consuming one-third of the
total power.

Solution: (a) For load 1, S1 = 6, 000 VA and pf 1 = 0.8
lagging. Hence,

φ1 = cos−1(0.8) = 36.87◦

and

S1 = S1(cos φ1 + j sin φ1) = (4800 + j3600) VA.

Similarly, for loads 2 and 3, with S2 = 12, 000 VA and
pf 2 = 0.6 lagging and S3 = 18, 000 VA and pf 3 = 0.9 lagging,
we have

φ2 = cos−1(0.6) = 53.13◦,

φ3 = cos−1(0.9) = 25.84◦,
S2 = S2(cos φ2 + j sin φ2) = (7200 + j9600) VA,

and

S3 = S3(cos φ3 + j sin φ3) = (16200 + j7846) VA.

The total complex power is then

ST = S1 + S2 + S3 = (28200 + j21046) VA,

of which

PT = 28200 W and QT = 21046 VAR.

(b) From the standpoint of the source, the combination of the
three loads is equivalent to a single, balanced, three-phase load
with phase angle φ given by

φ = tan−1
(

QT

PT

)
= tan−1

(
21046

28200

)
= 36.73◦,

and a corresponding power factor

pf s = cos φ = cos 36.73◦ = 0.8.

(c) Line current IL1 is

IL1 = Ia1 + Ia2 + Ia3 ,

where Ia1 , Ia2 , and Ia3 are the current branches into loads 1, 2,
and 3, respectively (Fig. 10-15(a)). According to Eqs. (10.20)
and (10.23), for both Y- and �-loads, the complex power
extracted by a balanced three-phase load is

S = √
3 VLIL φ ,

where VL and IL are the magnitudes of the line voltage and
current, and φ is the phase angle of the load impedance. For all
three loads, VL = 1200 V (rms), and for load 1, φ1 = 36.87◦.
Hence,

S1 = √
3 VLIa1 ,
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(a) Original circuit

(b) Equivalent circuit with shunt capacitors added

1

2

3

a

b

c
CC

C

IL1

IL2

IL3

Equivalent
combined

load

Balanced
three-phase

source
VL = 1200 V (rms)

3 2 1

Balanced
three-phase load 3

18000 VA
pf3 = 0.9 lagging

Balanced
three-phase load 1

6000 VA
pf1 = 0.8 lagging

Balanced
three-phase source

1200 V (rms) 

a1

b1

c1

a3

b3

c3

c2 b2 a2

Ia3

Ib3

Ic3

Ic2
Ib2

Ia2

IL3
IL2

IL1 Ia1

Ib1

Ic1

Balanced
three-phase load 2

12000 VA
pf2 = 0.6 lagging

Figure 10-15: Three-phase source connected in parallel to three loads, each a balanced three-phase load (Example 10-7).

which leads to

Ia1 = S1√
3 VL

= 6000√
3 1200

= 2.89 A (rms).

The phase angle of Ia1 is −36.87◦; this is negative because the
power factor is lagging. Hence,

Ia1 = 2.89 −36.87◦ A (rms).

Similarly,

Ia2 = S2√
3 VL

−φ2 = 5.77 −53.13◦ A (rms),

Ia3 = S3√
3 VL

−φ3 = 8.66 −25.84◦ A (rms).

The phasor sum of all three currents is

IL1 = Ia1 + Ia2 + Ia3 = 16.93 −36.73◦ A (rms).



“book” — 2015/5/4 — 7:23 — page 591 — #26

10-7 POWER MEASUREMENT IN THREE-PHASE CIRCUITS 591

Currents IL2 and IL3 follow suit by subtracting and adding 120◦
to their phases, respectively,

IL2 = 16.93 −156.73◦ A (rms),

IL3 = 16.93 83.27◦ A (rms).

(d) Raising the power factor from pf s = 0.8 to a new value
pf ′

s = 0.92 corresponds to changing φ of the combined load
from 36.73◦ to

φ′ = cos−1(0.92) = 23.07◦.

It also means that the total complex power changes from

ST = (28200 + j21046) VA (before)

to

S′
T = (28200 + jQ′

T) VA (after adding capacitors),

with PT remaining unchanged, but the reactive power
decreasing to

Q′
T = PT tan φ′ = 28200 tan 23.07◦ = 12013.15 VAR.

The incremental reactive power contributed by the three shunt
capacitors is

QC = 12013.15 − 21046 = −9032.87 VAR.

Given that the voltage across each capacitor has a magnitude
VL = 1200 V and QC is related to C by

QC = −3V 2
L ωC,

where the factor 3 accounts for the fact that QC is the sum of
the reactive powers of the three capacitors, we deduce that

C = −QC

3ωV 2
L

= −(−9032.87)

3 × 2π × 60 × (1200)2 = 5.55 μF.

Concept Question 10-10: Can the pf -compensation
method used in single-phase circuits be extended to a
three-phase source connected to a balanced three-
phase load? (See         )

Concept Question 10-11: How can one apply the
pf -compensation method to a three-phase source
connected in parallel to multiple, balanced, three-phase 
load circuits? (See         )

Exercise 10-7:Suppose the circuit shown in Fig. 10-15(a)
contains only balanced loads 1 and 2. What value should
C have in order to raise the source’s power factor to 0.92
lagging?

Answer: C = 4.97 μF. (See                  )

10-7 Power Measurement in
Three-Phase Circuits

The wattmeter is the standard instrument used to measure
the average power consumed by a load. The classic analog
wattmeter uses two coils, a current coil that measures the
current flowing to the load, as shown in Fig. 10-16(a), and a
voltage coil that measures a current proportional to the voltage
across the load. One terminal of each coil has a double polarity
mark (±) next to it.

� If the ± terminal of the current coil is on the end
toward the source and the ± terminal of the voltage
coil is connected to the line in which the current coil is
inserted, the calibrated deflection on the wattmeter (or
digital display) is equal to the average power P absorbed
by the load. �

That is, if in Fig. 10-16(a), I and V are in rms and

I = I φi (rms), (10.28a)

V = V φv (rms), (10.28b)

then the quantity measured by the wattmeter is

P = Re[S] = Re[VI∗] = V I cos(φv − φi). (10.29)

� The presence of the wattmeter in a circuit has negligible
impact on the voltages and currents in the circuit. The
advent of digital circuits that can rapidly sample voltage
and current has enabled a class of digital wattmeters that
does not require coils but performs substantially the same
function. �

The wattmeter power-measurement technique can be
extended to measure PT, the total average power absorbed
by any three-phase load (Y or �, balanced or unbalanced).
By inserting three wattmeters, one between each pair of lines
connected to the three-phase load, the total power absorbed
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(b) Three-phase power measurement

(a) Single-phase power measurement

a

c

b

Three-phase
load

(no restriction
on 

configuration
or balance)

Balanced
three-phase

source

+_

+_

+_

+_
P1

P2

Current coil

Current coil

Voltage
coil

Voltage
coil

Current coil

Voltage 
coil

I

V

a

b

Load
ZL

+_ +

_

+_
P

Figure 10-16: A wattmeter uses two coils. The double polarity
mark (±) of the current coil denotes the terminal that should be
toward the source, and on the voltage coil, ± marks the terminal
that should be connected to the line containing the current coil.

by the load, PT, is determined by simply summing the power
measurements made by the three wattmeters.

Alternatively, PT can be determined by using only two
wattmeters. The two-wattmeter method is not only simpler to
apply, but if the load is balanced, it also provides a measurement
of QT, and hence the total complex power ST = PT + jQT.
The arrangement is shown in Fig. 10-16(b). The wattmeters are
inserted in the lines connected to nodes a and c, with the line
connected to node b acting as a common reference. Actually,
any of the three lines can be used as the common reference,
so long as the wattmeters are inserted in the other two lines
with their voltage-coil terminals bearing the ± mark connected
to those lines (and not to the reference line). The wattmeters
measure average powers P1 and P2. Our task is to demonstrate
that the sum of these two powers is equal to PT. We will do so

by considering the unbalanced �-load configuration shown in
Fig. 10-17, in which the three impedances may have different
values.

At the input terminals to the �-load, the balanced three-phase
source supplies line voltages Vab, Vbc, and Vca with a positive
phase sequence. For convenience, we assign Vab a phase angle
of zero,

Vab = VL 0◦ (rms) (10.30a)

Vbc = VL −120◦ (rms) (10.30b)

Vca = VL 120◦ (rms), (10.30c)

where VL is the rms magnitude. Line currents I1 to I3 are
hitherto unknown.

Total power absorbed by the load

The total average power absorbed by the three-phase load is the
sum of the average powers absorbed by its three impedances.
For load Zab = Zab φab ,

Pab = Re[Sab] = Re[VabI∗
ab] = Re

[
Vab

V∗
ab

Z∗
ab

]
= V 2

L

Zab

cos φab.

(10.31)
Similar expressions apply to loads Zbc and Zca . The total power
is

PT = Pab + Pbc + Pca

= V 2
L

[
cos φab

Zab

+ cos φbc

Zbc

+ cos φca

Zca

]
. (10.32)

Two-wattmeter power measurement

With current I1 through it and voltage Vab across it, the top
wattmeter measures

P1 = Re[S1] = Re[VabI∗
1]. (10.33)

From the �-circuit,

I1 = Iab − Ica = Vab

Zab

− Vca

Zca

= VL 0◦

Zab φab

− VL 120◦

Zca φca

.

(10.34)

Using Eq. (10.34) in Eq. (10.33) leads to

P1 = Re

[
VL 0◦

(
VL 0◦

Zab −φab

− VL −120◦

Zca −φca

)]

= V 2
L

[
cos φab

Zab

− cos(φca − 120◦)
Zca

]

= V 2
L

[
cos φab

Zab

+ cos(φca + 60◦)
Zca

]
, (10.35)
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a

c

a

c

b
b

Ica

Iab

Ibc

Zab

Zbc

Zca

Vab

Vcb

Vca

+

+

+

_

_
_

+_

+_

+_

+_

I2

I3

I1

P1

P2

Current coil

Voltage
coil

Current coil

Voltage
coil

Figure 10-17: Two-wattmeter method applied to an unbalanced �-load.

where in the last step the negative sign (−) preceding the second
term was replaced with a positive sign (+) and 180◦ was added
to the phase.

For the lower wattmeter, the current through it is I3 and the
voltage across it is Vcb. Hence,

P2 = Re[VcbI∗
3]. (10.36)

Using Eq. (10.30b) for Vbc, as well as adding 180◦ in phase to
convert Vbc to Vcb, gives

Vcb = VL 60◦ (rms). (10.37a)

Moreover, from the circuit,

I3 = Ica − Ibc = Vca

Zca

− Vbc

Zbc

= VL 120◦

Zca φca

− VL −120◦

Zbc φbc

. (10.37b)

Hence,

P2 = Re

[
VL 60◦

(
VL −120◦

Zca −φca

− VL 120◦

Zbc −φbc

)]

= V 2
L

[
cos(φca − 60◦)

Zca

− cos(φbc + 180◦)
Zbc

]

= V 2
L

[
cos(φca − 60◦)

Zca

+ cos φbc

Zbc

]
. (10.38)

The sum of the powers measured by the two wattmeters is

P1 + P2 = V 2
L

{
cos φab

Zab

+ cos φbc

Zbc

+ 1

Zca

[
cos(φca + 60◦) + cos(φca − 60◦)

] }
.

(10.39)

Applying the identity

cos x + cos y = 2 cos

(
x − y

2

)
cos

(
x + y

2

)

to the last term leads to

P1 + P2 = V 2
L

[
cos φab

Zab

+ cos φbc

Zbc

+ cos φca

Zca

]
, (10.40)

which is identical to the expression for PT given by Eq. (10.32).
Hence,

PT = P1 + P2.

(any 3-phase load)

(10.41)

� The sum of the power measurements performed by the
two wattmeters is the same as the total power absorbed
by the three-phase load. �
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This conclusion was reached for an unbalanced �-load
configuration. It is equally true for a balanced load as well as
for any Y-load configuration.

Example 10-8: Reactive Power of a Balanced Load

Show that if the �-load circuit in Fig. 10-17 is balanced, with
equal impedances Zab = Zbc = Zca = Z�, the total reactive
power of the circuit is

QT = √
3 (P2 − P1). (10.42)

Solution: For load Zab = Z� = Z� φ� ,

Qab = Im{Sab} = Im

{
V 2

L

Z� −φ�

}
= V 2

L

Z�

sin φ� .

For all three loads,

QT = 3
V 2

L

Z�

sin φ�. (10.43)

Next, if we set

Zab = Zbc = Zca = Z�

and

φab = φbc = φca = φ�

in Eqs. (10.35) and (10.38), and then subtract P1 from P2, we
end up with

P2 − P1 = V 2
L

Z�

[cos(φ� − 60◦) + cos φ�

− cos φ� − cos(φ� + 60◦)]

= V 2
L

Z�

[cos(φ� − 60◦) − cos(φ� + 60◦)].

Applying the trigonometric identity

cos(x ± y) = cos x cos y ∓ sin x sin y,

leads to

P2 − P1 = 2V 2
L

Z�

sin φ� sin 60◦ = √
3

V 2
L

Z�

sin φ�. (10.44)

Upon comparing Eq. (10.44) with Eq. (10.43), we conclude that

QT = √
3 (P2 − P1) (balanced load).

(10.45)
We note that Eq. (10.45) is equally valid for a balanced
Y-load. Moreover, the combination of PT and QT can be used
to determine the phase angle φ associated with the system’s
power factor, namely

tan φ = QT

PT
=

√
3 (P2 − P1)

P2 + P1
, (10.46)

from which we have

pf = cos φ. (10.47)

Additionally, the sign of QT provides information about the
load:

• Load is inductive if QT > 0.

• Load is capacitive if QT < 0.

• Load is resistive if QT = 0.

Concept Question 10-12:A wattmeter uses a current coil 
and a voltage coil. How should the two coils be connected 
relative to the source and load of a single-phase circuit?
(See         )

Concept Question 10-13: The two-wattmeter method
can provide a measurement of what power quantity in
a three-phase network? Is the method constrained to 
balanced networks? (See         )

Exercise 10-8: When used on a balanced three-phase
load, the two-wattmeter method provided measurements
P1 = 4,800 W and P2 = 10,200 W. What is the total
complex power ST of the load?

Answer: ST = (15000 + j5400) VA. (See )
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Summary

Concepts

• In a balanced three-phase source with a positive phase
sequence, the three sources have identical voltage
magnitudes and frequency, but their phase angles are
shifted clockwise by −120◦ increments.

• Three-phase networks can assume four configurations:
Y-Y, Y-�, �-Y, and �-�, and each can be transformed
into any of the other three.

• A balanced three-phase network can be subdivided into
three independent, single-phase circuits.

• The total instantaneous power supplied by a balanced
three-phase source is a constant (not a function of time),
thereby rendering smooth power delivery to a balanced
three-phase load, such as a three-phase motor.

• The two-wattmeter method provides a measurement of
the total real power PT consumed by any three-phase
load, whether balanced or not. Moreover, if the load is
balanced, the method also provides a measurement of
the reactive power QT.

Mathematical and Physical Models
Balanced Y-Source

V1 = VYs φ1

V2 = VYs φ1 − 120◦

V3 = VYs φ1 + 120◦

V1 + V2 + V3 = 0

Y � Balanced Loads
Z� = 3ZY

Two-Wattmeter Measurement
PT = P1 + P2 (any load)
QT = √

3 (P2 − P1) (Balanced Y- or �-load)

Balanced �-Source
V12 = V�s φ1 + 30◦

V23 = V�s φ1 − 90◦

V31 = V�s φ1 + 150◦

V�s = √
3 VYs

V12 + V23 + V31 = 0

Total Complex Power
ST = √

3 VLIL φY (balanced Y-load)

ST = √
3 VLIL φ� (balanced �-load)

Total Instantaneous Power
PT(t) = 3VYLIYL cos φY (balanced Y-network)
PT(t) = 3V�LI�L cos φ� (balanced �-network)

Important Terms Provide definitions or explain the meaning of the following terms:

�-load configuration
�-source configuration
average real power
balanced
balanced load
balanced network
balanced source
balanced three-phase

Y-source configuration
bus circuit
center-tapped pole

transformer
complex power
current coil

digital wattmeter
line current
line voltage
line-to-line voltage
magnitude
magnitude of the �-source
negative phase sequence
network
neutral node
neutral terminal
neutral wire
phase current
phase magnitude
phase voltage

positive (123) phase sequence
power factor
power grid
reactive power
real power
rms magnitude of

the phase current
rms magnitude of

the phase voltages
rotor
single-phase generators
stator
step-down transformer
step-up transformer

three-phase
three-phase ac generator
three-wire single phase
total average power
total reactive power
transformer
transmission line
two-wattmeter method
voltage coil
wattmeter
Y-load configuration
Y-source configuration
Y-Y, Y-�, �-Y, �-�

configurations
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PROBLEMS

Section 10-1: Balanced Three-Phase Generators

10.1 For each of the following groups of sources, determine
if the three sources constitute a balanced source, and if it is,
determine if it has a positive or negative phase sequence.

(a) υa(t) = 169.7 cos(377t + 15◦) V
υb(t) = 169.7 cos(377t − 105◦) V
υc(t) = 169.7 sin(377t − 135◦) V

(b) υa(t) = 311 cos(ωt − 12◦) V
υb(t) = 311 cos(ωt + 108◦) V
υc(t) = 311 cos(ωt + 228◦) V

(c) V1 = 140 −140◦ V
V2 = 114 −20◦ V
V3 = 124 100◦ V

10.2 In a balanced Y-source with a positive phase sequence,
V1 = (103.92 − j60) V (rms). Determine: (a) V2 and V3 and
(b) V12, V23, and V31 of the equivalent �-source configuration,
all in polar form.

10.3 In a balanced �-source with a positive phase sequence,
υ12(t) = 240 cos(120πt−20◦)V. Determine (a) υ23(t), υ31(t),
and (b) υ1(t), υ2(t), and υ3(t) of the equivalent Y-source
configuration.

*10.4 In a balanced Y-source, V2 = 100 60◦ V (rms) and
V3 = −100V (rms). Is the phase sequence positive or negative?
Also, determine V1.

10.5 In a balanced �-source with a positive phase sequence,
V23 = (56.94+j212.5)V (rms). Determine υ12(t), υ23(t), and
υ31(t). Assume f = 60 Hz.

10.6 In a balanced Y-source with a positive phase sequence,
V1 = (16.93 + j46.51) V (rms). Determine υ12(t), υ23(t),
and υ31(t) of the equivalent �-source configuration. Assume
f = 60 Hz.

Sections 10-2 to 10-4: Configurations and Networks

*10.7 In the circuit of Fig. P10.7, VaN = 65 47◦ V (rms),
VbN = 60 15◦ V (rms), VcN = 45 −86◦ V (rms), and
f = 60 Hz. Calculate υab(t), υbc(t), and υca(t).

∗
Answer(s) available in Appendix G.

a

Nb

c

Three-phase
source

ZTL1

ZTL2

ZTL3

18 Ω

18 Ω

14 Ω

j44 Ω

−j16 Ω

j33 Ω

Figure P10.7: Circuit for Problem 10.7.

10.8 In the network of Fig. P10.8, Za = Zb = Zc =
(25 + j5) �. Determine the line currents.

IL1

IL3

IL2

1 a

c Zc

b
Nn

Zb

Za

2

3
+_

+_
+_

200           Vrms145o

200           Vrms−95o

200         Vrms25o

Figure P10.8: (Problems 10.8 to 10.12.)

10.9 In the network of Fig. P10.8, Za = (10 + j2) �,
Zb = 6 �, and Zc = (8 + j1) �. Determine the line currents.

10.10 Repeat Problem 10.8 after inserting transmission-line
impedances ZTL = (3+j1) � between nodes 1 and a, 2 and b,
and 3 and c.

*10.11 Repeat Problem 10.9 after inserting transmission-line
impedances ZTL = (3+j1) � between nodes 1 and a, 2 and b,
and 3 and c.

10.12 Repeat Problem 10.9 after adding a zero-impedance
wire between nodes n and N . Also, determine the current
through it.

10.13 Apply single-phase equivalency to determine the line
currents in the Y-� network shown in Fig. P10.13. The load
impedances are Zab = Zbc = Zca = (25 + j5) �.



“book” — 2015/5/4 — 7:23 — page 597 — #32

PROBLEMS 597

IL1

IL3

IL2

1 a

c

Zca
bn

Zbc

Zab
2

3
+_

+_

+_

120            Vrms−120�

120          Vrms120�

120       Vrms0�

3 Ω

3 Ω

3 Ω

Figure P10.13: (Problems 10.13 to 10.14.)

*10.14 Determine the line currents in the network of
Fig. P10.13, given that Zab = 10 �, Zbc = 5 �, and
Zca = (10 − j5) �.

10.15 Given a balanced �-Y network with V12 = 440 0◦ V
(rms) connected in a positive phase sequence, and
ZY = (10 − j2) �, apply the necessary transformation

in order to use single-phase equivalency to determine the three
line currents. Transmission-line impedances are ignored.

10.16 Given a balanced �-� network with V12 = 440 0◦ V
(rms) connected in a positive phase sequence, and
Z� = (6 − j2) �, apply the necessary transformation in
order to use single-phase equivalency to determine the three
line currents. Transmission-line impedances are ignored.

*10.17 Determine IL1 in the network of Fig. P10.17. (Hint:
This is a balanced network. If you apply the correct
transformations, the solution simplifies considerably.)

10.18 The network shown in Fig. P10.18 consists of a
balanced 120V (rms)Y-source connected in a positive phase se-
quence, lossless transmission lines, and an unbalanced �-load
with Zab = 14 �, Zbc = (6 − j2) �, and Zca = (24 + j6) �.
Assign V1 a phase angle of 0◦.

(a) Determine the phase voltages at the load: Vab, Vbc, and
Vca .

(b) Determine the phase currents: Iab, Ibc, and Ica .

IL1 a

c

b

1

2

3

60           Vrms−150�

60          Vrms−30�

60        Vrms90�
(4 − j2) Ω

(4 − j2) Ω

(4 − j2) Ω

(6 + j1) Ω

(6 + j1) Ω

(6 + j1) Ω

2 Ω

2 Ω

2 Ω

+
_

+
_

+
_

Figure P10.17: (Problem 10.17.)

IL1

IL3

IL2

1

23

I1

I2I3

n

V1

V2

V3

+
_

+_+ _

a

c b

Ica Iab

Ibc

ZabZca

Zbc

Figure P10.18: (Problem 10.18.)
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V23

V31 V12

IL1

IL3

IL2

1 a

c b

Ica Iab

Ibc

ZabZca

Zbc
23

I23

I12

I31

+
_ +

_

+_

Figure P10.19: (Problem 10.19.)

(c) Determine the line currents: IL1 , IL2 , and IL3 .

(d) Determine the total power absorbed by the load, given that
the power absorbed by an impedance Z due to the flow of
current I through it is P = |I|2 Re[Z], where I is rms.

10.19 The network shown in Fig. P10.19 consists of a
balanced 120 V (rms) �-source connected in a positive
phase sequence, lossless transmission lines, and an unbalanced
�-load with Zab = (6 + j4) �, Zbc = 4 �, and Zca = 12 �.
Assign V12 a phase angle of 0◦.

(a) Determine the phase voltages at the load: Vab, Vbc, and
Vca .

(b) Determine the phase currents: Iab, Ibc, and Ica .

(c) Determine the line currents: IL1 , IL2 , and IL3 .

(d) Determine the total power absorbed by the load, given that
the power absorbed by an impedance Z due to the flow of
current I through it is P = |I|2 Re[Z], where I is rms.

*10.20 Determine In in the circuit of Fig. P10.20. All sources
are rms.

Sections 10-5 to 10-7: Power

10.21 For the network in Fig. P10.21, (a) generate three
single-phase equivalent circuits and (b) determine the complex
power supplied by the three-phase source.

10.22 For the network in Fig. P10.22, (a) generate three
single-phase equivalent circuits and (b) determine the complex
power supplied by the three-phase source.

*10.23 Determine the complex power supplied by the source
in the network of Fig. P10.23.

10.24 A balanced Y-load is supplied by a three-phase
generator at a line voltage of 416 V (rms). If the real power

+
_ 100 0o

100 −240o

100 −120o

+

_

Nn +_ 0.2 + j1

0.2 + j1

0.2 + j1

0.2 + j1

j14 Ω

j80 Ω

−j18 Ω
45 Ω

70 Ω

In

IL3

IL2

84 Ω

IL1

I1

I2

I3

Figure P10.20: Circuit for Problem 10.20.

absorbed by the load is 6 kW at a power factor 0.7 lagging,
determine ZY and the magnitude of the line current.

10.25 A balanced �-load is supplied by a three-phase
generator at a line voltage of 208 V (rms). If the complex power
extracted by the load is (8 + j4) kVA, determine Z� and the
magnitude of the line current.

*10.26 For the network in Fig. P10.23, determine (a) the
average real power supplied by the three-phase source and (b)
what fraction of it is absorbed by the three-phase load.

10.27 Determine the complex power extracted by the load in
Fig. P10.27.Also determine the power factor of the overall load
circuit as seen by the source.
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n N

+_

+_

+_

220            Vrms−120�

220          Vrms120�

220       Vrms0�

2 Ω (8 + j2) Ω

(8 + j2) Ω

(8 + j2) Ω

2 Ω

2 Ω

Figure P10.21: (Problem 10.21.)

n

+_

+_

+_

220            Vrms−120�

220          Vrms120�

220       Vrms0�

2 Ω

(6 − j2) Ω

(6 − j2) Ω

(6 − j2) Ω
2 Ω

2 Ω

Figure P10.22: (Problem 10.22.)

n

+_

+_

+_

220            Vrms−120�

220          Vrms120�

220       Vrms0�

2 Ω

(8 + j2) Ω

(6 − j4) Ω

(10 + j1) Ω
2 Ω

2 Ω

Figure P10.23: (Problems 10.23 and 10.26.)

*10.28 In the three-phase network of Fig. P10.28, ZTL = 4 �,
Z�1 = (10−j4) �, and ZY2 = (5+j2) �. Determine the line
currents.

10.29 A 208 V (rms) balanced three-phase source supports
two loads connected in parallel. Each load is itself a balanced
three-phase load. Determine the line current, given that load 1 is
12 kVA at pf 1 = 0.7 leading and load 2 is 18 kVA at pf 2 = 0.9
lagging.

200           Vrms−120�

5 Ω −j2 Ω

j4 Ω

j2 Ω

10 Ω

8 Ω

+
_

+
_

+
_

200      Vrms0�

200          Vrms120�

Figure P10.27: (Problem 10.27.)

*10.30 A 416 V balanced three-phase source supports four
loads connected in parallel. Each load is itself a balanced three-
phase load. Determine the line current and the power factor at
the source, given that load 1 is 12 kVA at pf 1 = 0.7 leading,
load 2 is 18 kVA at pf 2 = 0.9 lagging, load 3 is 6 kW at pf 3 = 1,
and load 4 is 24 kVA at pf 4 = 0.7 lagging.

10.31 A 240 V (rms), 60 Hz Y-source is connected to a
balanced three-phase Y-load by four wires, one of which is the
neutral wire. If the load is 400 kVA at pf old = 0.6 lagging, what
size capacitors should be added to change the power factor to
pf new = 0.95 lagging?

*10.32 A 416 V (rms), 60 Hz Y-source is connected to a
balanced three-phase Y-load by four wires, one of which is the
neutral wire. If the load is 800 kW at pf old = 0.75 lagging, what
size capacitors should be added to change the power factor to
pf new = 0.95 lagging?

10.33 A balanced three-phase source with a line voltage of
208 V (rms) is connected to a three-phase motor designed
as a balanced Y-load. The powers measured using the two-
wattmeter method areP1 = 800W andP2 = 300W. Determine
the impedances of the motor and its power factor.

*10.34 Determine the power readings of the two
wattmeters shown in the circuit of Fig. P10.34 given
that Z� = (10 + j6) � and the amplitudes of the voltage
sources are rms.

10.35 Determine the power readings of the two
wattmeters shown in the circuit of Fig. P10.35 given
that ZY = (15 − j5) �.

*10.36 Determine the power readings of the two
wattmeters shown in the circuit of Fig. P10.36 given
that Z� = (10 + j6) � and the amplitudes of the voltage
sources are rms.

10.37 Repeat Problem 10.36 after replacing the balanced
�-load with a balanced Y-load with ZY = (10 + j6) �.
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Z∆1

Z∆1
Z∆1

ZTL

280           V−120�

280         V120� 280      V0�

IL1

IL2

a

b c

ZY2

ZY2
ZY2

ZTL

ZTL IL2

+_

+

_ +
_

Figure P10.28: Circuit for Problem 10.28.

+
_

+

_
180 30�

180 120�

Z∆

Z∆

Z∆

+_

+_

+_
+_

P1

P2

Figure P10.34: Circuit for Problem 10.34.

Potpourri Questions

10.38 Name three types of energy harvesting and describe the
energy conversion process in each case.

10.39 How are the Seebeck and Peltier effects related?

10.40 Why do power stations use large-size capacitors and
inductors?

10.41 What is a stator coil?

+
_

+

_
180 V30�

180 V120�

ZY

ZY

ZY

P2

P1+_

+_

+_ +_

Figure P10.35: Circuit for Problem 10.35.

+
_

+

_

480 V−30o

480 V90o

480 V−150o

+_ Z∆

Z∆P1

Z∆P2

+_

+_

+_

+_

Figure P10.36: Circuit for Problem 10.36.
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Objectives

Learn to:

� Incorporate mutual coupling in magnetically
coupled circuits.

� Analyze circuits containing magnetically coupled
coils.

� Relate input to output voltages, currents, and
impedances for magnetically coupled transform-
ers, including ideal transformers and three-phase
transformers.

Magnetic flux

Primary port
Secondary port

υ1

+

_
υ2

+

_

i1 i2

N1
N2

When two physically unconnected inductors are in close
proximity to one another, current flow through one of them
induces a magnetically coupled voltage across the other one.
Magnetic coupling may be intentional or not. Highly coupled
voltage transformers used in power distribution networks are
an example of intentional coupling. If the coupling between
two coils in a circuit is unintentional but significant, its effects
should be incorporated into the analysis of the circuit.

CHAPTER 11
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Overview

Voltage transformers are used in many electrical systems,
including power supply circuits (Section 7-9) and power dis-
tribution networks (Chapter 10). Whereas resistors, capacitors,
and inductors are one-port, two-terminal devices, a transformer
is a two-port (four-terminal) device with a primary port and a
secondary port. Coupling of energy between the two ports is
realized through a shared magnetic field, without the need for
direct contact between them. Transformers are part of a family
of devices and circuits called magnetically coupled circuits,
whose operation relies on magnetic coupling rather than current
conduction.

We begin this chapter by examining the voltage and current
relationships between the primary and secondary ports of a
coupled two-coil system. We did so previously in Section 7-9.1,
but then our treatment was limited to the special case of the ideal
transformer with perfect coupling. In this more comprehensive
examination, we introduce the concepts of mutual inductance,
equivalent circuits, and impedance transformations, and we
learn how three-phase transformers are configured to step-up
or step-down voltage levels in three-phase power circuits.

11-1 Magnetic Coupling

Magnetic coupling can occur between any two inductors in
close proximity of one another. Current flow through the coils
of one of the inductors induces a mutual inductance voltage
across the other inductor, and vice versa. The induction process
is described in terms of a mutual inductance, measured in
henrys (H), that depends on the degree of magnetic coupling
between the two inductors, which in turn depends on their
physical shapes, orientations relative to one another, spacing
between them, and the magnetic permeability μ of the medium
between them. Mutual inductance may be intentional or not. It
is key to the operation of highly coupled transformers used for
stepping up and stepping down voltage levels. On the other
hand, mutual inductance between two inductors, transmission
lines, or wires in a certain circuit may be totally unintentional,
as well as unavoidable. In that case, we should learn how to
account for the voltages induced by the mutual inductance and
how to incorporate them in the analysis of the circuit.

The two magnetically coupled coils in Fig. 11-1(a) have N1
turns on primary port 1 and N2 turns on primary port 2. Port 1
is connected to a source that causes current i1(t) to flow through
coil 1, which generates magnetic flux �11 linking coil 1 alone
and flux �12 linking both coils.

(a) Current i1 induces Φ11 and Φ12,
which induces υ2

(b) Current i2 induces Φ22 and Φ21,
which induces υ1

N1 turns N2 turns

i2(t)

υ2

+

_
υ1

Φ22Φ21+

_

+
−~

N1 turns N2 turns

i1(t)

υ2

+

_
υ1

Φ11
Φ12+

_

+
−~

Figure 11-1: Magnetically coupled coils.

� Magnetic fluxes form closed loops because the
magnetic field lines that emerge from one end of the
primary coil will also flow back in at the other end of
the coil. The direction of the magnetic field is dictated by
the direction of the current in the coil: if the four fingers
of the right hand point in the direction of the current, the
thumb will point in the direction of the magnetic field.
Alternatively, if the four fingers wrap in the direction of
the magnetic flux, the thumb will point in the direction of
the current. This is known as the right hand rule. �

The total magnetic flux through coil 1 is

�1 = �11 + �12. (11.1)

Magnetic flux linkage �1 is defined as the total flux linking all
N1 turns of coil 1,

�1 = N1�1. (11.2a)

For coil 2, the flux linking coil 1 to coil 2 is �12, and the
corresponding �2 is

�2 = N2�12. (11.2b)

Self inductance L1 of coil 1 is defined as the ratio of the
magnetic flux linkage �1 to the current i1 responsible for
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inducing �1,

L1 = �1

i1
, (11.3)

and the voltage induced across inductor L1 is

υ1 = d�1

dt
= L1

di1

dt
. (11.4a)

By analogy, �2 in coil 2 induces voltage υ2, with

υ2 = d�2

dt
= N2

d�12

dt
. (11.4b)

Both υ1 and υ2 are induced by di1/dt . In the case of υ1, the
link is self inductance L1, as given by Eq. (11.4a). To establish
an analogous relationship between di1/dt and υ2, we rewrite
Eq. (11.4b) as

υ2 = N2
d�12

di1
× di1

dt
. (11.4c)

Next, we define the mutual inductance M21, as

M21 = N2
d�12

di1
, (11.5)

and the expression for υ2 becomes

υ2 = ±M21
di1

dt
. (11.6)

� Subscripts 21 refer to the fact that M21 is the inductance
of coil 2 due to the magnetic field induced by current i1. �

The expression in Eq. (11.6) includes a (±) on the right-
hand side. This is because mutual inductance M21 is a positive
quantity measured in henrys (H), whereas υ2 may be positive
or negative, depending on the direction of the winding in coil 2
relative to the direction of the winding in coil 1. For the specific
winding directions shown in Fig. 11-1(a), the appropriate sign
is (+).

If we were to reverse the roles of coils 1 and 2, by connecting
the source to coil 2 instead of to coil 1, thereby causing current i2
to flow through coil 2, as depicted in Fig. 11-1(b), we would
end up with the following expressions for υ1 and υ2:

υ1 = ±M12
di2

dt
(11.7a)

and

υ2 = L2
di2

dt
. (11.7b)

� Because the coupled coils constitute a linear system,
energy considerations (Section 11-3) require that M12 =
M21 = M , where M is now called the mutual inductance
between the two coils. �

The ambiguity between the (+) and (−) signs in Eqs. (11.6)
and (11.7a) is resolved through the use of a standard dot
convention based on the directions of the two windings. For
a specific direction of i1 (left-hand side Fig. 11-2), the polarity
of υ2 depends on whether the dots are on the same or opposite
terminals of the windings and whether i1 enters coil 1 at its
dotted or undotted terminal.

� In a two-coil magnetically coupled system, if current
enters the first one at its dotted terminal, the polarity of
the mutual-inductance voltage induced across the second
coil is positive at its dotted terminal. The polarity of the
induced voltage is reversed if the current in the first coil
enters at the undotted terminal. Moreover, reciprocity
applies: current in the second coil induces a mutual-
inductance voltage across the first one in accordance with
the same dot convention. �

This dot convention covers all combinations of current
directions and dot locations outlined in Fig. 11-2.

Finally, if we generalize to the configuration shown in
Fig. 11-3(a) in which currents flow through both coils
simultaneously, voltage υ1 will contain two components, one
due to self-inductance of coil 1 and another due to the mutual
inductance between the two coils. That is, υ1 will be the sum
of Eqs. (11.4a) and (11.7a), and similarly, υ2 becomes the sum
of Eqs. (11.6) and (11.7b). Specifically:

For dots on same ends and currents entering coils at dotted
ends (Fig. 11-3(a)):

υ1 = L1
di1

dt
+ M

di2

dt

and

υ2 = L2
di2

dt
+ M

di1

dt
.

(11.8a)

(11.8b)

For dots on opposite ends but current entering coils at same
ends (Fig. 11-3(b)):

υ1 = L1
di1

dt
− M

di2

dt

and

υ2 = L2
di2

dt
− M

di1

dt
.

(11.9a)

(11.9b)
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(a) (e)

L1

M

L2

i1

υ2 = M
+

_
di1
dt L1

M

L2

i2

υ1 = M
+

_
di2
dt

(b) (f)

L1

M

L2

i1

υ2 = −M
+

_
di1
dt L1

M

L2

i2

υ1 = −M
+

_
di2
dt

(c) (g)
i1

L1

M

L2 υ2 = −M
+

_
di1
dt L1

M

L2

i2

υ1 = −M
+

_
di2
dt

(d) (h)
i1

L1

M

L2 υ2 = M
+

_
di1
dt L1

M

L2

i2

υ1 = M
+

_
di2
dt

Figure 11-2: Dot convention for the mutual-inductance voltage induced in coil 2 by current i1 in coil 1, and vice versa.

Sign Convention
Primary Side: υ1

(1) The self-induced component L1 di1/dt of υ1 is assigned a (+) sign if:

(a) the (+) polarity of υ1 is defined at the dotted terminal, and i1 enters coil 1 at the dotted terminal, or

(b) the (+) polarity of υ1 is defined at the undotted terminal, and i1 enters coil 1 at the undotted terminal.

Otherwise, L1 di1/dt is assigned a (−) sign.

(2) The mutually induced component M di2/dt of υ1 is assigned a (+) sign if:

(a) the (+) polarity of υ1 is defined at the dotted terminal, and i2 enters coil 2 at the dotted terminal, or

(b) the (+) polarity of υ1 is defined at the undotted terminal, and i2 enters coil 2 at the undotted terminal.

Otherwise, M di2/dt is assigned a (−) sign.

Secondary Side: υ2

The same sign convention applies from the perspective of the secondary side: simply replace “primary” with “secondary,”
subscript 1 with 2, and vice versa.
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(a) Dots on same ends

Change + to −
if i1 is CCW

Change + to −
if i2 is CW

i1R1

L1

M

L2

i2

υ1 = L1        + M
+

_
di1
dt

di2
dt υ2 = L2        + M

+

_
di2
dt

di1
dt

+
_

+
_υs1

υs2

R2

Change + to −
if i2 is CW

Change + to −
if ii is CCW

(b) Dots on opposite ends

Change + to −
if i1 is CCW

Change − to +
if i2 is CW

i1R1

L1

M

L2

i2

υ1 = L1        − M
+

_
di1
dt

di2
dt υ2 = L2        − M

+

_
di2
dt

di1
dt

+
_

+
_υs1

υs2

R2

Change + to −
if i2 is CW

Change − to +
if ii is CCW

Figure 11-3: Polarities of voltage components for clockwise (CW) and counterclockwise (CCW) current directions.

Example 11-1: 1 kHz Circuit

Determine load current iL(t) in the circuit of Fig. 11-4(a),
given that υs(t) = 10 cos(2π × 103t) (V), R1 = 5 �,
C1 = C2 = 10 μF, L1 = 1 mH, L2 = 3 mH, M = 0.5 mH,
and RL = 20 �.

Solution: We start by transforming the ac circuit from
the time domain to the phasor domain (Fig. 11-4(b)). Thus,
υs(t) becomes phasor voltage Vs, C gets transformed into
an impedance ZC = −j/ωC, and L gets transformed into an
impedance ZL = jωL. The angular frequency is

ω = 2πf = 2π × 103 rad/s.

Denoting I1 and I2 as the mesh currents in the two loops, both
defined with clockwise directions, the mesh-current equations
are

−Vs +
(

R1 − j

ωC
+ jωL1

)
I1 − jωMI2 = 0 (11.10a)

and

−jωMI1 +
(

jωL2 − j

ωC
+ RL

)
I2 = 0, (11.10b)

(a) Time domain

L1

R1
C1 C2M

L2

iL

RLυs(t)
+
_

(b) Phasor domain

jωL1

R1 jωM−j/ωC1 −j/ωC2

jωL2 RLVs

IL
+
_ I1 I2

Figure 11-4: Circuit of Example 11-1.

where C = C1 = C2. Note that the polarity of the last term
in Eq. (11.10a) is negative because, in accordance with the
convention shown in Fig. 11-2(g), the winding dots are on the
same end in Fig. 11-4(b) but I2 enters the undotted terminal of
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coil 2. Simultaneous solution of the two equations for IL = I2
gives

IL = jωMVs(
R1 + jωL1 − j

ωC

) (
RL + jωL2 − j

ωC

)
+ ω2M2

.

(11.11)
Substitution of the specified values leads to

IL = 139.5ej142.2◦
mA,

and its time-domain equivalent is

iL(t) = Re[ILejωt ] = 139.5 cos(2π × 103t + 142.2◦) mA.

Example 11-2: Coupled Inductors

The circuit in Fig. 11-5 has the following element values:
Vs = 30ej60◦

V, L1 = 10 mH, L2 = 30 mH, R1 = 5 �,
RL = 10 �, and the ac source operates at 60 Hz. The circuit
layout is such that inductors L1 and L2 experience a relatively
small mutual inductance M . Determine the average power
delivered to the load RL for (a) M = 4 mH, (b) M = 1 mH,
and (c) M = 0.

Solution: Before we apply mesh analysis, let us determine
V1 and V2 across the two inductors. Voltage V1 consists of two
terms, jωL1I1 due to current I1 entering at the (+) terminal of
V1, and jωM(I2 − I1) due to current (I2 − I1) through L2. The
polarity of the second term is governed by the dot convention:
if current enters a coil at its dotted terminal, the polarity of the
mutual-inductance voltage induced across the second coil is
positive at its dotted terminal. In the present case, (I2−I1) enters
L2 at its dotted terminal, so the voltage it induces across L1 is
positive at the dotted terminal of L1. Hence,

V1 = jωL1I1 + jωM(I2 − I1). (11.12a)

Application of the same rule to L2 gives

V2 = jωL2(I2 − I1) + jωMI1. (11.12b)

jωM

jωL1R1

jωL2 RLVs

V1
V2

+
_ I1 I2

+

+ __

Figure 11-5: Circuit of Example 11-2.

The first mesh equation is

−Vs + R1I1 + V1 − V2 = 0,

or equivalently,

(R1 + jωL1 + jωL2 − j2ωM)I1 − (jωL2 − jωM)I2 = Vs.

(11.13a)
Similarly, for the second mesh,

V2 + RLI2 = 0,

or equivalently,

−(jωL2 − jωM)I1 + (RL + jωL2)I2 = 0. (11.13b)

(a) M = 4 mH

Upon replacing R1, RL, L1, L2 with their specified
values, setting M = 4 mH, and multiplying inductances by
ω = 2πf = 2π × 60 = 377 rad/s, matrix solution of the two
equations gives

I2 = 1.657ej63.1◦
A, (11.14)

and according to Eq. (8.3), the corresponding average power
absorbed by RL is

PL = 1

2
|I2|2RL = 1

2
(1.657)2 × 10 = 13.73 W. (11.15)

(b) M = 1 mH

Repetition of the process with M = 1 mH gives

I2 = 1.64ej62.15◦
A (11.16)

and

PL = 13.45 W. (11.17)

(c) M = 0

In the absence of mutual coupling between the two coils,

I2 = 1.635ej62.03◦
A (11.18)

and

PL = 13.372 W. (11.19)
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Error

Ignoring M altogether would incur an error in PL of

% error = PL(@M = 4 mH) − PL(@M = 0)

PL(@M = 4 mH)
× 100

= 2.61%, when true M is 4 mH,

and

% error = 0.61%, when true M is 1 mH.

Example 11-3: Equivalent Inductance

For the circuit in Fig. 11-6(a), obtain an expression for the
equivalent inductance, Leq, defined such that it would exhibit
the same i-υ characteristic at nodes (a, b) as the actual circuit.

Solution: Equivalency means that circuits in Figs. 11-6(b)
and (c) will have the same current I flowing through both loops

(a)
M

L1a

b

L2Leq

(b)

M

L1I1a

b

L2

V1
V2

++

_

_
+
_Vs

I2

I

(c) Leq

I a

b

+
_Vs

Figure 11-6: Finding Leq of two series-coupled inductors
(Example 11-3).

when connected to the same voltage source Vs. For the two-
inductor circuit in Fig. 11-6(b),

I1 = I2 = I,

and while I1 enters L1 at its dotted terminal, I2 enters L2 at its
undotted terminal. While guided by Fig. 11-3(b), application
of the dot convention to the loop in Fig. 11-6(b) gives

V1 = jωL1I1 − jωMI2 = jω(L1 − M)I

and

V2 = jωL2I2 − jωMI1. = jω(L2 − M)I.

At terminals (a, b),

Vs = V1 + V2 = jω(L1 + L2 − 2M)I.

For the circuit in circuit Fig. 11-6(c),

Vs = jωLeqI.

Equivalency leads to

Leq = L1 + L2 − 2M.

Concept Question 11-1: What determines the polarity
of the mutual inductance voltage? Summarize the rules 
of the dot convention. (See         )

Concept Question 11-2: What factors determine how
strong or weak the magnetic coupling is between two 
coils? (See         )

Exercise 11-1: Repeat Example 11-1 after moving the
dot location on the side of L2 from the top end of the coil
to the bottom.

Answer: iL(t) = 139.5 cos(2π × 103t − 37.8◦) mA.
(See                  )

Exercise 11-2: Repeat Example 11-3 for the two in-series
inductors in Fig. 11-6(a), but with the dot location on L2

being on the top end.

Answer: Leq = L1 + L2 + 2M . (See )
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Technology Brief 27
Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI), also called
nuclear magnetic resonance (NMR), is a powerful
medical imaging tool that provides extremely detailed
2-D and 3-D images of the body, an example of which
is shown in Fig. TF27-1. MRI is particularly useful for
imaging soft tissues (organs, ligaments, spinal column,
arteries and veins, etc.). Unlike X-ray, which uses
very high frequency ionizing radiation, MRI uses lower
frequency magnetic and radio frequency fields, which
are non-ionizing and do not damage cells. Since MRI’s
early demonstration in the 1970s, its applications have
burgeoned, and research is continually opening up new
and improved MRI techniques.

MRI utilizes the fact that the bulk of the human
body contains water and every water molecule has a
permanent magnetic dipole moment, which means that
a water molecule behaves like a small magnet. The
hydrogen atoms in the (H2O) water molecule have a
natural spin associated with them, and because they are
weakly charged, this spin (charges moving in a circle)
creates a magnetic field as shown by the S-to-N arrow
in Fig. TF27-2. Thus, the water molecule acts like a weak
bar magnet with North and South poles. Normally, these
spins are randomly aligned in the body, but if a strong
external magnetic field is applied, they all line up with the
applied magnetic field. Almost exactly half line up in the
N-S direction, and almost exactly half in the opposite S-
N direction. This dc magnetic field will just hold them in
place for the rest of the MRI scan time.

But you can never have exactly half of the spins in
each of the two directions, so a few extra spins (about
9 out of 2 million for a typical 1.5 tesla magnet) always

Figure TF27-1: MRI scan of the head.

Spin

Precession

N

Applied external
magnetic field

S

FigureTF27-2: The spin of the charged hydrogen atoms
in H2O produces a magnetic field.

show up in neither the N-S or S-N configuration. These
extra outlier molecules are the ones the MRI scanner
actually uses to create the image.

A second magnetic field is then applied, but unlike
the strong dc magnetic field imposed to hold the
rest of the molecules in place, this magnetic field is
a radiofrequency (RF) pulsed signal, at a particular
frequency for which the outlier molecules are known to
resonate strongly (this is the resonance part of MRI).
This natural resonant frequency is called the Larmor
frequency, and it depends on the chemical makeup,
density, and structure of the tissue, thus allowing MRI to
distinguish different tissues, identify and detect chemical
composition, and even determine the status (such as
inflammation) of various tissues.When the RF pulse turns
on, the outlier molecules align with that magnetic field.
When the pulse turns off, they relax back to their original
state. As they relax, their spin precesses (becomes tipped
like a toy top slowing down) and produces yet another
magnetic field, which returns to and is picked up by the
same coil that produced the original RF signal.

Now let’s look at the MRI machine and the hardware
(Fig. TF27-3) that makes this all happen. The large
applied magnetic field is produced by a large supercon-
ducting electromagnet. A typical medical MRI scanner
is 1.5 teslas (1 tesla = 10k gauss). By comparison, a
strong refrigerator magnet is 100 gauss, and the Earth’s
magnetic field at its surface is around 0.5 gauss. The
superconducting magnet is cooled with liquid nitrogen
down to the point where its resistance is virtually zero
(see Technology Brief 3 on superconductivity), so that
the current and hence magnetic field can be maximized.
These magnets weigh several tons and cost hundreds
of thousands of dollars a year in electricity and liquid
nitrogen to keep them running. They take weeks to cool
down enough to reach superconductivity, and days to
ramp up the current to produce their large magnetic field.



“book” — 2015/5/4 — 7:25 — page 609 — #9

TECHNOLOGY BRIEF 27: MAGNETIC RESONANCE IMAGING (MRI) 609

Superconducting
Magnet

Figure TF27-3: MRI scanner geometry.

The patient is slid into the bore (hole) in the center of the
magnet, where the field is strong, and also quite uniform.
Because the body is “nonmagnetic” (μr = 1), this strong
magnetic field does not move or hurt the person, although
it does polarize (line up) the spins in his/her hydrogen
atoms. If the person has any metal inside of him/her (such
as implantable medical devices, artificial joints, or bone
repair surgeries), this can preclude the use of MRI for that
patient. It is also important to keep all metal (oxygen tanks,
wheelchairs, pens, clipboards, etc.) away from the mag-
net, or it can be pulled irretrievably and dangerously into
the bore. The magnetic field is so strong that these ma-
terials cannot be removed without slowly (days or weeks)
reducing the current in the electromagnet to turn it off.

The MRI scans the body in slices, like a loaf of bread.
The slice being scanned is adjusted by creating a very
small gradient in the RF field using yet another set of coils,
the gradient coils shown in Fig. TF27-4. The current in
these coils is ramped up and turned on and off very quickly
to move through hundreds of scan slices quickly.When the
current in a coil decreases, the magnetic field decreases
too. The energy stored in this magnetic field has to go
somewhere—it is returned to the circuit, creating a voltage
spike at the source driving the coil.The voltage spike must
be controlled by managing the current decay. In addition,
this decreasing magnetic field creates another current
that tries to oppose the change (you may have learned
about Lenz’s law in physics), making it impossible to
instantly turn off a large magnetic field.Another interesting
(and often very noisy!) effect is seen in these gradient
coils. The coils themselves vibrate from their strong mag-
netic field, which creates a constant hum and often loud

Figure TF27-4: MRI scanner gradient coils are used to
adjust which slice the scanner is imaging.

thumps and even crashing noises, so patients receiving
MRI scans generally wear earplugs to block the noise.

Now let’s look at the RF coils that transmit and receive
the RF pulses. RF coils come in many different designs,
shapes, and sizes as shown in Fig.TF27-5.The coil must
be large enough to surround the region being imaged
(the head, torso, knee, etc.). The most common coils
for whole-body or whole-head imaging are the birdcage
coil shown in part (a) of the figure and the planar or
surface coils shown in part (b). The signal of interest is
determined by how much of the RF energy gets from the
coil to the feature of interest, and back to the coil. Coils
such as the birdcage coil are designed to have a field as
constant as possible over the head, for instance, with no
particular focus on the optic nerve. So, the signal (S) from
the head is relatively large but the signal from the optic
nerve is relatively small. The electrical noise (N) picked
up by the receiver is generated by the entire field of view
of the coil. So for imaging the head, the signal-to-noise
ratio (SNR), given by S/N, is relatively large, but for the
optic nerve, the signal is lower while the noise is the same,
so SNR is smaller and not good enough to provide an
accurate measurement of the signal.Much of the research
on MRI coils today is therefore focused on development
of coils such as the one in part (c) of Fig. TF27-5, which
focus the RF energy on a specific feature of interest (in
this case, the optic nerve) thus increasing the signal (S)
in the SNR and often decreasing the noise (N) as well.
The effect of SNR on image quality is seen in Fig.TF27-6.
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(a) Birdcage coil

(b) Surface coil (c)

Figure TF27-5: Coils used in MRI: (a) birdcage coil; (b) surface coil (one on the front and another on the back of the body).
(Credit: Emilee Minalga.)

(a) Low SNR (b) High SNR

FigureTF27-6: Imaging of the optic nerve (seen just below the eyeballs) with (a) low SNR and (b) high SNR. (Photo courtesy
Robb Merrill.)
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11-2 Transformers

11-2.1 Coupling Coefficient

To couple magnetic flux between two coils, the coils may be
wound around a common core (Fig. 11-7(a)), on two separate
arms of a rectangular core (Fig. 11-7(b)), or in any other
arrangement conducive to having a significant fraction of the
magnetic flux generated by each coil shared with the other. The
coupling coefficient k defines the degree of magnetic coupling
between the coils, with 0 ≤ k ≤ 1. For a loosely coupled pair
of coils, k < 0.5; for tightly coupled coils, k > 0.5; and for
perfectly coupled coils, k = 1. The magnitude of k depends
on the physical geometry of the two-coil configuration and the
magnetic permeability μ of the core material.

�A transformer is said to be linear if μ of its core material
is a constant, independent of the magnitude of the currents
flowing through the coils (and hence, the strength of the
induced magnetic field). �

Most core materials, including air, wood, and ceramics, are
nonferromagnetic, and their μ is approximately equal to μ0, the
permeability of free space. When nonferromagnetic materials
are used for the common core around which the coils are wound,
the magnitude of k depends entirely on how tightly coupled
the two windings are. Such transformers are indeed linear, but
the magnitude of k is seldom greater than 0.4. Increasing k

requires the use of ferromagnetic cores, but the transformer
becomes heavier in weight and its behavior becomes nonlinear.
The degree of nonlinearity depends on the choice of materials.
With certain types of purified iron, transformers can be designed
to exhibit coupling coefficients approaching unity.

As was noted earlier in connection with Fig. 11-1(a),
current i1, through coil 1 generates magnetic fluxes �11 through
coil 1 and �12 through both coils 1 and 2. The coupling
coefficient is given by

k = �12

�11 + �12
= �12

�1
. (11.20a)

where�1 = �11+�12.The perfectly coupled case corresponds
to when the flux coupled to coil 2, namely �12, is equal to the
self-coupled flux �1. Similarly, from the standpoint of coil 2,

k = �21

�22 + �21
= �21

�2
. (11.20b)

(a) Cylindrical core

(b) Rectangular core

Transformer core

Magnetic flux

i1

υ1
+
_

i2

υ2

+

_

Magnetic flux

Primary port
Secondary port

υ1

+

_
υ2

+

_

i1 i2

N1

N1

N2

N2

Figure 11-7: Magnetically coupled coils.

Through energy considerations, k can be related to L1, L2,
and M as

k = M√
L1L2

. (11.21)

The mutual inductance M is a maximum when k = 1 (perfectly
coupled transformer),

M(max) = √
L1L2 . (11.22)

(perfectly coupled transformer with k = 1)
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(a) Original circuit

(b) Equivalent circuit

R1a

b
L1

M

L2
+
_Vs ZL

R2

I1 I2

a

b

+
_Vs ZinI1

Figure 11-8: (a) Transformer circuit with coil resistors R1
and R2, and (b) in terms of an equivalent input impedance Zin.

11-2.2 Input Impedance

In addition to the two coupled coils, a realistic transformer
circuit should include two series resistors, R1 and R2, to account
for ohmic losses in the coils. The circuit shown in Fig. 11-8
reflects this reality by including resistor R1 on the side of coil 1
and resistor R2 on the side of coil 2. The circuit is driven by
a voltage source Vs on the primary side and terminated in a
complex load ZL on the secondary side.

In terms of the designated mesh currents I1 and I2, the KVL
mesh equations are

−Vs + (R1 + jωL1)I1 − jωMI2 = 0 (11.23a)

and

−jωMI1 + (R2 + jωL2 + ZL)I2 = 0. (11.23b)

From the standpoint of source Vs, the circuit to the right of
terminals (a, b) can be represented by an equivalent input
impedance Zin, as depicted in Fig. 11-8(b). By manipulating
Eqs. (11.23) to eliminate I2, we can generate the following
expression for Zin:

Zin = Vs

I1
= (R1 + jωL1) + ω2M2

R2 + jωL2 + ZL

= (R1 + jωL1) + ZR, (11.24)

where we define the second term as the reflected impedance ZR,
namely

ZR = ω2M2

R2 + jωL2 + ZL
. (11.25)

We note that

ZR = ω2M2

impedance of secondary loop
.

In the absence of coupling between the two windings of the
transformer (i.e., M = 0), Zin reduces to

Zin (M = 0) = R1 + jωL1.

This is exactly what we expect for a series RL circuit connected
to a source Vs. When M is not zero, the impedance of
the secondary circuit, (R2 + jωL2 + ZL), becomes part of
the input impedance of the primary circuit, enabled by the
magnetic coupling represented by M . This dependence is akin
to reflecting the impedance of the secondary circuit onto the
primary circuit. The input and reflected impedances are related
by

Zin = Zin (M = 0) + ZR. (11.26)

The expressions given by Eqs. (11.24) and (11.25) were
derived for a transformer circuit in which the windings have
dots on the same ends. Repetition of the process for windings
whose dots are on opposite ends leads to the same results.

� Zin depends on the degree of magnetic coupling, but
not on whether the coupling is additive or subtractive. �

Example 11-4: Input Impedance

Determine current I1 in the circuit of Fig. 11-9.

Solution: From the given circuit, we deduce that ωM = 2 �.
By analogy with Eq. (11.24), Zin is given by

Zin = (3 − j2 + j5) + 22

6 + 4 − j4 + j20
= 4.2ej42.2◦

�.

Hence,

I1 = Vs

Zin
= 120ej30◦

4.2ej42.2◦ = 28.6e−j12.2◦
A.
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j5 Ω

j2 Ωa

b

3 Ω

j20 Ω 4 Ω

−j2 Ω −j4 ΩI1

Zin
+
_

6 Ω

120        V30o

Figure 11-9: Circuit of Example 11-4.

11-2.3 Equivalent Circuits

A circuit is said to be electrically equivalent to another if both
exhibit the same I-V relationships at a specified set of terminals.
For the transformer in Fig. 11-10(a), phase voltages V1 and V2
are related to I1 and I2 by

V1 = jωL1I1 + jωMI2 (11.27a)

and

V2 = jωL2I2 + jωMI1, (11.27b)

which can be cast in matrix form as

[
V1
V2

]
=
[
jωL1 jωM

jωM jωL2

] [
I1
I2

]
.

(transformer)

(11.27c)

T-Equivalent Circuit

In anticipation of next steps, we have joined in Fig. 11-10(a) the
negative terminals of V1 and V2 together, which has no impact
on the operation of the transformer. Part (b) of the figure displays
a proposed T-equivalent circuit whose element values Lx , Ly

and Lz automatically incorporate the magnetic coupling present
in the transformer coils, thereby avoiding the need to account
for the mutual-inductance terms when writing KVL equations.
The I-V matrix equation for the T-circuit (also called aY-circuit)
is

[
V1
V2

]
=
[
jω(Lx + Lz ) jωLz

jωLz jω(Ly + Lz )

] [
I1
I2

]
. (11.28)

(T-equivalent circuit)

The transformer and its T-equivalent circuit exhibit the same
I-V relationships if the four terms in the matrix of Eq. (11.27)

(b) T-equivalent circuit

(a) Transformer

Lz

Lx LyI1

V2

I2

+

_
V1

+

_

(c) ∏-equivalent circuit

Lc

LaLb

I1

V2

I2

+

_
V1

+

_

L1

M

L2

I1

V2

I2

+

_
V1

+

_

Figure 11-10: The transformer can be modeled in terms of T- or �-equivalent circuits.
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are identical with their corresponding terms in the matrix of
Eq. (11.28). Equalization of the two matrices leads to

Transformer dots on same ends

Lx = L1 − M,

Ly = L2 − M,

and

Lz = M.

(11.29a)

(11.29b)

(11.29c)

Had the transformer dots been located on opposite ends, the two
terms involving M in Eq. (11.27) would have been preceded by
minus signs. Consequently, the element values of inductors Lx ,
Ly , and Lz would be

Transformer dots on opposite ends

Lx = L1 + M,

Ly = L2 + M,

and

Lz = −M.

(11.30a)

(11.30b)

(11.30c)

Even though a negative value for inductance Lz is not physically
realizable, the mathematical equivalency holds nonetheless and
the equivalent circuit is perfectly applicable.

�-Equivalent Circuit

In some situations, it may be easier to analyze the larger
circuit within which the transformer resides by replacing
the transformer with a �-equivalent circuit instead of the
T-equivalent circuit. In such cases, we can use the model shown
in Fig. 11-10(c). The expressions for La , Lb, and Lc can be
obtained either by repeating the procedure we used for the
T-equivalent circuit or by applying the Y-	 transformation
equations given in Section 7-4.2. Either route leads to:

Transformer with dots on same ends

La = L1L2 − M2

L1 − M
,

Lb = L1L2 − M2

L2 − M
,

and

Lc = L1L2 − M2

M
.

(11.31a)

(11.31b)

(11.31c)

If the transformer dots are located on opposite ends, M in
Eq. (11.31) should be replaced with −M .

Example 11-5: Equivalent Circuit

Use the T-equivalent circuit model to determine I1 in the circuit
of Fig. 11-11.

Solution: Use of Eq. (11.29) gives

jωLx = jωL1 − jωM = j5 − j2 = j3 �,

jωLy = jωL2 − jωM = j20 − j2 = j18 �,

and

jωLz = jωM = j2 �.

The T-equivalent circuit is shown in Fig. 11-11(b). Application
of the mesh analysis by-inspection method leads to the matrix
equation

[
(3 − j2 + j3 + j2) −j2

−j2 (j2 + j18 − j4 + 6 + 4)

] [
I1
I2

]

=
[

120ej30◦

0

]
.

Its solution is

I1 = 28.6e−j12.2◦
A,

which is identical with the answer obtained in Example 11-4
using the input impedance method.

Concept Question 11-3: What does the coupling
coefficient represent? What is its range? (See         )

Concept Question 11-4: How is the mutual induc-
tance M related to L1 and L2 for a perfectly coupled 
transformer? (See         )

Concept Question 11-5: Why does the reflected
impedance ZR bear that name? (See         )
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(a) Original circuit

j5 Ω

j2 Ωa

b

3 Ω

j20 Ω 4 Ω

−j2 Ω −j4 ΩI1

+
_

6 Ω

120        V30o

(b) Equivalent circuit

j3 Ω j18 Ωa

b

3 Ω

j2 ΩjωLz
jωLx jωLy

4 Ω

−j2 Ω −j4 ΩI1

+
_

6 Ω

120        V30o I1 I2

Figure 11-11: (a) Original circuit and (b) after replacing transformer with T-equivalent circuit.

Exercise 11-3: The expression for Zin given by
Eq. (11.25) was derived for the circuit in Fig. 11-8, in
which both dots are on the upper end of the coils. What
would the expression look like were the two dots located 
on opposite ends?

Answer: The expression remains the same. (See )

Exercise 11-4: What are the element values of the
�-equivalent circuit of the transformer in Fig. 11-11(a)?

Answer: jωLa = j32 �, jωLb = j5.33 �, 
jωLc = j48 �. (See                  )

11-3 Energy Considerations

Given that the transformer in Fig. 11-12(a)—with induc-
tance L1 on the primary side, L2 on the secondary side, and
mutual inductance M coupling the two coils—is equivalent to
the T-equivalent circuit in Fig. 11-12(b), we can use the latter
to compute the total amount of energy stored in the transformer
for any specified values of currents i1 and i2. According to
Eq. (5.59), the magnetic energy stored in an inductor L due to
the flow of current i through it is

w(t) = 1

2
L i2(t) (J). (11.32)

For the circuit in Fig. 11-12(b),

w(t) = 1

2
Lxi

2
1 + 1

2
Lyi

2
2 + 1

2
Lz (i1 + i2)

2

= 1

2
(L1 − M)i2

2 + 1

2
(L2 − M)i2

2 + 1

2
M(i1 + i2)

2

= 1

2
L1i

2
1 + 1

2
L2i

2
2 + Mi1i2. (11.33)

Equation (11.33) applies to transformers in which i1 and i2
both enter or both leave the dotted terminals, and both dotted
terminals are on the same end (as in Fig. 11-12). Reversing the
direction of either current or reversing the locations of the dots
requires replacing M with −M .

Example 11-6: Magnetic Energy

In the circuit in Fig. 11-13, determine the magnetic
energy stored in the transformer at t = 0, given that
υs(t) = 12 cos(377t + 60◦) V.

Solution: We start by replacing the transformer with its
T-equivalent circuit and then transforming the new circuit to
the phasor domain (Fig. 11-13(b)). Per Eq. (11.30), the values
of Lx , Ly , and Lz are

Lx = L1 + M = (10 + 6) mH = 16 mH,

Ly = L2 + M = (30 + 6) mH = 36 mH,
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Mi1 i2

L1 L2

i1 + i2

i1 i2

M

Lx = L1 − M Ly = L2 − M

(a) Transformer

(b) T-equivalent

Figure 11-12: Transformer and its T-equivalent circuit.
Reversing the direction of either current or if dots are on opposite
ends, M should be replaced with −M .

(a) Original circuit

(b) Equivalent circuit in phasor domain

6 mH

30 mH10 mHυs
+
_

5 Ω

10 Ω

+
_

5 Ω

10 ΩI1
I2

j6 Ω j13.57 Ω

−j2.26 Ω12        V60o

Figure 11-13: Circuits of Example 11-6.

and

Lz = −M = −6 mH.

Transforming the inductors to the phasor domain entails
multiplying the inductance values by jω = j377 rad/s, which

leads to

jωLx = j377 × 16 × 10−3 = j6 �,

jωLy = j377 × 36 × 10−3 = j13.57 �,

and

jωLz = j377 × (−6 × 10−3) = −j2.26 �.

Mesh analysis by inspection gives

[
(5 + j6 − j2.26) +j2.26

+j2.26 (10 + j13.57 − j2.26)

] [
I1
I2

]
=
[

12ej60◦

0

]
.

Solution of the matrix equation for I1 and I2 leads to

I1 = 1.91ej26.06◦
A

and

I2 = 0.29e−j112.5◦
A.

The time-domain equivalents are

i1(t) = 1.91 cos(377t + 26.06◦) A

and

i2(t) = 0.29 cos(377t − 112.5◦) A.

The magnetic energy stored in the three inductors of the circuit
in Fig. 11-13(b) at t = 0 is

w(0) =
[

1

2
Lxi

2
1 + 1

2
Lyi

2
2 + 1

2
Lz (i1 − i2)

2
]∣∣∣∣

t=0

= 1

2
× 16 × 10−3 × (1.91 cos 26.06◦)2

+ 1

2
× 36 × 10−3 × [0.29 cos(−112.5◦)]2

+ 1

2
× (−6 × 10−3)

· [1.91 cos 26.06◦ − 0.29 cos(−112.5◦)]2

= 13.7 mJ.
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(a) Dots on same ends

1 : na

b

c

d

+
_Vs V1

N1 N2

I1 I2

+
_V2

+
_ ZLZin

(b) Dots on opposite ends

1 : na

b

c

d

+
_ +

_
Vs V1

N1 N2

I1 I2

V2
+
_ ZLZin

Figure 11-14: Schematic symbol for an ideal transformer. Note
the reversal of the voltage polarity and current direction when
the dot location at the secondary is moved from the top end of
the coil to the bottom end. For both configurations: V2/V1 =
N2/N1 = n, I2/I1 = N1/N2 = 1/n.

11-4 Ideal Transformers

An ideal transformer is characterized by lossless coils
(R1 = R2 = 0) and a maximum coupling coefficient k = 1. The
mutual inductance M is a maximum and given by Eq. (11.22)
as

M(max) = √
L1L2 .

(ideal transformer)

(11.34)

According to Eq. (5.52), the inductance L of a solenoid-shaped
inductor is proportional to N2, where N is the number of turns
wound around the core. Hence, for an ideal transformer with N1
turns on the primary side and N2 on the secondary, as depicted
in Fig. 11-14,

L2

L1
= N2

2

N2
1

= n2, (11.35)

where n = N2/N1 is called the turns ratio.

� Note that the symbol for the ideal transformer includes
two parallel lines between the coils, an indicator that
the coils are wound around a ferromagnetic core with
perfect coupling (k = 1). Also note that because μ of a
ferromagnetic material is very large, so are L1 and L2. �

For the ideal transformer with dots on the same ends
(Fig. 11-14(a)), using Eqs. (11.34) and (11.35) in Eq. (11.27a)
[while noting that the direction of I2 in Fig. 11-14(a) is opposite
of that used to derive Eq. (11.27)] leads to

V1 = jωL1I1 − jωMI2

= jωL1I1 − jω
√

L1L2 I2

= jωL1I1 − jωL1nI2 = jωL1(I1 − nI2).

Similarly, for Eq. (11.27b),

V2 = jωL2I2 − jωMI1 = [jωL1(I1 − nI2)]n.

Hence,

V2

V1
= n

(ideal transformer with
dots on same ends).

(11.36)

� The transformer is called a step-up transformer
(V2 > V1) when n > 1 and a step-down transformer
(V2 < V1) when n < 1. �

For a lossless transformer, complex power S1 supplied by its
primary side must match complex power S2 absorbed by its
secondary:

S1 = S2, (11.37)

or equivalently

V1I∗
1 = V2I∗

2. (11.38)

In view of Eq. (11.36), it follows that

I2

I1
= 1

n

(ideal transformer with
dots on same ends).

(11.39)

The expressions for the voltage and current ratios given by
Eqs. (11.36) and (11.39) apply to the current directions, voltage
polarities and dot locations indicated in both configurations of
Fig. 11-14.
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11-4.1 Input Impedance

At the input terminals in the transformer circuits of Fig. 11-14,
source Vs views an input impedance Zin = V1/I1, and at the
load end, ZL = V2/I2. The combination leads to

Zin = V1

I1
= 1

n2

V2

I2
= ZL

n2 . (11.40)

Thus, from the standpoint of the source Vs, the entire circuit to
the right of terminals (a, b) is equivalent to input impedance Zin.
We note that Zin is equal to (1/n2) of ZL.

� For the ideal transformer, the voltage, current, and
impedance ratios are defined in terms of the turns ratio,
independently of the values of L1 and L2. �

11-4.2 Equivalent Circuits

If the circuit connected to the transformer on its secondary
side consists of only a passive impedance, the input-impedance
equivalency is all we need to simplify the overall circuit, but
what if the secondary side contains a voltage or current source?
Also, by extension, what if we wish to view the circuit from
the perspective of the secondary side, rather than that of the
primary side? These questions are addressed by Example 11-7.

Example 11-7: Thévenin Equivalent

For the circuit of Fig. 11-15, (a) obtain the Thévenin equivalent
of the circuit segment to the right of terminals (a, b), then (b)
repeat the process for the circuit segment to the left of terminals
(c, d).

Solution: (a) The Thévenin equivalent circuit shown in
Fig. 11-15(b) consists of a Thévenin voltage source VTh(ab)

and a Thévenin impedance ZTh(ab). Our task is to relate them
to the element values of the circuit to the right of terminals
(a, b).

The Thévenin voltage is defined as the open-circuit voltage
across terminals (a, b), which amounts to determining V1 after
disconnecting the input circuit (Vs1 and Z1). With Vs1 absent,
I1 = 0, and by virtue of Eq. (11.39), I2 = 0. Hence, with no
voltage drop across Z2, V2 = Vs2 , and

VTh(ab) = V1 = V2

n
= Vs2

n
.

(a) Original circuit

1 : na

b

c

d

+
_

Vs1
Vs2V1

n = N2 /N1

Z1 I1 I2

+
_V2

Z2

+
_

+
_

(b) Thévenin equivalent of circuit
to the right of terminals (a, b)

a

b

+
_

Vs1 V1

Z1 I1 ZTh(ab) = Z2 /n2

VTh(ab)
= Vs2 /n

+
_

+
_

(c)  Thévenin equivalent of circuit
       to the left of terminals (c, d) 

c

d

+
_

Vs2V2

Z2

VTh(cd)
  = nVs1

ZTh(cd) = n2Z1

+
_

+
_

Figure 11-15: Thévenin equivalent circuit of Example 11-7.

To determine ZTh(ab), we replace Vs2 with a short circuit and
use Eq. (11.40),

ZTh(ab) = Zin = Z2

n2 . (11.41)

(b) Looking to the left from terminals (c, d) involves
identically the same process, except that the turns ratio going
from terminals (c, d) to terminals (a, b) is now 1/n. The result
is diagrammed in Fig. 11-15(c).

Example 11-8: Ideal Autotransformer

In an autotransformer, the primary and secondary sides share
a part or all of the same winding. Develop expressions for the
voltage and current ratios in the autotransformer circuits shown
in Fig. 11-16(a) and (b).
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(a) Step-down autotransformer

Vs
+
_

R I1

I2

V1

N1

N2

+

_
N

ZL

(b) Step-up autotransformer

Vs

R I1

I2

N1

N2
N ZL+

_

+
_V2

+

_

V2+
_V1

Figure 11-16: Autotransformer circuits.

Solution: (a) For the step-down autotransformer in
Fig. 11-16(a),

V2

V1
= N2

N
= N2

N1 + N2

and

I2

I1
= V1

V2
= N1 + N2

N2
.

(step-down autotransformer)

(11.42)

(b) The converse is true for the step-up autotransformer of
Fig. 11-16(b). That is,

V2

V1
= N

N2
= N1 + N2

N2

and

I2

I1
= V1

V2
= N2

N1 + N2
.

(step-up autotransformer)

(11.43)

Concept Question 11-6:What is the coupling coefficient
of an ideal transformer? (See         )

Concept Question 11-7: Are the secondary-to-primary 
voltage and current ratios in an ideal transformer 
dependent on L1 and L2? (See         )

Concept Question 11-8: What is an autotransformer?
(See         )

Exercise 11-5: Determine the Thévenin equivalent of the
circuit to the right of terminals (a, b) in Fig. E11.5.

1 : 4
a

b

+
_

−j64 Ω

12e j60˚ V

32 Ω

Figure E11.5

Answer:

a

b

+
_

(2 − j4) Ω

3e j60˚ V

(See )

Exercise 11-6: An autotransformer is used to step up the
voltage by a factor of 10. If N = 200, what are the values
of N1 and N2?

Answer: N1 = 180 and N2 = 20. (See )

11-5 Three-Phase Transformers

In Chapter 10 we observed that distribution of power is
cheaper (fewer wires) and more efficient (less ohmic loss)
when transferred by a three-phase system than by three
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(a) Y-Y transformer (b) ∆-∆ transformer

VLp

1 : n
1

2

3

a

b

c

ILp ILs = (1/n) ILp

VLs = nVLp

+

_

+

_

VLp

1 : n
1

2

3

a

b

c

ILp ILs = (1/n) ILp

VLs = nVLp

+

_

+

_

Y Y
∆ ∆

(c) Y-∆ transformer

Y

∆

3

2

1

c

b

a

neutral

1
n

:

VLp+_

VLs =         VLp

+

_

n
√3

Figure 11-17: Three possible connection configurations for three-phase transformers.

independent single-phase systems. A similar argument holds
for transformers. To step up or step down voltage levels in a
three-phase network, it is better to use a single three-phase
transformer than three single-phase transformers.

Three-phase transformers can be designed to couple any
combination of Y- and 	-configurations on the primary and
secondary sides.

The three possible combinations are diagrammed in

Fig. 11-17 (Y-	 and 	-Y transformers are mirror images of
one another). In each case, the line voltages and currents in the
secondary circuit are related to those on the primary side. For
Y-Y and 	-	 connections (Fig. 11-17(a) and (b)),

VLs

VLp
= ILp

ILs
= n (Y-Y and 	-	), (11.44)
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where VLp and VLs are the rms magnitudes of the line voltages
on the primary and secondary sides of the transformer, and
a similar notation applies to the line currents ILp and ILs.
The transformer is assumed to be ideal (lossless and perfectly
coupled), in which case conservation of energy requires that

STp = STs,

where STp and STs are the total apparent powers at the primary
and secondary sides of the transformer. Recall from Eqs. (10.20)
and (10.23) that the magnitude of the total apparent power is
given by

ST = √
3 VLIL (Y and 	), (11.45)

for both Y- and 	-configurations and on either side of the
transformer. Consequently, for Y-	 and 	-Y transformers
(Fig. 11-17(c) and (d)),

VLs

VLp
= ILp

ILs
= n√

3
(Y-	)

and

VLs

VLp
= ILp

ILs
= √

3 n (	-Y).

(11.46)

Example 11-9: �-� Transformer

The secondary side of a 	-	 three-phase, ideal transformer
is connected to a 16 kVA, balanced, three-phase load. If each
transformer has a turns ratio of 1 : 4 and the line voltage at the
load side is 120 V (rms), determine the line voltage and line
current at the primary side.

Solution: For the 	-	 connection, Eq. (11.44) gives

VLp = VLs

n
= 120

4
= 30 V (rms).

Application of the apparent power expressions given by
Eq. (11.45) to the secondary side leads to

ILs = ST√
3 VLs

= 16, 000√
3 × 120

= 77 A (rms).

The line current at the primary side is

ILp = nILs = 4 × 77 = 308 A (rms).

Example 11-10: Three-Phase Transformer Circuit

Determine Ix in the circuit of Fig. 11-18.

Solution: The three mesh equations are

−36 + (10 + 50)I1 − 50I2 + V1 = 0,

−50I1 + (30 + 40 + 50)I2 − 30I3 − V2 = 0,

and

−30I2 + (20 + 30)I3 + V2 − V1 = 0.

Additionally, because the transformer dots are on opposite ends
[see Fig. 11-14(b) for reference],

V2 = −nV1 = −4V1

and

I2 = −I1

n
= −I1

4
.

After multiple substitutions, we arrive at the solution

Ix = I2 = −0.06 A.

+
_

V1 V2

Ix

I1 I2

I3

1 : 4

10 Ω 30 Ω

20 Ω

50 Ω

40 Ω36       V0o

+
_

+
_

Figure 11-18: Circuit of Example 11-10.
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Concept Question 11-9: What are three-phase trans-
formers used for? (See         )

Concept Question 11-10: How is the secondary-to-
primary voltage ratio related to the turns ratio n for Y-Y, 
	-	, Y-	, and 	-Y configurations? (See         )

Summary

Concepts

• Current flow through a coil in close proximity of a
second coil induces a mutual inductance voltage across
the second coil through a shared magnetic field.

• The dot convention, which accounts for the directions
of the windings in the two coupled coils, defines the
polarities of the induced mutual-inductance voltages.

• A transformer can be modeled in terms of T- or
�-equivalent circuits.

• The coupling coefficient of an ideal transformer is
k = 1. Its secondary-to-primary voltage and current
ratios are defined by the turns ratio n = N2/N1.

• Three-phase transformers are used to couple any
combination of Y- and 	-configurations on the primary
and secondary sides.

Mathematical and Physical Models

Magnetic Coupling

(a) Dots on same ends

Change + to −
if i1 is CCW

Change + to −
if i2 is CW

i1R1

L1

M

L2

i2

υ1 = L1        + M
+

_
di1
dt

di2
dt υ2 = L2        + M

+

_
di2
dt

di1
dt

+
_

+
_υs1

υs2

R2

Change + to −
if i2 is CW

Change + to −
if ii is CCW

(b) Dots on opposite ends

Change + to −
if i1 is CCW

Change − to +
if i2 is CW

i1R1

L1

M

L2

i2

υ1 = L1        − M
+

_
di1
dt

di2
dt υ2 = L2        − M

+

_
di2
dt

di1
dt

+
_

+
_υs1

υs2

R2

Change + to −
if i2 is CW

Change − to +
if ii is CCW

k = M√
L1L2

Exercise 11-7: Determine Ix in the circuit of Fig. 11-18
after replacing the 20 � resistor with an open circuit.

Answer: Ix = −0.097 A. (See ) 
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Mathematical and Physical Models (continued)
Equivalent Circuits

(a) Transformer
L1

M

L2

I1

V2

I2

+

_
V1

+

_

(b) T-equivalent
circuit Lz

Lx LyI1

V2

I2

+

_
V1

+

_

Lx = L1 − M

Ly = L2 − M

Lz = M

(c) ∏-equivalent
circuit

Lc

LaLb

I1

V2

I2

+

_
V1

+

_

La = L1L2 − M2

L1 − M

Lb = L1L2 − M2

L2 − M

Lc = L1L2 − M2

M

Replace M with −M if dots are on opposite ends.

Equivalent Inductance

M

L1a

b

L2Leq

Leq = L1 + L2 + 2M

M

L1a

b

L2Leq

Leq = L1 + L2 − 2M

Ideal Transformer

V2

V1
= n

I2

I1
= 1

n

Zin = V1

I1
= 1

n2

V2

I2
= ZL

n2

Important Terms Provide definitions or explain the meaning of the following terms:

�-equivalent circuit
autotransformer
coupling coefficient
dot convention
input impedance
linear
loosely coupled
magnetic flux

magnetic flux linkage
magnetic permeability
magnetically coupled circuit
mutual inductance
mutual inductance voltage
mutual voltage
perfectly coupled
permeability of free space

primary port
primary side
reflected impedance
secondary port
secondary side
self inductance
step-down transformer
step-up transformer

T-equivalent circuit
three-phase transformer
tightly coupled
total flux
transformer
turns ratio
two parallel lines
voltage transformers

PROBLEMS

Section 11-1: Magnetic Coupling

*11.1 For the circuit shown in Fig. P11.1, determine (a) i(t)

and (b) the average power absorbed by RL.
∗

Answer(s) available in Appendix G.

RL

i

+
_ 200 Ω

f = 60 Hz

10 Ω 0.2 H

10 mH 1 H30      V0�

Figure P11.1: Circuit for Problem 11.1.
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11.2 For the circuit in Fig. P11.2, determine (a) iL(t) and (b)
the average power dissipated in RL.

+
_

14 Ω

12 cos 377t (V)

30 Ω

10 Ω30 mH10 mH

6 mH100 μF

RL

iL

Figure P11.2: Circuit for Problem 11.2.

11.3 For the circuit in Fig. P11.3, determine Vout.

+
_

4 Ω 2 Ω
+

_
Vout−j2 Ωj6 Ωj4 Ω

j1 Ω

j3 Ω j2 Ω

10      V0�

Figure P11.3: Circuit for Problem 11.3.

*11.4 Determine Vout in the circuit shown in Fig. P11.4.

11.5 Determine the average power dissipated in the 4 �

resistor of the circuit in Fig. P11.5.

11.6 Determine Ix in the circuit of Fig. P11.6.

*11.7 Determine Ix in the circuit of Fig. P11.7.

11.8 Determine the average power dissipated in the 4 �

resistor of the circuit in Fig. P11.8.

*11.9 Determine Vout in the circuit of Fig. P11.9.

+
_

2 Ω 4 Ω

j2 Ω j6 Ω −j6 Ω 2 Ω−j4 Ω

j1 Ω

96      V0�

8 Ω

Vout

+

_

Figure P11.4: Circuit for Problem 11.4.

j4 Ω
j2 Ω

j6 Ω

+
_

f = 60 Hz
20      V0�

2 Ω

4 Ω

Figure P11.5: Circuit for Problem 11.5.

−j10 Ω

j2 Ω

j4 Ωj6 Ω+
_30      V0�

4 Ω

8 Ω

Ix

Figure P11.6: Circuit for Problem 11.6.

j20 Ω

j6 Ω

j5 Ω j8 Ω

j10 Ω j30 Ω

+
_60      V0�

5 Ω

20 Ω

Ix

Figure P11.7: Circuit for Problem 11.7.

j4 Ω
j2 Ω

j6 Ω
j3 Ω

j3 Ω

j10 Ω

+
_

f = 60 Hz
20      V0�

2 Ω

5 Ω

4 Ω

Figure P11.8: Circuit for Problem 11.8.
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+
_ 4 Ω 8 Ω

j12 Ω j18 Ω

−j4 Ω 8 Ω

j6 Ω

10      V0�

6 Ω

Vout
+
_

Figure P11.9: Circuit for Problem 11.9.

+
_ 8 Ω12 cos 2πft (V)

4 Ω M

3 mH 12 mH

Figure P11.10: Circuit for Problem 11.10.

+
_ j6 Ω j12 Ω

−j2 Ω

6 Ω

j4 Ω

100      V0�

4 Ω 8 Ω

Vout
+
_

−j4 Ω

Figure P11.11: Circuit for Problem 11.11.

−j2 Ω

j2 Ω j6 Ωj2 Ω j8 Ω
+
_

2 Ω 4 Ω 6 Ω
Ix

Vs

Figure P11.12: Circuit for Problem 11.12.

11.10 The circuit shown in Fig. P11.10 uses a 12 V ac
source to deliver power to an 8 � speaker. If the average
power delivered to the speaker is 1.8 W at an audio frequency
f = 1 kHz, what is the value of the coupling coefficient k?

*11.11 Determine Vout in the circuit in Fig. P11.11.

11.12 Determine Ix in the circuit of Fig. P11.12, given that
Vs = 20 30◦ (V).

11.13 Determine:

(a) Leq at terminals (a, b) in Fig. P11.13(a).

(b) Leq at terminals (a, b) in Fig. P11.13(b).

*(c) Leq at terminals (a, b) in Fig. P11.13(c).

(d) Leq at terminals (a, b) in Fig. P11.13(d).

(e) Leq at terminals (a, b) in Fig. P11.13(e).

(f) Leq at terminals (a, b) in Fig. P11.13(f).
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(a) (b)

a

b
0.5 mH 4 mH

1 mH

Leq

5 mH

5 mH 20 mH

2 mH 6 mH
10 mH

Leq

a

b

(e) (f)

a

b

5 H5 H
1 H

20 mH 20 mH

10 mH 40 mH

a

b

(c) (d)

a

b

5 H5 H
1 H

4 H2 H

2 H
1 H

2 H6 H

a

b

Figure P11.13: Circuits for Problem 11.13.

Sections 11-2 and 11-3: Transformers and Energy

11.14 Determine (a) the input impedance and (b) the reflected
impedance, both at terminals (a, b) in the circuit of Fig. P11.14.

8 Ω

j2 Ωj2 Ω

j6 Ωj4 Ω

−j6 Ω10 Ωa

b

Figure P11.14: Circuit for Problem 11.14.

*11.15 Determine (a) the input impedance and (b) the reflected
impedance, both at terminals (c, d) in the circuit of Fig. P11.15.

11.16 For the circuit in Fig. P11.16 (a) determine the
Thévenin equivalent to the left of ZL, (b) choose ZL for
maximum power transfer, and (c) compute the average power
absorbed by ZL.

*11.17 Determine the input impedance Zin of the circuit in
Fig. P11.17.

11.18 In the circuit of Fig. P11.18, what should the value of
the coupling coefficient k be so that Vout/Vin = 0.49?
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j2 Ω j6 Ω

c

d

12 Ω

−j4 Ω

j2 Ω6 Ω

4 Ω −j2 Ω

Figure P11.15: Circuit for Problem 11.15.

ZL

20 Ω

20 Ω 40 Ω

−j10 Ωj30 Ω

j10 Ω

j20 Ω

a

b

+
_ 120      V0�

Figure P11.16: Circuit for Problem 11.16.

20 Ω

10 Ω

j4 Ω

j8 Ωj6 Ω

−j2 Ω4 Ω

Zin

Figure P11.17: Circuit for Problem 11.17.

Vin Vout

+

_

+
_

j1 Ω

j1 ΩjωM

1 Ω 1 Ω

−j4 Ω

Figure P11.18: Circuit for Problem 11.18.

*11.19 Apply T- and �-transformations to determine Leq in
the circuit of Fig. P11.19.

2 H

2 H 4 H

2 H

4 H 6 H

8 HLeq

Figure P11.19: Circuit for Problem 11.19.

11.20 For the circuit in Fig. P11.20, determine the complex
powers: (a) supplied by the source, (b) stored by the two
inductors, and (c) dissipated by the source and load resistors.

RL

Rs

+
_ 10 Ω

10 Ω
10      V0�

j4 Ω

j5 Ω j15 Ω

Figure P11.20: Circuit for Problem 11.20.
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*11.21 Determine input impedance Zin at terminals (a, b) for
the circuit in Fig. P11.21.

−j2 Ω

12 Ω

Zin

b

j1 Ω

j1 Ω

j5 Ω

j5 Ω j5 Ω

j5 Ω

a

Figure P11.21: Circuit for Problem 11.21.

11.22 Determine the average power dissipated in the 10 �

load in the circuit of Fig. P11.22, given that Vs = 10 0◦ V
(rms).

+

_

+
_Vs Vo

j2 Ω

j4 Ω

2 Ω 4 Ω

j6 Ω
j1 Ω

j5 Ω

10 Ω

j5 Ω

Figure P11.22: Circuit for Problem 11.22.

Section 11-4: Ideal Transformer

11.23 Determine Vout in the circuit of Fig. P11.23.

1 : 41 kΩ

32 kΩ Vout12      V0�

+

_
+
_

Figure P11.23: Circuit for Problem 11.23.

*11.24 Repeat Problem 11.23 after inserting a 0.5 μF capacitor
in series with the 1 k� resistor. The angular frequency is 103

rad/s.

11.25 Determine the complex power supplied by the source
in the circuit of Fig. P11.25.

1 : 21 kΩ

16 kΩ24      V0�
+
_

−j8 kΩ

Figure P11.25: Circuit for Problem 11.25.

*11.26 Determine current Ix in the circuit of Fig. P11.26.

1 : 22 kΩ

8 kΩ

4 kΩ

1 kΩ

100      V0�
+
_

−j2 kΩIx

Figure P11.26: Circuit for Problem 11.26.

11.27 Determine currents I1 and I2 in the circuit of
Fig. P11.27.

4 : 12 kΩ 4 kΩ

12      V0� 24        V30�
+
_

+
_

−j2 kΩ j2 kΩ
I2I1

Figure P11.27: Circuit for Problem 11.27.

*11.28 Determine the average power delivered to RL in the
circuit of Fig. P11.28.

1 : 41 kΩ

2 kΩ

1 kΩ

120      V0�
+
_

−j2 kΩ

RL

Figure P11.28: Circuit for Problem 11.28.
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11.29 Determine the input impedance Zin of the circuit in
Fig. P11.29.

1 : 520 Ω

64 kΩ

−j32 kΩ

1 : 4

Zin

2 kΩ

Figure P11.29: Circuit for Problem 11.29.

11.30 Determine the power absorbed by RL in the circuit of
Fig. P11.30.

144 Ω

4 Ω 1 : 6

−j16 Ω

+
_20      V0� RL

Figure P11.30: Circuit for Problem 11.30.

*11.31 Determine the average power delivered to ZL in the
circuit of Fig. P11.31, given that N1 = 50 turns and N2 = 10
turns.

N1

N2
ZL+

_
−j2 Ω

(10 + j4) kΩ

1 kΩ

178      V0�

Figure P11.31: Circuit for Problem 11.31.

Section 11-5: Three-Phase Transformers

11.32 A Y-	 ideal three-phase transformer with a turns ratio
of 1 : 10 supplies a 32 kVA load at a line voltage of 208 V.
Determine the line voltage and line current at the primary side.

*11.33 A 	-Y ideal three-phase transformer supplies a 32 kVA
load at a line voltage of 240 V. If the line voltage at the primary
side is 51.96 V, what is the turns ratio?

Potpourri Questions

11.34 What particular features give an MRI advantages over
other imaging systems?

11.35 An MRI machine uses a superconducting magnet to
create a high magnetic field. For what purpose? Another
magnetic field called the RF field is also used. Why?
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Circuit Analysis by Laplace
Transform

Contents
Overview, 631

12-1 Unit Impulse Function, 631
12-2 The Laplace Transform Technique, 633
TB28 3-D TV, 637
12-3 Properties of the Laplace Transform, 639
12-4 Circuit Analysis Procedure, 641
12-5 Partial Fraction Expansion, 644
TB29 Mapping the Entire World in 3-D, 648
12-6 s-Domain Circuit Element Models, 652
12-7 s-Domain Circuit Analysis, 655
12-8 Multisim Analysis of Circuits Driven

by Nontrivial Inputs, 662
Summary, 665
Problems, 665

Objectives

Learn to:

� Compute the Laplace transform of a time-
dependent function.

� Perform partial fraction expansion.

� Analyze circuits using the Laplace transform
technique.

is(t)

0

2

−2

4

−4

6

−6

Amps

t  (s)

iC(t)

21 3

Source and capacitor currents.

CHAPTER 12
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Overview

In Chapters 5 and 6 we examined the transient response to
a sudden change in voltage or current in circuits containing
RC, RL, and RLC configurations. The excitation sources were
dc voltage and current sources, in combination with SPST
and SPDT switches. Voltage and current responses in such
circuits are characterized by exponential functions of the form
e−αt , where α is a damping coefficient that defines the rate at
which the response transitions from its initial value immediately
after the sudden change to its final value at t = ∞. The time-
domain solution method employed in Chapters 5 and 6 is quite
satisfactory, so long as the forcing function is a dc source and
the differential equation describing the voltages and currents in
the circuit is not higher than second order. Now, we introduce
the Laplace transform analysis technique, which can be easily
applied to a wide range of circuits and any type of realistic
forcing function. In fact, the Laplace transform reduces to
the phasor transform of Chapter 7 when the circuit sources
are time-harmonic sinusoidal functions (and if the Laplace-
transform analysis is confined to the steady state component
of the overall solution). The phasor-domain technique served
us well in Chapters 7–9, but it does not account for the
transient component of the circuit response. Because in most ac
circuits of interest, the transient component decays rapidly after
connecting the sources to the circuit, the steady state solution
provided by the phasor-domain technique is all that is needed.
However, if we were to seek a solution that incorporates both
the transient and steady state components, then the Laplace
transform technique is the solution method of choice.

12-1 Unit Impulse Function

The waveforms commonly encountered in electric circuits
include a variety of continuous-time functions—such as the
exponential and sinusoid—as well as some discontinuous
functions, most notably the step and impulse functions. The
step function, defined earlier in Section 5-3, is used to describe
mathematically the instantaneous action by a switch to connect
or disconnect a source to the circuit. In like manner, the impulse
function is a useful mathematical tool for describing a sudden
action of very short duration, or for sampling a continuous
function at discrete points in time. An example of the latter
is when a continuous visual image is stored by recording only
24 images per second, thereby sampling a continuous signal
only at specific times.

Graphically, the unit impulse function—also known as the
delta function δ(t)—is represented by a vertical arrow, as
shown in Fig. 12-1(a). If it is located at t = T , it is designated

(b) Rectangle model

(a) δ(t) and δ(t − T )

tT0

δ(t − T)δ(t)

Area = 1

t
0 ε−ε

δ(t)

1/2ε

(c) Gradual step model

u(t)

t

u(t)

1

0.5

0 ε−ε

slope =
1
2ε

Figure 12-1: Unit impulse function.

δ(t − T ). For any fixed value T , the unit impulse function is
defined through the combination of two properties:

δ(t − T ) = 0 for t �= T ,

∞∫
−∞

δ(t − T ) dt = 1.

(12.1a)

(12.1b)

� The first property states that the unit impulse function
δ(t − T ) is zero everywhere, except at its own location
(t = T ), but its value is infinite at that location! The
second property states that the total area under the unit
impulse function is equal to 1, regardless of its location. �
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To visualize the meaning of the second property, we can
represent the unit impulse function by the graphical rectangle
shown in Fig. 12-1(b), with the understanding that δ(t) is
defined in the limit as ε → 0. The rectangle is of width w = 2ε

and height h = 1
2 ε, so its area is always unity, even as ε → 0.

Since δ(t −T ) in the integral of Eq. (12.1b) is, by definition,
equal to zero everywhere except over an infinitesimally narrow
range surrounding t = T , Eq. (12.1b) can be reexpressed as

T +ε∫
T −ε

δ(t − T ) dt = 1. (12.2)

12-1.1 Relationship Between u(t) and δ(t)

According to the rectangle model displayed in Fig. 12-1(b),
δ(t) = 1/(2ε) over the narrow range −ε < t < ε. For the
gradual step model of u(t) shown in Fig. 12-1(c), its slope also
is 1/(2ε). Hence,

du(t)

dt
= δ(t). (12.3)

Even though this relationship between the unit impulse and unit
step functions was obtained on the basis of specific geometrical
models for δ(t) and u(t), its validity can be demonstrated to be
true always. The corresponding expression for u(t) is

u(t) =
t∫

−∞
δ(τ ) dτ, (12.4)

where τ is a dummy integration variable introduced so as to
avoid confusion between the integration variable τ and the
upper limit of the integral t in Eq. (12.4). For the time-shifted
case,

u(t − T ) =
t∫

−∞
δ(τ − T ) dτ.

d

dt
[u(t − T )] = δ(t − T ),

(12.5a)

(12.5b)

By extension, a scaled impulse A δ(t) has an area A and

t∫
−∞

A δ(τ) dτ = A u(t). (12.6)

12-1.2 Sampling Property of δ(t)

As was noted earlier, multiplying an impulse function by
a constant A gives a scaled impulse of area A. Now we
consider what happens when a continuous-time function x(t)

is multiplied by δ(t). Since δ(t) is zero everywhere except at
t = 0, it follows that

x(t) δ(t) = x(0) δ(t), (12.7)

provided that x(t) is continuous at t = 0. By extension,
multiplication of x(t) by the time-shifted impulse function
δ(t − T ) gives

x(t) δ(t − T ) = x(T ) δ(t − T ). (12.8)

� Multiplication of a time-continuous function x(t) by
an impulse located at t = T generates a scaled impulse
of magnitude x(T ) at t = T , provided x(t) is continuous
at t = T . �

One of the most useful features of the impulse function
is its sampling property. For any function x(t) known to be
continuous at t = T :

∞∫
−∞

x(t) δ(t − T ) dt = x(T ).

(sampling property)

(12.9)

Derivation of the sampling property relies on Eqs. (12.1b) and
(12.8):

∞∫
−∞

x(t) δ(t − T ) dt =
∞∫

−∞
x(T ) δ(t − T ) dt

= x(T )

∞∫
−∞

δ(t − T ) dt = x(T ).

Concept Question 12-1: How is u(t) related to δ(t)?
(See         )

Concept Question 12-2: Why is Eq. (12.9) called the
sampling property of the impulse function? (See         )
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Exercise 12-1: If x(t) is the rectangular pulse shown in
Fig. E12.1(a), determine its time derivative x′(t) and plot
it.

(a)  x(t)

t (s)

x(t)

2

3 4

(b) x′(t)

t (s)

x′(t)

2 δ(t − 3)

−2 δ(t − 4)

Figure E12.1

Answer: x′(t) = 2δ(t − 3) − 2δ(t − 4). (See )

12-2 The Laplace Transform
Technique

� A domain transformation is a mathematical process
that converts a set of variables from their domain into
a corresponding set of variables defined in another
domain. �

In reality, a circuit functions entirely in the time domain, with
both its inputs (sources) and outputs (voltages and currents)
expressed as functions of the time variable t . In the top
horizontal sequence depicted in Fig. 12-2, application of KCL
and KVL leads to the differential equation characterizing the
output of interest, and its solution then yields the desired
response. All mathematical steps are performed entirely in the
time domain.

A transform is a mathematical operator that converts
functions, such as υ(t) and i(t), into counterpart functions
defined in another domain. The Laplace transform is one such
operator; it converts a function υ(t) defined in the time domain
into a counterpart V(s) defined in another domain called the
s-domain. The two domains may be thought of as “parallel
universes” and a transformation is a “transport” between the
two universes. By applying the Laplace transform, a circuit
(or its associated differential equation) can be transformed
to the s-domain. The transformed circuit is characterized by
an algebraic equation—instead of a differential equation—
with a relatively straightforward solution. By transforming

Laplace
transform

Inverse
Laplace
transform

Time-Domain
Circuit

s-Domain
Circuit

s-Domain
Solution

Time-Domain
Solution

Differential Equation

Algebraic Equation

Time Domain

s-Domain

Figure 12-2: The top horizontal sequence involves solving a differential equation entirely in the time domain. The bottom horizontal
sequence involves a much easier solution of a linear equation in the s-domain.
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the solution back to the time domain, we end up with the
same solution that we would have obtained had we solved the
differential equation directly in the time domain. Even though
the s-domain route involves transforming the circuit to the s-
domain and transforming the solution to the time domain (which
is called an inverse Laplace transformation), the overall solution
process is considerably easier to implement than the traditional
differential-equation solution method.

Solution Procedure: Laplace Transform

Step 1: The circuit is transformed to the Laplace
domain—also known as the s-domain.

Step 2: In the s-domain, application of KVL and KCL
yields a set of algebraic equations.

Step 3: The equations are solved for the variable of
interest.

Step 4: The s-domain solution is transformed back to
the time domain.

After introducing the Laplace transform and exploring its
properties, we will demonstrate its capabilities by applying the
outlined four-step procedure to analyze several types of passive
and active circuits.

12-2.1 Definition of the Laplace Transform

The symbol LLL[f (t)] is a short-hand notation for “the Laplace
transform of function f (t).” Usually denoted F(s), the Laplace
transform is defined by

F(s) = LLL[f (t)] =
∞∫

0−
f (t) e−st dt, (12.10)

where s is a complex variable with a real part σ and an imaginary
part ω:

s = σ + jω. (12.11)

Given that the exponent st has to be dimensionless, s has
the unit of inverse second, which is the same as Hz or rad/s.
Moreover, since s is a complex quantity, it is often termed
complex frequency.

In view of the definite limits on the integral in Eq. (12.10), the
outcome of the integration will be an expression that depends on
a single variable, s. The transform operation converts a function

f (t) defined in the time domain into a function F(s) defined in
the s-domain. Functions f (t) and F(s) are called a Laplace
transform pair.

The uniqueness property of the Laplace transform states:

� A given f (t) has a unique F(s), and vice versa. �

The uniqueness property can be expressed in symbolic form
by

f (t) F(s). (12.12a)

The two-way arrow is a short-hand notation for the combination
of the two statements

LLL[f (t)] = F(s), LLL−1[F(s)] = f (t). (12.12b)

The first statement asserts that F(s) is the Laplace transform
of f (t), and the second one asserts that the inverse Laplace
transform (LLL−1[ ]) of F(s) is f (t).

Because the lower limit on the integral in Eq. (12.10) is 0−,
F(s) is called a one-sided transform, in contrast with the two-
sided transform for which the lower limit is −∞. When we
apply the Laplace transform technique to electric circuits, we
select the start time for the circuit operation as t = 0, so the
single-sided transform is plenty suitable for our intended use,
and we will adhere to it exclusively in this book. Moreover,
unless noted to the contrary, it will be assumed that f (t) is
always multiplied by an implicit invisible step function u(t). The
inquisitive reader may ask why we use 0−, instead of simply 0,
as our lower limit in the integral of Eq. (12.10). We use it as
a reminder that the integration can include initial conditions
at t = 0−, which may be associated with the voltage across a
capacitor or the current through an inductor.

12-2.2 Convergence Condition

Depending on the functional form of f (t), the Laplace
transform integral given by Eq. (12.10) may or may not
converge to a finite value. If it does not, the Laplace transform
does not exist. Convergence requires that

∞∫
0−

|f (t) e−st | dt =
∞∫

0−
|f (t)||e−σ t ||e−jωt | dt

=
∞∫

0−
|f (t)|e−σ t dt < ∞, (12.13)
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for some real value of σ . We used the fact that |e−jωt | = 1 for
any value of ωt and, since σ is real, |e−σ t | = e−σ t . If σc is the
smallest value of σ for which the integral converges, then the
region of convergence is σ > σc. Fortunately, this convergence
issue is somewhat esoteric to circuit analysts and designers
because the waveforms of the excitation sources used in electric
circuits are such that they do satisfy the convergence condition
for all values of σ , and hence, their Laplace transforms do exist.

12-2.3 Inverse Laplace Transform

Equation (12.10) allows us to obtain Laplace transform F(s)
corresponding to time function f (t). The inverse process,
denoted LLL−1[F(s)], allows us to perform an integration on F(s)
to obtain f (t):

f (t) = LLL−1[F(s)] = 1

2πj

σ+j∞∫
σ−j∞

F(s) est ds, (12.14)

where σ > σc. The integration, which has to be performed
in the two-dimensional complex plane, is rather cumbersome
and to be avoided if an alternative approach is available for
converting F(s) into f (t). Fortunately, there is an alternative
approach. Instead of applying Eq. (12.14), we can generate a
table of Laplace transform pairs for all of the time functions
commonly encountered in electric circuits, and then use it, sort
of like a look-up table, to transform the s-domain solution to
the time domain. The validity of this approach is supported
by the uniqueness property of the Laplace transform, which
guarantees a one-to-one correspondence between every f (t)

and its corresponding F(s). The details of the inverse-transform
process are covered in Section 12-4.

Example 12-1: Laplace Transforms of Singularity

Functions

The step, rectangle, and impulse waveforms displayed in
Fig. 12-3 are known as singularity functions, because either
they or their time derivatives exhibit discontinuities. Determine
their Laplace transforms.

Solution: (a) The step function in Fig. 12-3(a) is given by

f1(t) = A u(t − T ).

(a)

Step

Rectangle

Impulse

tT

A

f1(t)

(b)

A

t

f2(t)

T2T1

(c)

A

t

f3(t)

T

Figure 12-3: Singularity functions for Example 12-1.

Application of Eq. (12.10) gives

F1(s) =
∞∫

0−
f1(t) e−st dt

=
∞∫

0−
A u(t − T ) e−st dt

= A

∞∫
T

e−st dt = −A

s
e−st

∣∣∣∣
∞

T

= A

s
e−sT .

For the special case where A = 1 and T = 0 (the step occurs
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at t = 0), the transform pair becomes

u(t)
1

s
. (12.15)

(b) The rectangle function in Fig. 12-3(b) can be constructed
as the sum of two step functions:

f2(t) = A[u(t − T1) − u(t − T2)],
and its Laplace transform is

F2(s) =
∞∫

0−
A[u(t − T1) − u(t − T2)]e−st dt

= A

∞∫
0−

u(t − T1) e−st dt − A

∞∫
0−

u(t − T2) e−st dt

= A

s
[e−sT1 − e−sT2 ].

(c) The impulse function in Fig. 12-3(c) is given by

f3(t) = A δ(t − T ),

and the corresponding Laplace transform is

F3(s) =
∞∫

0−
A δ(t − T ) e−st dt

= A

T +ε∫
T −ε

δ(t − T ) e−st dt

= Ae−sT

T +ε∫
T −ε

δ(t − T ) dt = Ae−sT ,

where we have used the procedure introduced earlier in
connection with Eq. (12.9). For the special case where A = 1
and T = 0, the Laplace transform pair simplifies to

δ(t) 1. (12.16)

Example 12-2: Laplace Transform of cos ωt

Obtain the Laplace transform of f (t) = [cos(ωt)] u(t).

Solution: Inclusion of u(t) in the expression for f (t) is
simply a reminder of the implicit assumption common to all
excitations considered in this chapter, namely that f (t) = 0 for
t < 0−.

The solution is facilitated by expressing cos ωt in terms of
complex exponentials (see Table 7-2), namely

cos ωt = 1

2
[ejωt + e−jωt ].

Use of this expression in Eq. (12.10) gives

F(s) =
∞∫

0−
cos ωt u(t) e−st dt

= 1

2

⎡
⎣ ∞∫

0

ejωt e−st dt +
∞∫

0

e−jωt e−st dt

⎤
⎦

= 1

2

[
e(jω−s)t

jω − s
+ e−(jω+s)t

−(jω + s)

]∣∣∣∣∣
∞

0

= s
s2 + ω2 .

Hence,

[cos(ωt)] u(t)
s

s2 + ω2 . (12.17)

Concept Question 12-3: Is the uniqueness property of 
the Laplace transform unidirectional or bidirectional? 
Why is that significant? (See         )

Concept Question 12-4: Is convergence of the Laplace 
transform integral in doubt when applied to circuit 
analysis? If not, why not? (See         )

Exercise 12-2: Determine the Laplace transform of (a)
[sin(ωt)] u(t), (b) e−at u(t), and (c) t u(t). Assume all
waveforms are zero for t < 0.

Answer: (a) [sin(ωt)] u(t)
ω

s2 + ω2 ,

(b) e−at u(t)
1

s + a
, (c) t u(t)

1

s2 . (See            )
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Technology Brief 28
3-D TV

Attempts to produce stereoscopic perception of depth in
images have been recorded since at least the mid-19th
century. Stereopsis is the impression of depth that arises
when humans and other animals view the world using two
eyes. Since each eye is at a slightly different location with
respect to any object in a viewed scene, the brain can
use the difference between the left and right eye images
to extract information about depth (and, thus, perceived
three dimensionality). Stereopsis was first described in
detail by Charles Wheatstone in the 1830s (although it
had been observed but not properly understood during
the Italian Renaissance).

A variety of devices, usually termed stereoscopes,
were constructed during the Victorian era which pre-
sented viewers with slightly different images to the left
and right eyes (usually by projecting them through lenses
into each eye separately).

Anaglyphic 3-D

The rise of modern cinema saw several additional
attempts to convey stereoscopic information to the big
screen.The most popular of these, at its peak in the 1950s
and 60s, was anaglyphic projection (Fig. TF28-1(a)).
Viewers watching a projected movie (or television screen)
wore glasses with different color filters in front of each
eye (usually cyan and red). Two images were projected
simultaneously on the screen, such that only one image
could pass each filter and be perceived by the eye. Since
each of the two images or films had been captured
by cameras slightly offset from each other (to mimic
the separation of human eyes), the brain stitched these
images together somewhat naturally and perceived depth
and “3-D” in the film. Anaglyphic technologies suffer
somewhat in that they do not provide perfect color
reconstruction and can often produce blurry or ghost
images (depending on the quality of the filters used).

The New Rise of 3-D TV

The rapid maturation of flat-screen television, leading
to very high resolution, very fast refresh times, high
contrast ratios and deep color reproduction, enabled a
new resurgence in 3-D technologies in the last few years.
Several technologies are currently competing for market
dominance (with others in development).

Glasses

Cyan
filter

Magenta
filter

Magenta pixels
(or projection)Cyan pixels

(or projection)

Left-eye image

Pixels

Right-eye image

Opaque film
Slits

Pixels

Lens array

Pixels

Pixels with
polarizing filter

Right-
polarized
filter

Left-
polarized
filter

(a) Anaglyphic 3-D

(b) Polarizing (passive) 3-D

(c) Active shutter 3-D

(d) Parallax barrier 3-D

(e) Lenticular-lens array 3-D

Figure TF28-1: Various techniques for realizing 3-D
imaging.
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Polarizing 3-D

So-called polarizing or passive 3-D TV is in some ways
similar to anaglyphic systems. Instead of employing color
filters, 3-D passive TV glasses use light polarization
to deliver different images to the left and right eye
(Fig. TF28-1(b)). Light is, of course, electromagnetic
radiation perceived by the human eye. Traveling waves
of electromagentic radiation are composed of oscillating
electric and magnetic fields with specific orientations or
polarizations (this does not refer to the direction of
travel of the light, but rather, the directions in which the
light’s electric and magnetic fields oscillate as the wave
travels through space). The details of light polarization
can be complex, but of importance to us is the fact that
polarizations can be complementary; for example, light
can travel with clockwise polarity or counter-clockwise
polarity with respect to its source. The human eye cannot
tell the difference between different polarizations of light.

Passive 3-D television sets contain polarizing filters
placed in front of the pixels in the display;with these filters,
half of the pixels in the television emit clockwise polarized
light and the other half produce counterclockwise
polarized light. The viewer wears glasses which let only
one polarity of light through to the left eye and the other
to the right eye. In this way, each eye is presented with
a different image. This type of 3-D TV has advantages in
that the glasses are very lightweight. Historically, the main
drawback of 3-D images was the decrease in resolution
of the image (since each eye received half of the total
pixels of the television). Recent advances, however, may
be solving this problem. One approach, made possible by
the speed of modern pixels, is to present each eye with
half of each full-resolution stereoscopic image (as above)
and then, very quickly, present the eyes with the other half
of a full resolution image. This requires televisions that
can refresh images at 120 Hz (120 times each second or
a new image every 8.3 milliseconds); this is about double
the speed at which a human eye can perceive flicker!

Active Shutter 3-D

Active shutter 3-D or alternate frame-sequencing 3-D
sets also use glasses but they tend to be heavier and more
expensive (Fig. TF28-1(c)). This type of technology uses
a normal flat-screen TV (but it must be fast) to display
the images intended for the left eye alternating in time
with the images intended for the right eye. In other words,
while watching a movie, the television displays a frame
intended for the left eye followed by a frame intended for

the right eye, and so on. The glasses hold LCD screens
over each eye and receive a synchronization signal from
the television (either infrared or radio frequency). In sync
with the TV, the glasses block light to the left eye (by
darkening the LCD), then block light to the right eye, and
so on, repeating this sequence 24 times a second or
faster. In this way, each eye receives the stereoscopic pair
intended for it at full resolution. Unlike traditional passive
3-D TVs, all pixels are used for each frame of the image.

Parallax Barrier 3-D

Parallax-barrier displays are a glasses-free 3-D display
technology that has been around for a number of years
but is beginning to make it into prototype flat-panel
televisions. Parallax-barrier technology was used in the
Nintendo 3-DS hand-held and several 3-D smartphones.
The idea behind parallax barrier technology is shown in
Fig.TF28-1(d).An opaque film with precisely aligned slots
is fabricated over the display pixels; the slots are intended
to block light from some pixels from reaching the left
eye and to block light from other pixels from reaching
the right eye for a viewer standing directly in front of
the display. The principal advantage of parallax-barrier
displays is that no glasses are needed;anyone standing in
front of the TV sees images in stereoscopic 3-D. The two
principal disadvantages are the halved resolution (similar
to traditional passive 3-D, as explained above), since light
from only about half the pixels reach each eye, and the
limited viewing angle for 3-D.Typical prototypes only work
within a 20◦ angle on either side of center, making it less
attractive for consumer use (although the technology is
evolving fast).

Lenticular-Lens Arrays

Lenticular-lens arrays (Fig. TF28-1(e)) work in a similar
manner to parallax viewing except that the light from
a given pixel is focused onto the right or left eyes (as
opposed to blocked) by an array of precisely fabricated
lenses (a very thin plastic sheet is usually molded into a
regular array of lenses) sitting over the display. Lenticular-
lens displays currently suffer from similar drawbacks to
parallax-barrier displays and are currently very expensive.
As with parallax-barrier technology, several companies
are actively pursuing this technology and prices may drop
rapidly as the technology matures.
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12-3 Properties of the Laplace
Transform

The Laplace transform has a number of useful, universal 
properties that apply to any function f (t), greatly facilitating 
the process of transforming a circuit from the t-domain to the 
s-domain. This section will conclude with a table outlining 
several universal properties of the Laplace transform, to which 
we will be making frequent reference throughout this 
chapter. Some of these properties are intuitively obvious, 
while others may require some elaboration.

12-3.1 Time Scaling

If
f (t) F(s), (12.18)

then the transform of the time-scaled function f (at) is

f (at)
1

a
F
( s
a

)
, a > 0.

(time-scaling property)

(12.19)

� The time scaling property states that stretching the time
axis by a factor a corresponds to shrinking the s axis and
the amplitude of F(s) by the same factor, and vice versa. �

To prove Eq. (12.19), we start with the standard definition of
the Laplace transform given by Eq. (12.10):

LLL[f (at)] =
∞∫

0−
f (at) e−st dt. (12.20)

In the integral, if we set τ = at and dt = 1
a

dτ , we have

LLL[f (at)] = 1

a

∞∫
0−

f (τ) e−(s/a)τ dτ

= 1

a

∞∫
0−

f (τ) e−μμμτ dτ, with μ = s
a
. (12.21)

The definite integral is identical in form to the Laplace transform
definition given by Eq. (12.10), except that the dummy variable
is τ instead of t , and the coefficient of the exponent is μ = s/a
instead of just s. Hence,

LLL[f (at)] = 1

a
F(μ) = 1

a
F
( s
a

)
, a > 0, (12.22)

which proves the time-scaling property defined by Eq. (12.19).

12-3.2 Time Shift

If t is shifted by T along the time axis, with T ≥ 0, then

f (t − T ) u(t − T ) e−T s F(s),

T ≥ 0.

(time-shift property)

(12.23)

The validity of this property is demonstrated as follows:

LLL[f (t − T ) u(t − T )] =
∞∫

0−
f (t − T ) u(t − T ) e−st dt

=
∞∫

T

f (t − T ) e−st dt

=
∞∫

0

f (x) e−s(x+T ) dx

= e−T s

∞∫
0

f (x) e−sx dx

= e−T s F(s), (12.24)

where we made the substitutions t − T = x and dt = dx, and
then applied the definition for F(s) given by Eq. (12.10).

To illustrate the utility of the timeshift property, we consider
the cosine function of Example 12-2, where it was shown that

[cos(ωt)] u(t)
s

s2 + ω2 . (12.25)

According to Eq. (12.23),

[cos ω(t − T )] u(t − T ) e−T s s
s2 + ω2 . (12.26)

Had we analyzed a linear circuit driven by a sinusoidal voltage
source that started at t = 0, and then we wanted to reanalyze it
anew, but wanted to delay both the cosine function and the start
time by T , Eq. (12.26) would provide an expedient solution to
obtaining the transform of the delayed cosine function.

Exercise 12-3: Determine LLL[sin ω(t − T ) u(t − T )] for
T ≥ 0.

Answer:

e−T s ω

s2 + ω2 .

(See              )



“book” — 2015/5/4 — 7:26 — page 640 — #11

640 CHAPTER 12 CIRCUIT ANALYSIS BY LAPLACE TRANSFORM

12-3.3 Frequency Shift

According to the time-shift property, if t is replaced with
(t − T ) in the time domain, F(s) gets multiplied by e−T s in
the s-domain. Within a (−) sign, the converse is also true: if s
is replaced with (s + a) in the s-domain, f (t), gets multiplied
by e−at in the time domain. Thus,

e−at f (t) F(s + a).

(frequency shift property)

(12.27)

Proof of Eq. (12.27) is part of Exercise 12-4.

Concept Question 12-5: According to the time scaling
property of the Laplace transform, “stretching the time
axis corresponds to shrinking the s axis.” What does that 
mean? (See         )

Concept Question 12-6: Explain the similarities and 
differences between the time-shift and frequency-shift 
properties of the Laplace transform. (See         )

Exercise 12-4: (a) Prove Eq. (12.27) and (b) apply it to
determine LLL{[e−at cos(ωt)] u(t)}.
Answer: (a) (See C3 ),

(b) [e−at cos(ωt)] u(t)
s + a

(s + a)2 + ω2 . (See            )

12-3.4 Time Differentiation

Differentiating f (t) in the time domain is equivalent to: (a)
multiplying F(s) by s in the s-domain, and then (b) subtracting
f (0−) from s F(s):

f ′ = df

dt
s F(s) − f (0−).

(time-differentiation property)

(12.28)

To verify the validity of Eq. (12.28), we start with the standard
definition for the Laplace transform:

LLL[f ′] =
∞∫

0−

df

dt
e−st dt. (12.29)

Integration by parts, with

x = e−st , dx = −se−st dt,

dy =
(

df

dt

)
dt, and y = f,

gives

LLL[f ′] = xy
∣∣∞
0− −

∞∫
0−

y dx

= e−st f (t)
∣∣∞
0− −

∞∫
0−

−s f (t) e−st dt

= −f (0−) + s F(s), (12.30)

which is equivalent to Eq. (12.28).
Higher derivatives can be obtained by repeating the

application of Eq. (12.28). For the second derivative of f (t),

f ′′ = d2f

dt2 s2 F(s) − s f (0−) − f ′(0−),

(second-derivative property) (12.31)

where f ′(0−) is the derivative of f (t), evaluated at t = 0−.

12-3.5 Time Integration

Integration of f (t) in the time domain is equivalent to dividing
F(s) by s in the s-domain:

t∫
0−

f (τ) dτ
1

s
F(s).

(time-integration property)

(12.32)
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Application of the Laplace transform definition gives

LLL
⎡
⎣ t∫

0−
f (τ) dτ

⎤
⎦ =

∞∫
0−

⎡
⎣ t∫

0−
f (τ) dτ

⎤
⎦ e−st dt, (12.33)

where, for the sake of clarity, we changed the dummy variable
in the inner integral from t to τ . Integration by parts with

x =
t∫

0

f (τ) dτ dx = f (τ) dτ,

dy = e−st dt y = −e−st

s
,

leads to

LLL
⎡
⎣ t∫

0−
f (τ) dτ

⎤
⎦

= xy
∣∣∞
0− −

∞∫
0−

y dx

=
⎡
⎣−e−st

s

t∫
0−

f (τ) dτ

⎤
⎦
∣∣∣∣∣∣
∞

0−

+ 1

s

∞∫
0−

f (t) e−st dt = 1

s
F(s).

(12.34)

Both limits on the first term on the right-hand side yield zero
values; at the upper limit,

e−st ∣∣
t=∞ = 0,

and at the lower limit,

0−∫
0−

f (τ) dτ = 0.

To illustrate the utility of the time-integration property given
by Eq. (12.32), we consider the relationships between δ(t), u(t),
and r(t). From Eq. (12.16), we have

δ(t) 1.

Since u(t) is equal to the time integral of δ(t), and r(t) is the
time integral of u(t), it follows that

u(t) =
t∫

0−
δ(τ ) dτ

1

s
,

and

r(t) =
t∫

0−
u(τ) dτ

1

s2 .

Table 12-1 provides a summary of the major properties of
the Laplace transform, and Table 12-2 provides a list of Laplace
transforms of commonly encountered time functions.

Exercise 12-5: Obtain the Laplace transform of
(a) f1(t) = 2(2 − e−t ) u(t) and
(b) f2(t) = e−3t cos(2t + 30◦) u(t).

Answer: (a) F1(s) = 2s + 4

s(s + 1)
,

(b) F2(s) = 0.866s + 3.6

s2 + 6s + 13
. (See            )

12-4 Circuit Analysis Procedure

Now that we have learned how to transform a time-domain
function f (t) to its Laplace counterpart F(s), we shall
demonstrate the basic steps of the Laplace transform technique
by analyzing a relatively simple circuit. Figure 12-4 contains
a series RLC circuit, with no stored energy, connected to a dc
voltage source Vo via a SPST switch that closes at t = 0. Hence,
the source should be represented as

υs(t) = Vo u(t). (12.35)

Fundamentally, the Laplace transfer technique consists of four
steps:

Step 1: Apply KCL and/or KVL to obtain the integrodiffer-
ential equation(s) of the circuit for t ≥ 0

For the circuit in Fig. 12-4(a), KVL at t ≥ 0 gives

R i(t) + υC(t) + L
di

dt
= Vo u(t), (12.36)
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Table 12-1: Properties of the Laplace transform (f (t) = 0 for t < 0−).

Property f (t) F(s) = LLL[f (t)]
1. Multiplication by constant K f (t) K F(s)

2. Linearity K1 f1(t) + K2 f2(t) K1 F1(s) + K2 F2(s)

3. Time scaling f (at), a > 0
1

a
F
( s

a

)
4. Time shift f (t − T ) u(t − T ) e−T s F(s), T ≥ 0

5. Frequency shift e−at f (t) F(s + a)

6. Time 1st derivative f ′ = df

dt
s F(s) − f (0−)

7. Time 2nd derivative f ′′ = d2f

dt2 s2F(s) − sf (0−)

− f ′(0−)

8. Time integral

t∫
0−

f (τ) dτ
1

s
F(s)

9. Frequency derivative t f (t) − d

ds
F(s)

10. Frequency integral
f (t)

t

∞∫
s

F(s′) ds′

where i(t) is the current flowing through the loop and υC(t) is
the voltage across C. By invoking the i-υ relationship for C,
Eq. (12.36) becomes

Ri +
⎡
⎣ 1

C

t∫
0−

i dt + υC(0−)

⎤
⎦ + L

di

dt
= Vo u(t), (12.37)

which now contains a single dependent variable, i(t).

Step 2: Define Laplace transform currents and voltages
corresponding to the time-domain currents and voltages
and then transform the equation to the s-domain

We designate I(s) as the s-domain counterpart of i(t),

i(t) I(s). (12.38)

To transform Eq. (12.37) to the s-domain, we apply the
appropriate property or Laplace transformation (LT) from

Tables 12-1 and 12-2, as follows:

R i(t) R I(s)

(multiplication by constant),

1

C

t∫
0−

i dt
1

C

I(s)
s

(time-integral property),

υC(0−)
υC(0−)

s
(LT of a constant),

L
di

dt
L[s I(s) − i(0−)]
(time derivative property),

Vo u(t)
Vo

s
(LT of a constant).

The opening paragraph of this section stated that the circuit
had no stored energy prior to t = 0. Hence, υC(0−) = 0 and
i(0−) = 0. Replacing each of the terms in Eq. (12.37) with its
s-domain counterpart leads to

RI + I
Cs

+ LsI = Vo

s
(s-domain). (12.39)
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Table 12-2: Examples of Laplace transform pairs for T ≥ 0. Note that multiplication by u(t) guarantees that f (t) = 0 for t < 0−.

Laplace Transform Pairs

f (t) F(s) = LLL[f (t)]
1 δ(t) 1

1a δ(t − T ) e−T s

2 1 or u(t)
1

s

2a u(t − T )
e−T s

s

3 e−at u(t)
1

s + a

3a e−a(t−T ) u(t − T )
e−T s

s + a

4 t u(t)
1

s2

4a (t − T ) u(t − T )
e−T s

s2

5 t2 u(t)
2

s3

6 te−at u(t)
1

(s + a)2

7 t2e−at u(t)
2

(s + a)3

8 tn−1e−at u(t)
(n − 1)!
(s + a)n

9 sin ωt u(t)
ω

s2 + ω2

10 sin(ωt + θ) u(t)
s sin θ + ω cos θ

s2 + ω2

11 cos ωt u(t)
s

s2 + ω2

12 cos(ωt + θ) u(t)
s cos θ − ω sin θ

s2 + ω2

13 e−at sin ωt u(t)
ω

(s + a)2 + ω2

14 e−at cos ωt u(t)
s + a

(s + a)2 + ω2

15 2e−at cos(bt − θ) u(t)
ejθ

s + a + jb
+ e−jθ

s + a − jb

16
2tn−1

(n − 1)! e−at cos(bt − θ) u(t)
ejθ

(s + a + jb)n
+ e−jθ

(s + a − jb)n

Note: (n − 1)! = (n − 1)(n − 2) . . . 1.
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(a) RLC circuit

(b)  i(t)

υs(t) = V0 u(t)

C

L

R

V0 = 1.6 V 0.1 F
0.4 H

i

t = 0 4 Ω

0.8 10.6

0.3

0.40.2

0.1

0.15

0.05

0

0.2

0.25

0
t (s)

i (A)

+
_

i(t) = 4te−5t u(t)

Figure 12-4: The dc source, in combination with the switch,
constitutes an input excitation υs(t) = Vo u(t).

Step 3: Solve for the variable of interest in the s-domain

Solving for I(s), and then replacing R, L, C, and Vo with
their numerical values, leads to

I(s) = Vo

L

[
s2 + R

L
s + 1

LC

]

= 4

s2 + 10s + 25
= 4

(s + 5)2 . (12.40)

Step 4: Transform the solution back to the time domain with
the help of Tables 12-1 and 12-2

According to entry #6 in Table 12-2,

LLL−1
[

1

(s + a)2

]
= te−at u(t).

Hence,

i(t) = 4te−5t u(t), (12.41)

and its plot is displayed in Fig. 12-4(b).
In this particular example, the expression for I(s) given by

Eq. (12.40) matches one of the entries available in Table 12-2,
but what should we do if it does not? We have two options:

(1) we can apply the inverse Laplace transform relation
given by Eq. (12.14), which in general involves a rather
cumbersome integration, or

(2) we can apply the partial-fraction-expansion method to
rearrange the expression for I(s) into a sum of terms, each
of which has an appropriate match in Table 12-2. This
latter approach is the subject of the next section.

12-5 Partial Fraction Expansion

Let us assume that after transforming the integrodifferential
equation associated with a circuit of interest to the s-domain,
and then solving it for the voltage or current whose behavior
we wish to examine, we end up with an expression F(s). Our
next step is to inverse transform F(s) to the time domain,
thereby completing our solution. The degree of mathematical
difficulty associated with the implementation of the inverse
transformation depends on the mathematical form of F(s).

Consider, for example, the expression

F(s) = 4

s + 2
+ 6

(s + 5)2 + 8

s2 + 4s + 5
. (12.42)

The inverse transform, f (t), is given by

f (t) = LLL−1[F(s)]

= LLL−1
[

4

s + 2

]
+ LLL−1

[
6

(s + 5)2

]
+ LLL−1

[
8

s2 + 4s + 5

]
.

(12.43)

By comparison with the entries in Table 12-2, we note that:

(a) The first term in Eq. (12.43), 4/(s + 2), is functionally the
same as entry #3 in Table 12-2, with a = 2. Hence,

LLL−1
[

4

s + 2

]
= 4e−2t u(t). (12.44a)

(b) The second term, 6/(s + 5)2, is functionally the same as
entry #6 in Table 12-2, with a = 5. Thus,

LLL−1
[

6

(s + 5)2

]
= 6te−5t u(t). (12.44b)
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(c) The third term, 1/(s2 +4s+5), is similar but not identical
in form to entry #13 in Table 12-2. However, it can be
rearranged to assume the proper form:

1

s2 + 4s + 5
= 1

(s + 2)2 + 1
.

Consequently,

LLL−1
[

8

(s + 2)2 + 1

]
= 8e−2t sin t u(t). (12.44c)

Combining the results represented by Eqs. (12.44a–c) gives:

f (t) = [4e−2t + 6te−5t + 8e−2t sin t] u(t). (12.45)

The preceding example demonstrated that the implementation
of the inverse Laplace transform is a rather painless process, so
long as the expression for F(s) is composed of a series of terms
similar to those in Eq. (12.42). If, however, F(s) is not in the
proper form, we will need to reconfigure it before we can apply
the inverse transform. Specifically, F(s) should be expanded
into a sum of partial fractions by applying the applicable recipe
from among those outlined in the forthcoming subsections.

12-5.1 Distinct Real Poles

Consider the s-domain function

F(s) = s2 − 4s + 3

s(s + 1)(s + 3)
. (12.46)

The poles of F(s) are the values of s at which its denominator is
zero. In the present case, the poles of F(s) are s = 0, s = −1,
and s = −3. All three poles are real and distinct. By distinct
we mean that no two or more poles are the same; in (s + 4)2,
for example, the pole s = −4 occurs twice, and therefore it is
not distinct.

F(s) can be decomposed into partial fractions corresponding
to the three factors in the denominator of F(s):

F(s) = A1

s
+ A2

(s + 1)
+ A3

(s + 3)
, (12.47)

where A1 to A3 are expansion coefficients to be determined
shortly. Equating the two functional forms of F(s), we have

A1

s
+ A2

(s + 1)
+ A3

(s + 3)
= s2 − 4s + 3

s(s + 1)(s + 3)
. (12.48)

Associated with each expansion coefficient is a pole factor; s,
(s + 1), and (s + 3) are the pole factors associated with A1, A2,

and A3, respectively. To determine the value of any expansion
coefficient we multiply both sides of Eq. (12.48) by the pole
factor of that expansion coefficient, and then we evaluate them
at s = pole value of that pole factor. The procedure is called the
residue method.

To determine A2, for example, we multiply both sides of
Eq. (12.48) by (s + 1), we reduce the expressions, and then we
evaluate them at s = −1:{

(s + 1)

[
A1

s
+ A2

(s + 1)
+ A3

(s + 3)

]}∣∣∣∣
s=−1

=
[
(s + 1)(s2 − 4s + 3)

s(s + 1)(s + 3)

]∣∣∣∣
s=−1

. (12.49)

After reduction, the expression becomes[
A1(s + 1)

s
+ A2 + A3(s + 1)

(s + 3)

]∣∣∣∣
s=−1

=
[
(s2 − 4s + 3)

s(s + 3)

]∣∣∣∣
s=−1

. (12.50)

We note that (1) the presence of (s + 1) in the numerators
of terms 1 and 3 on the left-hand side will force those terms
to go to zero when evaluated at s = −1, (2) the middle term
has only A2 in it, and (3) the reduction on the right-hand
side of Eq. (12.50) eliminated the pole factor (s + 1) from the
expression. Consequently,

A2 = (−1)2 + 4 + 3

(−1)(−1 + 3)
= −4.

Similarly,

A1 = s F(s)|s=0 = s2 − 4s + 3

(s + 1)(s + 3)

∣∣∣∣
s=0

= 1,

and

A3 = (s + 3) F(s)|s=−3 = s2 − 4s + 3

s(s + 1)

∣∣∣∣
s=−3

= 4.

Having established the values of A1 to A3, we now are ready
to apply the inverse Laplace transform to Eq. (12.47):

F(s) = 1

s
− 4

s + 1
+ 4

s + 3
,

and with the help of Table 12-2, we obtain the result

f (t) = LLL−1[F(s)] = LLL−1
[

1

s
− 4

s + 1
+ 4

s + 3

]

= [1 − 4e−t + 4e−3t ] u(t). (12.51)
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Building on this example, we can generalize the process to:

Distinct Real Poles

Give a proper rational function defined by

F(s) = N(s)
D(s)

= N(s)
(s + p1)(s + p2) . . . (s + pn)

,

(12.52)
with numerator N(s) and distinct real poles −p1 to −pn,
such that pi �= pj for all i �= j , F(s) can be expanded into
the equivalent form:

F(s) = A1

s + p1
+ A2

s + p2
+ · · · + An

s + pn

=
n∑

i=1

Ai

s + pi

,

(12.53)

with expansion coefficients A1 to An given by

A1 = (s + pi) F(s)
∣∣
s=−pi

, i = 1, 2, . . . , n.

(12.54)
In view of entry #3 in Table 12-2, the inverse Laplace
transform or Eq. (12.53) is

f (t) = LLL−1[F(s)]
= [A1e

−p1t + A2e
−p2t + · · · + Ane

−pnt ] u(t).

(12.55)

Exercise 12-6: Apply the partial-fraction-expansion
method to determine f (t), given that its Laplace
transform is

F(s) = 10s + 16

s(s + 2)(s + 4)
.

Answer: f (t)  = [2 + e−2t − 3e−4t ] u(t). (See                   )

12-5.2 Repeated Real Poles

We now consider the case when F(s) contains repeated real
poles or a combination of distinct and repeated real poles. The

partial-fraction-expansion method is outlined by the following
steps.

Step 1. We are given a function F(s) composed of the product

F(s) = F1(s) F2(s), (12.56)

with

F1(s) = N(s)
(s + p1)(s + p2) . . . (s + pn)

, (12.57)

and

F2(s) = 1

(s + p)m
. (12.58)

We note that F1(s) is identical in form to Eq. (12.52)
and contains only distinct real poles, −p1 to −pn, thereby
qualifying it for representation by a series of terms as in
Eq. (12.53). The second function, F2(s), has an m-repeated pole
at s = −p, where m is a positive integer.Also, the repeated pole
is not a pole of F1(s); p �= pi for i = 1, 2, . . . , n.

Step 2. Partial fraction representation for an m-repeated pole at
s = −p consists of m terms:

B1

s + p
+ B2

(s + p)2 + · · · + Bm

(s + p)m
. (12.59)

Step 3. Partial fraction expansion for the combination of the
product F1(s) F2(s) is then given by

F(s) = A1

s + p1
+ A2

s + p2
+ · · · + An

s + pn

+ B1

s + p
+ B2

(s + p)2 + · · · + Bm

(s + p)m

=
n∑

i=1

Ai

s + pi

+
m∑

j=1

Bj

(s + p)j
. (12.60)

Step 4. Expansion coefficients A1 to An are determined by
applying Eq. (12.54):

Ai = (s + pi) F(s)|s=−pi
, i = 1, 2, . . . , n. (12.61)
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Repeated Real Poles

Expansion coefficients B1 to Bm are determined through
a procedure that involves multiplication by (s + p)m,
differentiation with respect to s, and evaluation at s = −p:

Bj =
{

1

(m − j)!
dm−j

dsm−j
[(s + p)m F(s)]

}∣∣∣∣
s=−p

,

j = 1, 2, . . . , m. (12.62)

For the m, m − 1, and m − 2 terms, Eq. (12.62) reduces
to:

Bm = (s + p)m F(s)|s=−p, (12.63a)

Bm−1 =
{

d

ds
[(s + p)m F(s)]

}∣∣∣∣
s=−p

, (12.63b)

Bm−2 =
{

1

2!
d2

ds2 [(s + p)m F(s)]
}∣∣∣∣

s=−p

. (12.63c)

Thus, the evaluation of Bm does not involve any differentiation,
that of Bm−1 involves differentiation with respect to s only once
(and division by 1!), and that of Bm−2 involves differentiation
twice and division by 2!. In practice, it is easiest to start by
evaluating Bm first and then evaluating the other expansion
coefficients in descending order.

5. Once the values of all of the expansion coefficients of
Eq. (12.60) have been determined, transformation to the time
domain is accomplished by applying entry #8 of Table 12-2,

LLL−1
[

(n − 1)!
(s + a)n

]
= tn−1e−at u(t). (12.64)

The result is

f (t) = LLL−1[F(s)]

=
⎡
⎣ n∑

i=1

Aie
−pi t +

m∑
j=1

Bj t
j−1

(j − 1)! e−pt

⎤
⎦ u(t). (12.65)

Example 12-3: Repeated Poles

Determine the inverse Laplace transform of

F(s) = N(s)
D(s)

= s2 + 3s + 3

s4 + 11s3 + 45s2 + 81s + 54
.

Solution: In theory, any polynomial with real coefficients
can be expressed as a product of linear and quadratic factors
(of the form (s + p) and (s2 + as + b), respectively). The
process involves long division, but it requires knowledge of
the roots of the polynomial, which can be determined through
the application of numerical techniques. In the present case,
a random check reveals that s = −2 and s = −3 are roots of
D(s). Given that D(s) is fourth order, it should have four roots,
including possible duplicates.

Since s = −2 is a root of D(s), we should be able to factor
out (s + 2) from it. Long division gives

D(s) = s4 + 11s3 + 45s2 + 81s + 54

= (s + 2)(s3 + 9s2 + 27s + 27).

Next, we factor out (s + 3), which yields

D(s) = (s + 2)(s + 3)(s2 + 6s + 9) = (s + 2)(s + 3)3.

Hence, F(s) has a distinct real pole at s = −2 and a triply
repeated pole at s = −3, and the given expression can be
rewritten as

F(s) = s2 + 3s + 3

(s + 2)(s + 3)3 .

Through partial fraction expansion, F(s) can be decomposed
into

F(s) = A

s + 2
+ B1

s + 3
+ B2

(s + 3)2 + B3

(s + 3)3 ,

with

A = (s + 2) F(s)|s=−2 = s2 + 3s + 3

(s + 3)3

∣∣∣∣
s=−2

= 1,

B3 = (s + 3)3 F(s)|s=−3 = s2 + 3s + 3

s + 2

∣∣∣∣
s=−3

= −3,

B2 = d

ds
[(s + 3)3 F(s)]

∣∣∣∣
s=−3

= 0,

B1 = 1

2

d2

ds2 [(s + 3)3 F(s)]
∣∣∣∣
s=−3

= −1.

Hence,

F(s) = 1

s + 2
− 1

s + 3
− 3

(s + 3)3 ,

and use of Table 12-2 for the first two terms and application of
Eq. (12.64) to the last term leads to

LLL−1[F(s)] =
[
e−2t − e−3t − 3

2
t2e−3t

]
u(t).
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Technology Brief 29
Mapping the Entire World in 3-D

Mapping software has become increasingly indispens-
able in the 21st-century industrialized world.Giving verbal
directions to someone’s house has been replaced with
directing them to Google Maps with the relevant address.
Even more exciting and controversial, however, is the
growing suite of 3-D virtual globe mapping software.
Of these, arguably the most famous is the currently free
Google Earth software. These packages allow the user
to fly in virtual space around the world, into cities and
remote areas and (in densely mapped areas) to view
their own backyards, streets signs, and local landscapes;
Google Sky includes virtual, navigable representations of
the Moon, Mars, and the night sky.The tools are becoming
an enabler for a new generation of armchair historians,
archaeologists, demographers. They have already been
used in search and rescue operations. How do these
packages work? Where does this data come from? How
is the world mapped?

Planes, Satellites, and Automobiles

Data for these packages is acquired by specialized
companies (including Google itself) that make use of
satellites, aircraft, and (more recently) large fleets of
specially equipped vans.The majority of data comes from
several satellites orbiting earth financed by either national
governments or private companies. For example, the U.S.
National Aeronautics and Space Administration (NASA)
has the long-standing Landsat 7 program which has
30-m imaging resolution and scans the earth in about 16
days. The European Space Agency’s ERS and Envisat
satellites perform similar functions. All of these satellites
perform functions other than visual spectrum imaging;
some have infrared sensors, radar sensors, temperature
sensors, etc. Several commercial satellites are now in
orbit whose primary function is to map the globe in high-
resolution mode; DigitalGlobe’s WorldView-2 satellite, for
example, provides 0.46 m spatial resolution—although
not all data are publicly available. Most of these satellites
maintain sun-synchronous orbits, which means that their
orbits loop over or near the north and south poles and
cross the equator twice on each loop. In this type of orbit,
the satellite “visits” a given place at the same local time
each visit, which is great for maintaining constant lighting

Figure TF29-1: The Shuttle Radar Topography Mission
used an antenna located in the payload bay of the shuttle,
and a second outboard antenna attached to the end of a
60-m mast. (Courtesy of NASA.)

for satellite images. Additionally, 2-D visual information
is supplemented with digital elevation model (DEM) data
collected by NASA’s Shuttle Radar Topography Mission
(SRTM). The SRTM (Fig. TF29-1) consisted of two radar
antennas deployed on the space shuttle Endeavour
during the 11-day mission of STS-99 in February 2000.
A sample product is shown in Fig. TF29-2.

Aircraft imaging complements the satellite data,
although it is more expensive and available in limited
areas. Several companies have launched fleets of
specially equipped vans with multiple cameras, laser
distance sensors, and on-board computation to collect,
merge, and store high-resolution, three-dimensional data
at street level. Additionally, Google Earth allows for user-
inputted 3-D information and models. Figure TF29-3
shows one such vehicle developed by TeleAtlas.
Hundreds of similar vehicles roam the earth; the cameras
provide images over 360◦ around the vehicle, and a laser
system measures important distances like bridge and
building heights; GPS tracking hardware records the
vehicle’s position; and onboard computers synthesize
everything and store it. As these vehicles visit more and
more places, the 3-D map of the world continues to grow.

Imaging Software

To produce a navigable, virtual representation of our
globe, all of this data is then compiled, corrected, and
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Figure TF29-2: A shaded relief image of Mount
St. Helens in the state of Washington. (Courtesy of NASA.)

merged. This is not just a massive storage operation.
Often, imagery comes from multiple sources that do
not match exactly, there may be gaps between images
and, very commonly, the color of the images must
be corrected and made consistent. Fine-scale errors
often are detectable with these map programs when
data is incorrectly merged or have different dates;
for example, pictures of a city might incorrectly show
data from adjacent areas taken before and after major
events, stitched together. Problems with incorporating 3-
D topographical data with the visual information are still
common. For public-accessible programs, not all data is
taken at the same time nor with the same frequency; for
example, Google Earth guarantees that image data is no
more than three years old. More expensive commercial
software is often more timely.

Beyond the compilation and merging of datasets,
programs like Google Earth are increasingly integrating
their software with both other software and mobile
hardware. For example, Google Earth interfaces with
both Wikipedia and the Google search engine as well as
an increasing suite of information-providing programs. In
a similar manner, some versions of commercial virtual

FigureTF29-3: A TeleAtlas van showing the imaging and
laser equipment and the computation hardware inside the
van.

globe programs can interface with GPS position-finding
devices. Such programs take waypoints and tracks from
the mobile GPS devices and merge them with available
topographic, imaging, and other virtual globe datasets.
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Concept Question 12-7: What purpose does the partial-
fraction-expansion method serve? (See         )

Concept Question 12-8: When evaluating the 
expansion coefficients of a function containing repeated 
poles, is it more practical to start by evaluating the 
coefficient of the fraction with the lowest-order pole or 
that with the highest-order pole? Why? (See         )

Exercise 12-7: Determine the inverse Laplace transform
of

F(s) = 4s2 − 15s − 10

(s + 2)3 .

Answer: f (t)  = (18t2 − 31t + 4)e−2t u(t). (See                  )

12-5.3 Distinct Complex Poles

The Laplace transform of a certain circuit is given by

F(s) = 4s + 1

(s + 1)(s2 + 4s + 13)
. (12.66)

In addition to the simple-pole factor, the denominator includes
a quadratic-pole factor with roots s1 and s2. Solution of
s2 + 4s + 13 = 0 gives

s1 = −2 + j3, s2 = −2 − j3. (12.67)

The fact that the two roots are complex conjugates of one
another is a consequence of the property that for any physically
realizable circuit, if it has any complex poles, those poles always
appear in conjugate pairs.

In view of Eq. (12.67), the quadratic factor is given by

s2 + 4s + 13 = (s + 2 − j3)(s + 2 + j3), (12.68)

and F(s) can now be expanded into partial fractions:

F(s) = A

s + 1
+ B1

s + 2 − j3
+ B2

s + 2 + j3
. (12.69)

Expansion coefficients B1 and B2 are printed in bold letters
to signify the fact that they may be complex quantities.

Determination of A, B1, and B2 follows the same factor-
multiplication technique employed in Section 12-5.1 with

A = (s + 1) F(s)|s=−1 = 4s + 1

s2 + 4s + 13

∣∣∣∣
s=−1

= −0.3,

(12.70a)

B1 = (s + 2 − j3) F(s)|s=−2+j3

= 4s + 1

(s + 1)(s + 2 + j3)

∣∣∣∣
s=−2+j3

= 4(−2 + j3) + 1

(−2 + j3 + 1)(−2 + j3 + 2 + j3)

= −7 + j12

−18 − j6
= 0.73e−j78.2◦

, (12.70b)

and

B2 = (s + 2 + j3) F(s)|s=−2−j3

= 4s + 1

(s + 1)(s + 2 − j3)

∣∣∣∣
s=−2−j3

= 0.73ej78.2◦
. (12.70c)

We observe that B2 = B∗
1.

� In fact, the expansion coefficients associated with
conjugate poles are always conjugate pairs themselves. �

The inverse Laplace transform of Eq. (12.69) is

f (t) = LLL−1[F(s)] = LLL−1
(−0.3

s + 1

)
+ LLL−1

(
0.73e−j78.2◦

s + 2 − j3

)

+ LLL−1

(
0.73ej78.2◦

s + 2 + j3

)

= [−0.3e−t + 0.73e−j78.2◦
e−(2−j3)t

+ 0.73ej78.2◦
e−(2+j3)t ] u(t).

(12.71)

Because complex numbers do not belong in the time domain,
our initial reaction to their presence in the solution given by
Eq. (12.71) is that perhaps an error was committed somewhere
along the way. The truth is the solution is correct, but
incomplete. Terms 2 and 3 are conjugate pairs, so by applying
Euler’s formula, they can be combined into a single term
containing real quantities only:

0.73e−j78.2◦
e−(2−j3)t + 0.73ej78.2◦

e−(2+j3)t

= 0.73e−2t [ej (3t−78.2◦) + e−j (3t−78.2◦)]
= 2 × 0.73e−2t cos(3t − 78.2◦)

= 1.46e−2t cos(3t − 78.2◦). (12.72)
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Hence, the final time-domain solution is

f (t) = [−0.3e−t + 1.46e−2t cos(3t − 78.2◦)] u(t). (12.73)

Exercise 12-8: Determine the inverse Laplace transform
of

F(s) = 2s + 14

s2 + 6s + 25
.

√
2 e−3t cos(4t − 45◦)] u(t).Answer: f (t)  = [2 

(See             )

12-5.4 Repeated Complex Poles

If the Laplace transform F(s) contains repeated complex poles,
we can expand it into partial fractions by using a combination of
the tools introduced in Sections 12-5.2 and 12-5.3. The process
is illustrated in Example 12-4.

Example 12-4: Five-Pole Function

Determine the inverse Laplace transform of

F(s) = 108(s2 + 2)

(s + 2)(s2 + 10s + 34)2 .

Solution: The roots of

s2 + 10s + 34 = 0

are

s1 = −5 − j3

and

s2 = −5 + j3.

Hence,

F(s) = 108(s2 + 2)

(s + 2)(s + 5 + j3)2(s + 5 − j3)2 ,

and its partial fraction expansion can be expressed as

F(s) = A

s + 2
+ B1

s + 5 + j3
+ B2

(s + 5 + j3)2

+ B∗
1

s + 5 − j3
+ B∗

2

(s + 5 − j3)2 ,

where B∗
1 and B∗

2 are the complex conjugates of B1 and B2,
respectively. Coefficients A, B1, and B2 are evaluated as
follows:

A = (s + 2) F(s)|s=−2 = 108(s2 + 2)

(s2 + 10s + 34)2

∣∣∣∣
s=−2

= 2,

B2 = (s + 5 + j3)2 F(s)|s=−5−j3

= 108(s2 + 2)

(s + 2)(s + 5 − j3)2

∣∣∣∣
s=−5−j3

= 108[(−5 − j3)2 + 2]
(−5 − j3 + 2)(−5 − j3 + 5 − j3)2

= 24 + j6 = 24.74ej14◦
,

and

B1 = d

ds
[(s + 5 + j3)2 F(s)]

∣∣∣∣
s=−5−j3

= d

ds

[
108(s2 + 2)

(s + 2)(s + 5 − j3)2

]∣∣∣∣
s=−5−j3

=
[

108(2s)
(s + 2)(s + 5 − j3)2 − 108(s2 + 2)

(s + 2)2(s + 5 − j3)2

− 2 × 108(s2 + 2)

(s + 2)(s + 5 − j3)3

]∣∣∣∣
s=−5−j3

= −(1 + j9) = 9.06e−j96.34◦
.

The remaining constants are

B∗
1 = 9.06ej96.34◦

,

and

B∗
2 = 24.74e−j14◦

,

and the inverse Laplace transform is

f (t) = LLL−1[F(s)]

= LLL−1
[

2

s + 2
+ 9.06e−j96.34◦

s + 5 + j3
+ 9.06ej96.34◦

s + 5 − j3

+ 24.74ej14◦

(s + 5 + j3)2 + 24.74e−j14◦

(s + 5 − j3)2

]

= [
2e−2t

+ 9.06(e−j96.34◦
e−(5+j3)t + ej96.34◦

e−(5−j3)t )

+ 24.74t (ej14◦
e−(5+j3)t + e−j14◦

e−(5−j3)t )
]

u(t)

= [2e−2t + 18.12e−5t cos(3t + 96.34◦)

+ 49.48te−5t cos(3t − 14◦)] u(t).
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Table 12-3: Transform pairs for four types of poles.

Pole F(s) f (t)

1. Distinct real
A

s + a
Ae−at u(t)

2. Repeated real
A

(s + a)n
A

tn−1

(n − 1)! e−at u(t)

3. Distinct complex

[
Aejθ

s + a + jb
+ Ae−jθ

s + a − jb

]
2Ae−at cos(bt − θ) u(t)

4. Repeated complex

[
Aejθ

(s + a + jb)n
+ Ae−jθ

(s + a − jb)n

]
2Atn−1

(n − 1)! e−at cos(bt − θ) u(t)

Example 12-5: Interesting Transform!

Determine the time-domain equivalent of the Laplace transform

F(s) = se−3s

s2 + 4
.

Solution: We start by separating out the exponential e−3s

from the remaining polynomial fraction. We do so by defining

F(s) = e−3s F1(s),

where

F1(s) = s
s2 + 4

= s
(s + j2)(s − j2)

= B1

s + j2
+ B2

s − j2
,

with

B1 = (s + j2) F(s)|s=−j2 = s
s − j2

∣∣∣∣
s=−j2

= −j2

−j4
= 1

2
,

and

B2 = B∗
1 = 1

2
.

Hence,

F(s) = e−3s F1(s) = e−3s

2(s + j2)
+ e−3s

2(s − j2)
.

By invoking property #3a of Table 6-4, we obtain the inverse
Laplace transform

f (t) = LLL−1[F(s)] = LLL−1
[

1

2

e−3s

s + j2
+ 1

2

e−3s

s − j2

]

=
[

1

2
(e−j2(t−3) + ej2(t−3))

]
u(t − 3)

= [cos(2t − 6)] u(t − 3).

We conclude this section with Table 12-3, which lists
F(s) and its corresponding inverse transform f (t) for all
combinations of real versus complex, and distinct versus
repeated, poles.

12-6 s-Domain Circuit Element Models

� The s-domain technique can be used to analyze
circuits excited by sources with any type of variation—
including pulse, step, ramp, sinusoid, and exponential—
and provides a complete solution that incorporates both
the steady state and transient components of the overall
response. �

We can apply the technique by transforming the differential
equation associated with the circuit, or, equivalently, by
transforming the circuit itself, which entails representing R,
L, and C by s-domain models.



“book” — 2015/5/4 — 7:26 — page 653 — #24

12-6 S-DOMAIN CIRCUIT ELEMENT MODELS 653

12-6.1 Resistor in the s-Domain

Application of the Laplace transform to Ohm’s law,

LLL[υ] = LLL[Ri], (12.74)

leads to

V = RI, (12.75)

where, by definition,

V = LLL[υ], I = LLL[i]. (12.76)

Hence, for the resistor the correspondence between the time
and s-domains is

υ = Ri V = RI. (12.77)

12-6.2 Inductor in the s-Domain

For R, the form of the i–υ relationship remained invariant
under the transformation to the s-domain. That is not the case
for L and C. Application of the Laplace transform to the i–υ

relationship of the inductor,

LLL[υ] = LLL
[
L

di

dt

]
, (12.78)

gives

V = L[sI − i(0−)], (12.79)

where i(0−) is the current that was flowing through the inductor
at t = 0−. The time differentiation property (#6 in Table 12-1)
was used in obtaining Eq. (12.79). The correspondence between
the two domains is expressed as

υ = L
di

dt
V = sLI − L i(0−). (12.80)

In the s-domain, an inductor is represented by an impedance
ZL = sL, in series with a dc voltage source given by L i(0−)

or—through source transformation—in parallel with a dc
current source i(0−)/s, as shown in Table 12-4. Note that the
current I flows from (−) to (+) through the dc voltage source
(if i(0−) is positive).

12-6.3 Capacitor in the s-Domain

Similarly,

i = C
dυ

dt
I = sCV − C υ(0−), (12.81)

where υ(0−) is the initial voltage across the capacitor. The
s-domain circuit models for the capacitor are available in
Table 12-4.

� The s-domain transformation of circuit elements
incorporates initial conditions associated with any energy
storage that may have existed in capacitors and inductors
at t = 0−. �

12-6.4 Impedance

Impedances ZR, ZL, and ZC are defined in the s-domain in
terms of voltage to current ratios under zero initial conditions
[i(0−) = υ(0−) = 0]:

ZR = R, ZL = sL, and ZC = 1

sC
. (12.82)

Exercise 12-9: Convert the circuit in Fig. E12.9 into the
s-domain.

Figure E12.9

R1

R2

C

L

+
_υs(t)

iL

Answer:

R1

R2
LiL(0−)

sL

+
_Vs

+_

1
sC CυC(0−)

(See             )
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Table 12-4: Circuit models for R, L, and C in the s-domain.

Time-Domain s-Domain

Resistor

i

R υ

I

VR

υ = Ri V = RI

Inductor

iL

L υL

IL

VL

sL

+
_

L iL(0−)

OR

IL

VLsL iL(0−)
s

υL = L
diL

dt

iL = 1

L

t∫
0−

υL dt + iL(0−)

VL = sLIL − L iL(0−) IL = VL

sL
+ iL(0−)

s

Capacitor

iC

C υC

IC

VC+

_
υC(0−)

s

1
sC

OR

IC

VC
1

sC C υC(0−)

iC = C
dυC

dt

υC = 1

C

t∫
0−

iC dt + υC(0−)

VC = IC

sC
+ υC(0−)

s
IC = sCVC − C υC(0−)
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12-7 s-Domain Circuit Analysis
The circuit laws and analysis tools we used earlier in
the time domain are equally applicable in the s-domain.
They include KVL and KCL; voltage and current division;
source transformation; source superposition; and Thévenin and
Norton equivalent circuits. Execution of the s-domain analysis
technique entails the following four steps:

Solution Procedure: s-Domain Technique

Step 1: Evaluate the circuit at t = 0− to determine
voltages across capacitors and currents through inductors.
Use this information in conjunction with Table 12-4
to transform the circuit from the time domain to the
s-domain.

Step 2: Apply KVL, KCL, and the other circuit tools to
obtain an explicit expression for the voltage or current of
interest.

Step 3: If necessary, expand the expression into partial
fractions.

Step 4: Use the list of transform pairs given in
Tables 12-2 and 12-3 and the list of properties in
Table 12-1 (if needed) to transform the partial fraction
to the time domain.

This process is illustrated through the next five examples.

Example 12-6: Parallel RLC Circuit

Determine the capacitor current response iC(t) to the
rectangular pulse shown in Fig. 12-5(a), given that R = 125 �,
L = 0.1 H, and C = 4 mF.

Solution: Per the proposed solution recipe, our first step
should be to determine iL(0−) and υC(0−). In the present
case, prior to activating the current source, the circuit contained
no energy. Hence, iL(0−) = 0 and υC(0−) = 0, in which case
transformation of the circuit elements to the s-domain entails
replacing L with sL and C with 1/(sC). The s-domain circuit
is shown in Fig. 12-5(b).

The input source is

is(t) = 6u(t) − 6u(t − 1), (12.83)

and, according to entries #2 and #2a in Table 12-2, the s-domain
expression for the source should be

Is = 6

s
− 6

s
e−s. (12.84)

Is

R L C

iCiLiR
is(t) =

t = 0 t = 1 s
0

6 A

(a) RLC circuit in time domain

R sL

ICIL

V
IR

(b) s-domain

(c) Source and capacitor currents

1
sC

is(t)

0

2

−2

4

−4

6

−6

Amps

t  (s)

iC(t)

21 3

Figure 12-5: Circuit for Example 12-6.

Our intermediate goal is to determine IC, the s-domain current
through the capacitor in Fig. 12-5(b). Application of KCL at
node V in Fig. 12-5(b) gives

V
(

1

R
+ 1

sL
+ sC

)
= Is. (12.85)

Also, since υC(0) = 0, IC is related to V by

IC = sCV.

Solution for IC leads to

IC =
⎛
⎜⎝ s2

s2 + s
RC

+ 1

LC

⎞
⎟⎠ Is, (12.86)
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where, in anticipation of applying partial-fraction expansion
later on, we configured the denominator such that the coefficient
of the highest-order s-term is 1.

Since Is is the sum of two similar terms, we shall apply the
superposition principle as follows:

IC =
⎛
⎜⎝ s2

s2 + s
RC

+ 1

LC

⎞
⎟⎠

(
6

s
− 6e−s

s

)
= IC1 + IC2 ,

(12.87)
where

IC1 =
⎛
⎜⎝ s2

s2 + s
RC

+ 1

LC

⎞
⎟⎠ 6

s
= 6s

s2 + s
RC

+ 1

LC

,

(12.88a)
and

IC2 =
⎛
⎜⎝ 6s

s2 + s
RC

+ 1

LC

⎞
⎟⎠ (−e−s). (12.88b)

Solution for IC1 :

Inserting the specified element values, namely R = 125 �,
L = 0.1 H, and C = 4 mF, leads to

IC1 = 6s
s2 + 2s + 2500

. (12.89)

The roots of s2 + 2s + 2500 = 0 are

s1 = −1 − j
√

2499 ≈ −1 − j50, (12.90a)

s2 = −1 + j
√

2499 ≈ −1 + j50. (12.90b)

Hence,

IC1 = 6s
(s + 1 + j50)(s + 1 − j50)

. (12.91)

Partial fraction expansion takes the form

IC1 = B
s + 1 + j50

+ B∗

s + 1 − j50
,

with

B = (s + 1 + j50)
6s

(s + 1 + j50)(s + 1 − j50)

∣∣∣∣
s=−1−j50

= 3e−j1.15◦
. (12.92)

Hence,

IC1 = 3e−j1.15◦

(s + 1 + j50)
+ 3ej1.15◦

(s + 1 − j50)
. (12.93)

Per entry #3 in Table 12-3, the time-domain equivalent of IC1

is

iC1(t) = 6e−t cos(50t + 1.15◦) u(t) A. (12.94)

Solution for IC2 :

The expression for IC2 given by Eq. (12.88b) is identical to
that for IC1 except for a multiplication factor of (−e−s). Per
the time-shift property in Table 12-1, iC2(t) can be obtained
from the expression for iC1(t) by multiplying iC1(t) by (−1)

and delaying t by 1 s. Hence,

iC2(t) = −6e−(t−1) cos[50(t−1)+1.15◦] u(t−1) A. (12.95)

Total solution:

iC(t) = iC1(t) + iC2(t)

= 6{e−t cos(50t + 1.15◦) u(t)

− e−(t−1) cos[50(t − 1) + 1.15◦] u(t − 1)} A.

(12.96)

Figure 12-5(c) displays the waveforms of the source current
is(t) and the capacitor current iC(t).

Example 12-7: Two-State Power Supply

In the circuit shown in Fig. 12-6(a), the voltage source can
operate at 125 V or 250 V, and when it switches between the
two states, it does so gradually. Determine iL(t) for t ≥ 0, in
response to

υs(t) =
{

125 V for t < 0

(250 − 125e−2t ) u(t) V for t ≥ 0.
(12.97)

Solution: The circuit condition at t < 0 is depicted in
Fig. 12-6(b) wherein the capacitor and inductor have been
replaced with an open circuit and short circuit, respectively.
KVL leads to

iL(0−) = 125

R
= 125

12.5 × 103 = 10 mA,

υC(0−) = υL(0−) = 0.

With the help of Table 12-2, the s-domain expression for Vs at
t ≥ 0 is

Vs = 250

s
− 125

s + 2
. (12.98)
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(a) Circuit

(b) Circuit at t < 0

125 V

12.5 kΩ

υC(0−) = 0

iL(0−) = 10 mA

iL

+
_

+
_

(c) s-domain for t ≥ 0

(d) iL(t)

12.5 kΩ

Vs
+
_

L iL(0−) = 20 mV

iL

I1 I2
1

sC

sL = 2s

=
1250

s

+
_

L = 2 Hυs

t

υs R = 12.5 kΩ

C = 0.8 mF125 V

0

250 V
+
_

20

10

0
10 2 3

iL (mA)

t (s)

Figure 12-6: Example 12-7.
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The s-domain circuit is shown in Fig. 12-6(c), in which L and C

are represented by their s-domain models in accordance with
Table 12-4, namely

L iL(0−)L sL 2s 20 mV
= +_+_

iL IL

and

υC(0−)/sC 1/sC 1250/s
= .+ _

ICiC

By inspection, the mesh current equations for the two loops in
Fig. 12-6(c) are(

12.5 × 103 + 1250

s

)
I1 − 1250

s
I2 = Vs, (12.99a)

− 1250

s
I1 +

(
1250

s
+ 2s

)
I2 = 20 × 10−3. (12.99b)

After replacing Vs with the expression given by Eq. (12.98),
simultaneous solution of the two linear equations leads to

I2 = 10s3 + 21s2 + 6252s + 25000

s(s + 2)(s2 + 0.1s + 625)
mA. (12.100)

The roots of the quadratic term in the denominator are

s1 ≈ −0.05 − j25,

s2 ≈ −0.05 + j25.

Hence, Eq. (12.100) can be rewritten as

I2 = 10s3 + 21s2 + 6252s + 25000

s(s + 2)(s + 0.05 + j25)(s + 0.05 − j25)
. (12.101)

Application of the partial-fractions expansion recipes outlined
earlier in Section 12-5 leads to

I2 =
[

20

s
− 10

s + 2
+ 0.38e−j90◦

s + 0.05 + j25
+ 0.38ej90◦

s + 0.05 − j25

]
mA,

and transformation to the time domain gives

iL(t) = i2(t)

=
[
20 − 10e−2t + 0.76e−0.05t cos(25t + 90◦)

]
u(t) mA

=
[
20 − 10e−2t − 0.76e−0.05t sin 25t

]
u(t) mA.

The waveform of iL(t) is displayed in Fig. 12-6(d).

Example 12-8: ac Source with dc Bias

The current source shown in the circuit of Fig. 12-7(a) is given
by the displayed waveform, which consists of a 1.5 A dc source
prior to t = 0, and the combination of a cosinusoidal waveform
and a 1 A dc bias after t = 0. Determine υout(t) for t ≥ 0, given
that R1 = 1 �, R2 = 0.5 �, and L = 0.5 H.

Solution: The current source is characterized by

is(t) =
{

1.5 A for t ≤ 0

(1 + 0.5 cos 4t) A for t ≥ 0.

Since is(t) was nonzero before t = 0, we need to examine initial
conditions by analyzing the circuit shown in Fig. 12-7(b), from
which we deduce that

iL(0−) = 1.5R1

R1 + R2
= 1.5 × 1

1 + 0.5
= 1 A.

The s-domain expression for is(t) for t ≥ 0 is

Is = 1

s
+ 0.5s

s2 + 16
= 1.5s2 + 16

s(s2 + 16)

Figure 12-7(c) depicts the circuit in the s-domain, where we
applied source transformation to convert (Is, R1) into a voltage
source Vs = IsR1, in series with R1.

At node Vout in the circuit of Fig. 12-7(c),

Vout − Vs − LiL(0−)

R1 + sL
+ Vout

R2
= 0,

which gives

Vout = R2[1.5s2 + 16 + s(s2 + 16)L iL(0−)]
s(s2 + 16)[(R1 + R2) + sL]

= s3 + 3s2 + 16s + 32

2s(s + 3)(s2 + 16)

= s3 + 3s2 + 16s + 32

2s(s + 3)(s + j4)(s − j4)
.

Partial fraction expansion gives

Vout = A1

s
+ A2

s + 3
+ B

s + j4
+ B∗

s − j4
,
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(a) Circuit and source waveform

is(t)

t

1.5 A

0.5 A
1 A ω = 4 rad/s

+

_

L

R2R1is(t) υout(t)

(b) At t = 0−

(c) s-domain

L
R2R11.5 A

iL(0−) = 1 A

+

_

R2

R1

+
_

+_

Vout

Vout

Vs = R1Is

LiL(0−)sL

(d) υC(t)

1.0

0.5 0.05 V

0.75

0.33
0.25

0

υout (V)

υC(0)

t (s)

0.05 V

Figure 12-7: Example 12-8.
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with

A1 = s Vout|s=0 = s3 + 3s2 + 16s + 32

2(s + 3)(s2 + 16)

∣∣∣∣
s=0

= 1

3
,

A2 = (s + 3) Vout|s=−3

= s3 + 3s2 + 16s + 32

2s(s2 + 16)

∣∣∣∣
s=−3

= 8

75
,

B = (s + j4) Vout|s=−j4

= s3 + 3s2 + 16s + 32

2s(s + 3)(s − j4)

∣∣∣∣
s=−j4

= 1

20
ej53◦

.

Hence,

Vout = 1

3s
+ 8

75(s + 3)
+ ej53◦

20(s + j4)
+ e−j53◦

20(s − j4)
.

The corresponding time-domain voltage is

υout(t) =
[

1

3
+ 8

75
e−3t + 1

10
cos(4t − 53◦)

]
u(t) (V).

After the decay of the negative exponential term, the output
becomes the sum of a dc term (1/3 V) and an ac term with an
amplitude of 0.1 V. The circuit output response is displayed in
Fig. 12-7(d).

Example 12-9: Circuit with a Switch

Determine iL(t) in the circuit shown in Fig. 12-8(a) for t ≥ 0.

Solution: We start by examining the state of the circuit at
t = 0− (before closing the switch). Upon replacing L with a
short circuit and C with an open circuit, as portrayed by the
configuration in Fig. 12-8(b), we establish that

iL(0−) = 1 A and υC(0−) = 12 V. (12.102)

For t ≥ 0, the s-domain equivalent of the original circuit
is shown in Fig. 12-8(c), where we have replaced R2 with
a short circuit, converted the dc source into its s-domain
equivalent and, in accordance with the circuit models given
in Table 12-4, converted L and C into impedances—each with
its own appropriate voltage source. By inspection, the two mesh
current equations are given by

(4 + 12 + 2s)I1 − (12 + 2s)I2 = 24

s
+ 2, (12.103a)

− (12 + 2s)I1 +
(

12 + 2s + 5

s

)
I2 = −2 − 12

s
. (12.103b)

Simultaneous solution of the two equations leads to

I1 = 12s2 + 77s + 60

s(4s2 + 29s + 40)
(12.104a)

and

I2 = 8(s + 6)

4s2 + 29s + 40
. (12.104b)

The associated inductor current IL is

IL = I1 − I2

= 4s2 + 29s + 60

s(4s2 + 29s + 40)
= 4s2 + 29s + 60

4s(s + 1.85)(s + 5.4)
, (12.105)

which can be represented by the partial fraction expansion

IL = A1

s
+ A2

s + 1.85
+ A3

s + 5.4
. (12.106)

The values of A1 through A3 are obtained from

A1 = sIL|s=0 = 60

40
= 1.5, (12.107a)

A2 = (s + 1.85)IL|s=−1.85

= 4s2 + 29s + 60

4s(s + 5.4)

∣∣∣∣
s=−1.85

= −0.76, (12.107b)

and

A3 = (s + 5.4)IL|s=−5.4 = 0.26. (12.107c)

Hence,

IL = 1.5

s
− 0.76

s + 1.85
+ 0.26

s + 5.4
, (12.108)

and the corresponding time-domain current for t ≥ 0 is

iL(t) = [1.5 − 0.76e−1.85t + 0.26e−5.4t ] u(t) A. (12.109)

The time variation of iL(t) is displayed in Fig. 12-8(d).

Example 12-10: Op-Amp Integrator

The op-amp integrator circuit shown in Fig. 12-9(a) was first
introduced in Section 5-6.1. We now examine its behavior by

applying the s-domain analysis technique to a step-function
input given by υi(t) = 10u(t) mV. The capacitor had no charge
prior to t = 0 and the op-amp’s power supply voltage is
Vcc = 10 V.



“book” — 2015/5/4 — 7:26 — page 661 — #32

12-7 S-DOMAIN CIRCUIT ANALYSIS 661

(a) Time-domain

V0

R1

R2

R3

L

iL

C

12 Ω

2 H

8 Ω
4 Ω

24 V
0.2 F

t = 0

+
_

(b) Circuit at t = 0−

(c) s-domain

V0

R1

R2

R3

L C

12 Ω

8 Ω
4 Ω

24 V
+
_

υC(0−) = 12 V

iL(0−) = 1 A

iL

+
_

+
_

12

4

2

2s

+
_

5
s

12
s

24
s

I1 I2

(d) IL(t)

1.0

1 2

1.5

2.0

0

iL (A)

iL(0)

t (s)

Figure 12-8: Circuit for Example 12-9.

Solution: The s-domain circuit is shown in Fig. 12-9(b),
from which we deduce that

Vout = −
(

ZC

ZR

)
Vi = − Vi

sR1C1
= −10−2

s

(
50

s

)
= −0.5

s2 .

Application of entry #4 of Table 12-2 leads to

υout1(t) = −0.5t u(t).

We observe in Fig. 12-9(c) that υout(t) is a negative ramp
function that saturates at Vcc = −10 V when t reaches 20 s.
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υi
υout

+

_

Vcc = 10 V

5 kΩ

4 μF

Vout

+

_

Vcc = 10 V
Vi =

=ZC =

Vn = 0

1
sC1

s
10−2

ZR = 5    103
s

2.5    105

(c) υi(t) and υout(t)

(a) Circuit (b) s-domain

υi(t)

t (s)
4

10 mV

2 86 1210 1614 20 2218

42 86 1210 1614 20 2218

υout(t)

saturation @ −Vcc

t (s)

−12 V

−10 V

−2 V
−4 V
−6 V
−8 V

Figure 12-9: Circuit for Example 12-10.

12-8 Multisim Analysis of Circuits
Driven by Nontrivial Inputs

The utility of SPICE simulators becomes most evident when
trying to simulate circuits driven by nontrivial inputs—in
contrast with sinusoids or dc voltages. In this section, we will
revisit some of the examples we examined earlier in this chapter
to demonstrate how easy it is to obtain solutions with Multisim
and to compare the solutions with the analytical results based
on the Laplace transform method. As a learning tool, Multisim
is also very useful, in that it allows the user to test his/her
understanding of core concepts by simulating circuits over a

wide range of conditions and for a variety of different input
waveforms.

Example 12-11: RC Circuit Response

A series RC circuit, with R = 500 k� and C = 1 μF, is excited
by a voltage source that delivers a 1 V, 1 s rectangular pulse.
Draw the circuit in Multisim and generate the output response
using the Transient Analysis tool.

Solution: By now, we should be very familiar with how
to create a pulse source in Multisim. The circuit is shown in
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(a) Circuit in Multisim

(b) Response

Figure 12-10: (a) RC circuit excited by a 1 V, 1 s rectangular
pulse at 0.5 s, and (b) the corresponding response at node 2.

Fig. 12-10(a), and the output response across the capacitor is
displayed in Fig. 12-10(b). Note that a delay time of 0.5 s was
introduced in the parameter selections of the pulse source in
order to generate a clearer plot.

Example 12-12: Interrupted Voltage Source in Multisim

Draw the circuit shown in Fig. 12-11(a) in Multisim and then
use Transient Analysis to generate a plot of the voltage across
the 3-� resistor in response to an input excitation given by 15 V
prior to t = 0, and 15(1 − e−2t ) V afterwards.

Solution: The circuit is reproduced in Fig. 12-11(b).
To model the exponential input voltage, we use the
EXPONENTIAL VOLTAGE source which can accommodate
both rising and falling exponentials. Multisim divides the
exponential voltage into two segments, with the first called the

Rise segment and the second called the Fall segment, and this
order is independent of whether the change in level is actually
a rise or a fall. In the present case we need to simulate in the
first segment an instantaneous change in level from 15 V down
to 0 V. We do so by setting the Initial Value to 15 V, the Pulsed
Value to 0 V, the Rise Delay Time to 0 s, and the Rise Time
to 1 ns (which is practically the same as instantaneous). To

(b) Circuit in Multisim

(c) Response

Input voltage

Output voltage (across R3)

(a) Time domain

R1 = 2 Ω

R3 = 3 Ω
R2 = 5 Ω

C = 0.1 F

L = 2 H
a

b

υin(t) υout(t)
+
_

+

_

Figure 12-11: Multisim rendition of the circuit response to a
sudden (but temporary) change in supply voltage level.
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(a) Time-voltage pairs for circuit

(b) Response

Figure 12-12: Multisim rendition of the circuit response to an arbitrary input signal produced by the PWL (Piecewise Linear) source.

simulate the second segment during which the voltage increases
from 0 to 15V with a time constant of 0.5 s, we set the Fall Delay
at 0 and the Fall Time Constant at 0.5 s. Applying Transient
Analysis results in the responses displayed in Fig. 12-11(c).

Example 12-13: Piecewise Linear Voltage Source

The PIECEWISE LINEAR VOLTAGE source allows you to
define time-voltage pairs such that the source will be at a given
voltage at the corresponding time and the source will “connect
the dots” in between using a linear progression. Hence, entering
the time-voltage pairs of (0,1), (1,1), and (2,4) will create a
source which starts at 1 V and stays steady until 1 s, at which

time it will increase with a slope of 3 V/s to reach a value of
4 V at 2 s.

Replace the Exponential voltage source in the circuit in
Fig. 12-11(a) with a piecewise linear (PWL) voltage source
with the time-voltage pairs: (0,1), (1,1), (2,4), (3,3), (7,−1),
(8,5), and (9,5). Plot both the input and output in Transient
Analysis from 0 to 10 s.

Solution: With the PIECEWISE LINEAR VOLTAGE
source in place, double-click on it and then make sure the
Value tab is selected. Click on Enter data points in table, and
insert the time-voltage pairs shown in Fig. 12-12(a). Applying
Transient Analysis results in the responses displayed in
Fig. 12-12(b).
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Summary

Concepts

• The Laplace-transform analysis technique transforms
the circuit to a new domain, solves for the quantity of
interest in that domain, and then transforms the solution
back to the time domain. The technique can be applied
to circuits with any type of excitation.

• The Laplace transform has many useful properties

that can facilitate the process of finding the Laplace
transform of a time function.

• Under zero initial conditions, circuit elements R, L, and
C transform to R, sL, and 1/sC, respectively, in the
s-domain.

Mathematical and Physical Models
Unit Impulse Function

δ(t − T ) = 0 for t �= T

∞∫
−∞

δ(t − T ) dt = 1

Laplace Transform

F(s) = LLL[f (t)] =
∞∫

0−
f (t) e−st dt

Properties Table 12-1
Transform Pair Tables 12-2 and 12-3

Time/s-Domain Equivalents

Resistor υ = Ri V = RI

Inductor υ = L
di

dt
V = sLI − L i(0−)

Capacitor i = C
dυ

dt
I = sCV − C υ(0−)

Important Terms Provide definitions or explain the meaning of the following terms:

complex frequency
convergence condition
critically damped response
damped natural frequency
damping coefficient
delay time
delta function
distinct
domain transformation
expansion coefficient
Fall
improper rational function

impulse function
initial condition
initial value
inverse Laplace transform
final condition
Laplace transform
Laplace transformation
Laplace transform pair
natural response
one-sided transform
overdamped response
partial fraction expansion

pole
pole factor
proper rational function
real
region of convergence
residue method
resonant frequency
Rise
sampling property
second-order circuit
singularity function
steady state response

step function
time scaling
transient response
two-sided transform
underdamped response
uniqueness property
unit impulse function
unit step function
universal property

PROBLEMS

Sections 12-1 and 12-2: Impulse Response and Complex
Algebra

12.1 Evaluate each of the following integrals.

(a) G1 =
∞∫

−∞
(3t3 + 2t2 + 1)[δ(t) + 4δ(t − 2)] dt

(b) G2 =
4∫

−2

4(e−2t + 1)[δ(t) − 2δ(t − 2)] dt
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(a) (b)

(c) (d)

(e) (f)

f1(t)

4

2

0
1 2

t (s)

f2(t)

0

2

−2

2 431
t (s)

f3(t)

4

2

0
3 41

t (s)

f4(t)

4

2

0
2 6 7

t (s)

f5(t)

0
2

−10

10

t (s)

f6(t)

0
2 4 6 8

−10

10

t (s)

Figure P12.3: Waveforms for Problem 12.3.

(c) G3 =
20∫

−20

3(t cos 2πt − 1)[δ(t) + δ(t − 10)] dt

12.2 Evaluate each of the following integrals:

(a) G1 = ∫ ∞
−∞(3t3 − 4t2 + 3)[δ(t) + 2δ(t − 2)] dt .

(b) G2 = ∫ 4
−4 2(e−3t + 1)[δ(t) − 2δ(t − 2)] dt .

(c) G3 = ∫ 16
−12 4[t sin(2πt) − 1][δ(t − 1) + δ(t − 6)] dt .

Sections 12-2 and 12-4: Laplace Transform

12.3 Express each of the waveforms in Fig. P12.3 in terms
of step functions and then determine its Laplace transform.
[Recall that the ramp function is related to the step function
by r(t − T ) = (t − T ) u(t − T ).] Assume that all waveforms
are zero for t < 0.

12.4 Determine the Laplace transform of each of the
following functions by applying the properties given in Tables
12-1 and 12-2.
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(a) f1(t) = 4te−2t u(t)

(b) f2(t) = 10 cos(12t + 60◦) u(t)

*(c) f3(t) = 12e−3(t−4) u(t − 4)

(d) f4(t) = 30(e−3t + e3t ) u(t)

(e) f5(t) = 16e−2t cos 4t u(t)

(f) f6(t) = 20te−2t sin 4t u(t)

12.5 Determine the Laplace transform of each of the
following functions by applying the properties given in Tables
12-1 and 12-2.

*(a) h1(t) = 12te−3(t−4) u(t − 4)

(b) h2(t) = 27t2 sin(6t − 60◦) u(t)

*(c) h3(t) = 10t3e−2t u(t)

(d) h4(t) = 5(t − 6) u(t − 3)

(e) h5(t) = 10e−3t u(t − 4)

(f) h6(t) = 4e−2(t−3) u(t − 4)

12.6 Determine the Laplace transform of the following
functions.

(a) f1(t) = 25 cos(4πt + 30◦) δ(t)

(b) f2(t) = 25 cos(4πt + 30◦) δ(t − 0.2)

(c) f3(t) = 10
sin 3t

t
u(t)

(d) f4(t) = d2

dt2 [e−4t u(t)]

(e) f5(t) = d

dt
[4te−2t cos(4πt + 30◦) u(t)]

(f) f6(t) = e−3t cos(4t + 30◦) u(t)

(g) f7(t) = t2[u(t) − u(t − 4)]
(h) f8(t) = 10 cos(6πt + 30◦) δ(t − 0.2)

12.7 Determine the Laplace transform of each of the
following functions:

(a) f1(t) = 2t2e−3t u(t)

(b) f2(t) = 5 sin(6t + 30◦) u(t)

*(c) f3(t) = 10e−4(t−3) u(t − 3)

(d) f4(t) = 15(e−2t − e2t ) u(t)

(e) f5(t) = 8e−4t cos(2t) u(t)

(f) f6(t) = 10te−t sin(2t) u(t)

Section 12-5: Partial Fractions

12.8 Obtain the inverse Laplace transform of each of the
following functions by first applying the partial-fraction-
expansion method.

∗
Answer(s) available in Appendix G.

(a) F1(s) = 6

(s + 2)(s + 4)

(b) F2(s) = 4

(s + 1)(s + 2)2

(c) F3(s) = 3s3 + 36s2 + 131s + 144

s(s + 4)(s2 + 6s + 9)

(d) F4(s) = 2s2 + 4s − 10

(s + 6)(s + 2)2

12.9 Obtain the inverse Laplace transform of each of the
following functions.

(a) F1(s) = s2 + 17s + 15

s(s2 + 6s + 5)

*(b) F2(s) = 2s2 + 10s + 16

(s + 2)(s2 + 6s + 10)

(c) F3(s) = 4

(s + 2)3

(d) F4(s) = 2(s3 + 12s2 + 16)

(s + 1)(s + 4)3

12.10 Obtain the inverse Laplace transform of each of the
following functions.

(a) F1(s) = (s + 2)2

s(s + 1)3

(b) F2(s) = 1

(s2 + 4s + 5)2

*(c) F3(s) =
√

2(s + 1)

s2 + 6s + 13

(d) F4(s) = −2(s2 + 20)

s(s2 + 8s + 20)

12.11 Obtain the inverse Laplace transform of each of the
following functions.

(a) F1(s) = 2 + 4(s − 4)

s2 + 16

*(b) F2(s) = 4

s
+ 4s

s2 + 9

(c) F3(s) = (s + 5)e−2s

(s + 1)(s + 3)

(d) F4(s) = (1 − e−4s)(24s + 40)

(s + 2)(s + 10)

(e) F5(s) = s(s − 8)e−6s

(s + 2)(s2 + 16)

(f) F6(s) = 4s(2 − e−4s)

s2 + 9
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Sections 12-6 and 12-7: s-Domain Analysis

*12.12 In the circuit of Fig. P12.12(a), is(t) is given by the
waveform shown in Fig. P12.12(b). Determine iL(t) for t ≥ 0,
given that R1 = R2 = 2 � and L = 4 H.

8e−2t

is(t)

t

8 A

(b) is(t)

(a) Circuit

R1

R2

Lis(t)

iL

Figure P12.12: Circuit and waveform for Problem 12.12.

12.13 In the circuit of Fig. P12.13, υs(t) is given by
υs(t) = [20u(t) − 5δ(t)] V. Determine υC(t) for t ≥ 0, given
that L = 1 H, C = 0.5 F, and R = 6 �.

+
_

+
_υs(t) υCL

R

C

Figure P12.13: Circuit for Problem 12.13.

12.14 In the circuit of Fig. P12.14(a), υs(t) is given by the
waveform displayed in Fig. P12.14(b). Determine i(t) for
t ≥ 0, given that R = 2 �, L = 6 H, and C = 2 F.

*12.15 In the circuit of Fig. P12.15(a), υs(t) is given by the
waveform displayed in Fig. P12.15(b). Determine iL(t), given
that R1 = R2 = 4 �, L = 2 H, and C = 0.5 F.

+
_

R

L

C

i(t)

υs

(a) Circuit

(b) υs(t)

υs

t (s)
10 3

3 V

1 V
2 V

2

Figure P12.14: Circuit and waveform for Problem 12.14.

+
_

R2

L

C

R1

iL

υs(t)

υs(t)

t (s)
1 3 4

1 V

2

(a)

(b)

Figure P12.15: Circuit and waveform for Problem 12.15.



“book” — 2015/5/4 — 7:26 — page 669 — #40

PROBLEMS 669

12.16 In the circuit of Fig. P12.16,

is(t) = 7u(t) + 4δ(t) (A).

Initially the capacitor had 8 J of energy stored in it. Determine
υR1(t) for t ≥ 0, given that R1 = 2 �, R2 = 4 �, and C = 1 F.

+

+

_
_

R1

R2

υR1

υCis(t) C

Figure P12.16: Circuit for Problem 12.16.

12.17 In the circuit of Fig. P12.17, υs(t) is a rectangular 5 V
pulse of duration 3 seconds starting at t = 0. Determine iL(t)

for t ≥ 0, given that R1 = 6 �, L = 1 H, and C = 1
3 F.Assume

that initially the capacitor had no charge stored in it.

+
_

R1 iL

υs(t)
L

C t = 0

Figure P12.17: Circuit for Problem 12.17.

*12.18 Determine υ(t) in the circuit of Fig. P12.18, given that
υs(t) = 2u(t) V, R1 = 1 �, R2 = 3 �, C = 0.3689 F, and
L = 0.2259 H.

C

R2R1

Lυυs(t)

iL(t)
+
_

Figure P12.18: Circuit for Problems 12.18 and 12.19.

12.19 Determine iL(t) in the circuit in Fig. P12.18, given
that υs(t) = 2u(t), R1 = 2 �, R2 = 6 �, L = 2.215 H, and
C = 0.0376 F.

12.20 Determine υout(t) in the circuit in Fig. P12.20, given
that υs(t) = 35u(t) V, υC1(0

−) = 20 V, υC2(0
−) = 0,

R1 = 1 �, C1 = 1 F, R2 = 0.5 �, and C2 = 2 F.

+

_
υs(t)

R1

C1 C2 R2 υout

υC1

+
_

Figure P12.20: Circuit for Problem 12.20.

12.21 Determine iL(t) in the circuit of Fig. P12.21 for t ≥ 0,
given that the switch was opened at t = 0 after it had been
closed for a long time, υs = 12 mV, R0 = 5 �, R1 = 10 �,
R2 = 20 �, L = 0.2 H, and C = 6 mF.

12 mV

R0 R1 R2

CL

iL
t = 0+

_

Figure P12.21: Circuit for Problems 12.21 and 12.22.

*12.22 Repeat Problem 12.21, but assume that the switch had
been open for a long time and then closed at t = 0. Set the
dc source at 12 mV and the element values at R0 = 5 �,
R1 = 10 �, R2 = 20 �, L = 2 H, and C = 0.4 F.

12.23 Determine iL(t) in the circuit of Fig. P12.23, given
that R1 = 1 �, R2 = 6 �, L = 1 H, and C = 0.5 F. Assume
no energy was stored in the circuit segment to the right of the
switch prior to t = 0.

C L
t = 0

2 V

iL
R2R1

+
_

Figure P12.23: Circuit for Problem 12.23.

12.24 Determine υC2(t) in the circuit of Fig. P12.24, given
that R = 200 �, C1 = 1 mF, and C2 = 5 mF.
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50 δ(t) V

R
C1

C2 υC2

+
_

Figure P12.24: Circuit for Problem 12.24.

*12.25 Determine iL(t) in the circuit of Fig. P12.25, given that
before closing the switch υC(0−) = 12 V. Also, the element
values are R = 2 �, L = 1.5 H, and C = 0.5 F.

R L
t = 0

υC

iL

Figure P12.25: Circuit for Problem 12.25.

12.26 Determine υout(t) in the circuit of Fig. P12.26, given
that υs(t) = 11u(t) V, R1 = 2 �, R2 = 4 �, R3 = 6 �,
L = 1 H, and C = 0.5 F.

+

_

R1
C

L

R3

R2
+
_ υoutυs(t)

Figure P12.26: Circuit for Problem 12.26.

12.27 Determine iL(t) in the circuit of Fig. P12.27 for t ≥ 0,
given that R = 4 �, L = 1 H, and C = 0.5 F.

iL

L

C

R

7 V
+
_

t = 0

Figure P12.27: Circuit for Problem 12.27.

*12.28 Apply mesh-current analysis in the s-domain to
determine iL(t) in the circuit of Fig. P12.28, given that
υs(t) = 44u(t)V, R1 = 2 �, R2 = 4 �, R3 = 6 �, C = 0.1 F,
and L = 4 H.

R3

iL

R2 C

L

R1

+
_υs(t)

Figure P12.28: Circuit for Problem 12.28.

12.29 Determine υout(t) in the circuit of Fig. P12.29, given
that υs(t) = 3u(t) V, R1 = 4 �, R2 = 10 �, and L = 2 H.

+

_

R1

L R2
+
_ υoutυs(t)

2ix

ix

Figure P12.29: Circuit for Problems 12.29 and 12.30.

12.30 Repeat Problem 12.29 with υs(t) = 3δ(t) V.

*12.31 The voltage source in the circuit of Fig. P12.31 is, given
by υs(t) = [10+5u(t)]V. Determine iL(t) for t ≥ 0, given that
R1 = 1 �, R2 = 1 �, L = 2 H, and C = 1 F.
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R1 R2

LC
+
_υs(t)

iL

Figure P12.31: Circuit for Problems 12.31 and 12.35.

12.32 The current source in the circuit of Fig. P12.32 is given
by is(t) = [10u(t) + 15δ(t)] mA. Determine υC(t) for t ≥ 0,
given that R1 = 1 k�, R2 = 1 k�, and C = 2 mF.

+

_

R2

CR1
+
_ υCis(t)

iC

Figure P12.32: Circuit for Problems 12.32 and 12.34.

12.33 The circuit in Fig. P12.33 is excited by a 10 V, 1 s
long rectangular pulse. Determine i(t), given that R1 = 1 �,
R2 = 2 �, and L = 1/3 H.

0

10 V

1 s

υs(t) =

i(t)

+
_ R2

R1

L

Figure P12.33: Circuit for Problem 12.33.

*12.34 Repeat Problem 12.32 after replacing the current source
with a 10 mA, 2 s long rectangular pulse.

12.35 Analyze the circuit shown in Fig. P12.31 to determine
iL(t) in response to a voltage excitation υs(t) in the form of a
10 V rectangular pulse that starts at t = 0 and ends at t = 5 s.
The element values are R1 = 1 �, R2 = 3 �, L = 2 H, and
C = 0.5 F.

12.36 The current source in the circuit of Fig. P12.36 is given
by is(t) = 6e−2t u(t) A. Determine iL(t) for t ≥ 0, given that
R1 = 10 �, R2 = 5 �, L = 0.6196 H, and LC = (1/15) s.

is(t) R1 R2

iL

L

C

Figure P12.36: Circuit for Problems 12.36 and 12.37.

*12.37 Given the current-source waveform displayed in
Fig. P12.37, determine iL(t) in the circuit of Fig. P12.36, given
thatR1 = 10 �, R2 = 5�, L = 0.6196 H, andLC = (1/15) s.

is(t)

t

6 A

6e−2t

0
0

Figure P12.37: Waveform for Problem 12.37.

12.38 If the circuit shown in Fig. P12.38(a) is excited by the
current waveform is(t) shown in Fig. P12.38(b), determine i(t)

for t ≥ 0, given that R1 = 10 �, R2 = 5 �, and C = 0.02 F.

is(t)

i(t)

R1 R2C

is(t)

t

1.5 A

0.5 A
1 A ω = 4 rad/s

(a) Circuit

(b) Waveform

Figure P12.38: Circuit for Problems 12.38 to 12.40.
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12.39 If the circuit shown in Fig. P12.38(a) is excited by
current waveform is(t) = 36te−6t u(t) mA, determine i(t) for
t ≥ 0, given that R1 = 2 �, R2 = 4 �, and C = (1/8) F.

12.40 If the circuit shown in Fig. P12.38(a) is excited by a
current waveform given by is(t) = 9te−3t u(t) mA, determine
i(t) for t ≥ 0, given that R1 = 1 �, R2 = 3 �, and C = 1/3 F.

12.41 The circuit shown in Fig. P12.41 first was introduced
in Problem 5.68. Then, a time-domain solution was sought for
υout1(t) and υout2(t) for t ≥ 0, given that υi(t) = 10u(t) mV,
VCC = 10 V for both op amps, and the two capacitors had no
change prior to t = 0. Analyze the circuit and plot υout1(t) and
υout2(t) using the Laplace transform technique.

υi
υout1 υout2

+

_
+

_

Vcc = 10 V
Vcc = 10 V

5 kΩ

4 μF
5 μF

1 MΩ

Figure P12.41: Circuit for Problems 12.41 and 12.42.

12.42 Repeat Problem 12.41 retaining all element val-
ues and conditions but changing the input voltage to
υi(t) = 0.4te−2t u(t).

12.43 For the circuit shown in Fig. P12.43, determine υout(t)

given that R1 = 1 k�, R2 = 4 k�, and C = 1 μF, and

(a) υs(t) = 2u(t) (V),

(b) υs(t) = 2 cos(1000t) (V),

(c) υs(t) = 2e−t u(t) (V).

+

_

R2

R1

C

+

_

+
_υs(t) υout(t)

Figure P12.43: Op-amp circuit for Problem 12.43.

12.44 For the circuit shown in Fig. P12.44, determine υout(t)

given that R1 = R2 = 100 �, C1 = C2 = 1 μF, and

*(a) υs(t) = 2u(t) (V),

(b) υs(t) = 2 cos(1000t) u(t) (V),

(c) υs(t) = 2e−t u(t) (V).

+

_

R2R1
C1

C2

+

_

+
_ υs(t) υout(t)

Figure P12.44: Op-amp circuit for Problem P12.44.

Section 12-8: Multisim Analysis of Circuits Driven by
Nontrivial Inputs

12.45 Apply a 1 V, 1 Hz signal with a 10 V dc offset to the
circuit in Fig. P12.45 and plot both υC(t) and υR(t) for R = 1 �

and C = 1 F. Why are the dc offsets different for the voltages
across the two components?

υs
υR

υCC

R

+
_

+ _ +
_

Figure P12.45: Circuit for Problems 12.45 and 12.47.

12.46 Repeat Example 12-12, but vary the time constant of
the exponent from 0.1 s to 5 s (pick more than 3 points). Plot
all responses on the same display.

12.47 In Multisim, apply input signal υs(t) = 5t V to the
circuit shown in Fig. P12.45 and plot both υC(t) and υR(t) for
0 to 5 s. Find the point at which υC(t) = υR(t). If we change
the input signal to υs(t) = 10t V, will the point in time where
υC(t) = υR(t) change? Explain.

12.48 Using a Piecewise Linear source in Multisim, build
and simulate the circuit found in Fig. P12.33 (including the
specified source). Plot i(t) for 0 to 2 s. Use R1 = 1 �,
R2 = 2 �, and L = 1/3 H.

Potpourri Questions

12.49 What techniques are used to generate the 3-D effect in
3-D TVs?

12.50 What type of imaging sensor is used to map the Earth
surface in 3-D? How many antennas does it use?
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Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest 
via your computer. [myDAQ tutorials and videos are available 
on                       .]

m12.1 Step Response: For the circuit in Fig. m12.1:

(a) Determine the transfer function H(s) = Vo(s)/Vs(s).
Write the transfer function in simplified standard form with
symbolic values.

(b) Determine the output response υo(t) to the input
υs(t) = 4u(t) by working in the Laplace domain. Assume
the capacitor is initially discharged.

(c) Plot υs(t) and υo(t) on the same graph from 0 to 5 ms using
a tool such as MathScript or MATLAB for R = 5.6 k�

and C = 0.1 μF. Include a hard copy of the script used to
create the plot.

(d) Determine the following values for υo(t):

(1) Initial value υo(0),

(2) Time to reach 50% of the initial value, and

(3) Final value.

R

R

C

R

υo

υs

+
_

Figure m12.1 Circuit for Problem m12.1.
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Objectives

Learn to:

� Express a periodic function in terms of a Fourier
series using the cosine/sine, the amplitude/phase,
and the complex exponential representations.

� Determine the line spectrum of a periodic
waveform.

� Utilize symmetry consideratins in the evaluation
of Fourier coefficients.

� Explain the Gibbs phenomenon.

� Analyze circuits excited by periodic waveforms.

τ = 1 s

T = 10 s
t (s)

0

1

2

1.5

0.5

−4 −2 0 2 4
nω0

|cn|

T = 10 s

A circuit driven by a periodic excitation can be analyzed
by (a) representing the excitation in terms of a Fourier
series composed of sinusoids, (b) applying phasor analysis to
determine the output response due to each sinusoid, and (c)
then adding all of the output responses to constitute the total
response of the circuit.

� Calculate the average power dissipated in or
delivered by a component in a circuit excited by a
periodic voltage or current.

� Evaluate the Fourier transform of a nonperiodic
waveform.

� Apply the Fourier transform technique to analyze
circuits excited by nonperiodic waveforms.

� Use Multisim to model the behavior of the Sigma-
Delta modulator.

CHAPTER 13
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Overview

First introduced in Chapter 7, the phasor-domain analysis
technique has proven to be a potent—and easy to implement—
tool for determining the steady-state response of circuits
excited by sinusoidal waveforms. As a periodic function with a
period T , a sinusoidal signal shares a distinctive property with
all other members of the family of periodic functions, namely
the periodicity property given by Eq. (8.4) as

x(t) = x(t + nT ), (13.1)

where n is an integer. Given this natural connection between
sinusoids and other periodic functions, can we somehow
extend the phasor-domain solution technique to nonsinusoidal
periodic excitations such as a square wave or a train of
pulses? The answer is yes, and the process for realizing it is
facilitated by two enabling mechanisms: the Fourier theorem
and the superposition principle. The Fourier theorem makes it
possible to mathematically characterize any periodic excitation
in the form of a sum of multiple sinusoidal harmonics. The
superposition principle allows us to apply phasor analysis to
calculate the circuit response due to each harmonic as if it
were the only excitation in the circuit and then to add all of
the responses together, thereby realizing the response to the
original periodic excitation. The first half of this chapter aims
to demonstrate the mechanics of the solution process as well
as to explain the physics associated with the circuit response to
the different harmonics.

The second half of the chapter is devoted to the Fourier
transform, which is particularly useful for analyzing circuits
excited by nonperiodic waveforms, such as single pulses or
step functions. As we will see in Section 13-7, the Fourier
transform is related to the Laplace transform of Chapter 12
and becomes identical to it under certain circumstances, but the
two techniques are generally distinct (as are their conditions of
applicability from the standpoint of circuit analysis).

13-1 Fourier Series Analysis Technique

By way of introducing the Fourier series analysis technique,
let us consider the RL circuit shown in Fig. 13-1(a), which
is excited by the square-wave voltage waveform shown in
Fig. 13-1(b). The waveform amplitude is 3 V and its period
T = 2 s. Our goal is to determine the output voltage response,
υout(t). The solution procedure consists of three basic steps.

(a) RL circuit

(b) Square-wave excitation

Input

Output

R = 4 Ω

L = (2/π) H

+

_

+
_υs(t) υout(t)

(c) Output response

υs (V)

t (s)

t (s)

−1 21

−3

3 T

υout (V)

−2

−1
0

0 1 2 3

−4

2

4

Figure 13-1: RL circuit excited by a square wave and
corresponding output response.

Step 1: Express the periodic excitation in terms of Fourier
harmonics

According to the Fourier theorem (which we will introduce
and examine in detail in Section 11-2), the waveform shown in
Fig. 13-1(b) can be represented by the series

υs(t) = 12

π

(
cos ω0t − 1

3
cos 3ω0t + 1

5
cos 5ω0t − · · ·

)
V,

(13.2)
where ω0 = 2π/T = 2π/2 = π (rad/s) is the fundamental
angular frequency of the waveform. Since our present objective



“book” — 2015/5/4 — 7:27 — page 676 — #3

676 CHAPTER 13 FOURIER ANALYSIS TECHNIQUES

is to outline the solution procedure, we will accept it as a
given that the infinite-series representation given by Eq. (13.2)
is indeed equivalent to the square wave of Fig. 13-1(b). The
series consists of cosine functions of the form cos mω0t with
m assuming only odd values (1, 3, 5, etc.). Thus, the series
contains only odd harmonics of ω0. Other periodic waveforms
may include both odd and even harmonics. The coefficient of
the mth harmonic is equal to 1/m (relative to the coefficient of
the fundamental), and its polarity is positive if m = 3, 7, . . .

and negative if m = 5, 9, . . . . In view of these properties, we
can replace m with (2n − 1) and cast υs(t) in the form

υs(t) = 12

π

∞∑
n=1

(−1)n+1 1

2n − 1
cos[(2n − 1)πt] V. (13.3)

In terms of its components, υs(t) is given by

υs(t) = υs1(t) + υs2(t) + υs3(t) + · · · (13.4)

with

υs1(t) = 12

π
cos ω0t V, (13.5a)

υs2(t) = − 12

3π
cos 3ω0t V, (13.5b)

and

υs3(t) = 12

5π
cos 5ω0t V, etc. (13.5c)

In the phasor domain, the counterpart of υs(t) is given by:

Vs(t) = Vs1(t) + Vs2(t) + Vs3(t) + · · · (13.6)

with

Vs1 = 12

π
V (for ω = ω0), (13.7a)

Vs2 = − 12

3π
V (for ω = 3ω0), (13.7b)

and

Vs3 = 12

5π
V (for ω = 5ω0), etc. (13.7c)

Phasor voltages Vs1 , Vs2 , Vs3 , etc., are the counterparts of
υs1(t), υs2(t), υs3(t), etc., respectively.

Step 2: Determine output responses to input harmonics

For the circuit in Fig. 13-1(a), input voltage Vs1 acting alone
would generate a corresponding output voltage Vout1 . Keeping
in mind that Vs1 corresponds to υs1(t) at ω = ω0 = π rad/s,
voltage division gives

Vout1 =
(

R

R + jωL

)∣∣∣∣
ω=ω0=π

Vs1

= 4

4 + jπ × 2
π

· 12

π
= 3.42 −26.56◦ (13.8)

with a corresponding time-domain voltage

υout1(t) = Re[Vout1e
jω0t ] = 3.42 cos(ω0t − 26.56◦) V.

(13.9)
Similarly, at ω = 3ω0 = 3π rad/s,

Vout2 = R

R + jωL

∣∣∣∣
ω=3ω0=3π

Vs2

= 4

4 + j3π × 2
π

·
(

− 12

3π

)
= −0.71 −56.31◦ V

(13.10)

and

υout2(t) = Re[Vout2e
j3ω0t ] = −0.71 cos(3ω0t − 56.31◦) V.

(13.11)
In view of the harmonic pattern expressed in the form
of Eq. (13.3), for the harmonic at angular frequency
ω = (2n − 1)ω0 = (2n − 1)π rad/s,

Voutn = 4

4 + j (2n − 1)π × 2
π

· (−1)n+1 12

π(2n − 1)

= (−1)n+1 24

π(2n − 1)
√

4 + (2n − 1)2

· ∠− tan−1[(2n−1)/2] V. (13.12)

The corresponding time domain voltage is

υoutn(t) = Re[Voutne
j (2n−1)ω0t ]

= (−1)n+1 24

π(2n − 1)
√

4 + (2n − 1)2

· cos

[
(2n − 1)ω0t − tan−1

(
2n − 1

2

)]
V,

(13.13)

with ω0 = π rad/s.
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Step 3: Apply the superposition principle to determine
υout(t)

According to the superposition principle, if υout1 is the output
generated by a linear circuit when excited by an input
voltage υs1 acting alone and if similarly υout2 is the output due
to υs2 acting alone, then the output due to the combination of
υs1 and υs2 acting simultaneously is simply the sum of υout1
and υout2 . Moreover, the principle is extendable to any number
of sources. In the present case, the square-wave excitation
is equivalent to a series of sinusoidal sources υs1 , υs2 , . . .

generating corresponding output voltages υout1 , υout2 , . . . .
Consequently,

υout(t) =
∞∑

n=1

υoutn(t)

=
∞∑

n=1

(−1)n+1 24

π(2n − 1)
√

4 + (2n − 1)2

· cos

[
(2n − 1)ω0t − tan−1

(
2n − 1

2

)]

= 3.42 cos(ω0t − 26.56◦)
− 0.71 cos(3ω0t − 56.31◦)
+ 0.28 cos(5ω0t − 68.2◦) + · · · V, (13.14)

with ω0 = π rad/s.
We note that the fundamental component of υout(t) has the

dominant amplitude and that the higher the harmonic is, the
smaller is its amplitude. This allows us to approximate υout(t)

by retaining only a few terms, such as up to n = 10, depending
on the level of desired accuracy. The plot of υout(t) displayed
in Fig. 13-1(c) (which is based on only the first 10 terms) is
sufficiently accurate for most practical applications.

The foregoing three-step procedure (which is equally
applicable to any linear circuit excited by any realistic periodic
function) relied on the use of the Fourier theorem to express the
square-wave pattern in terms of sinusoids. In the next section,
we examine the attributes of the Fourier theorem and how we
may apply it to any periodic function.

Concept Question 13-1: The Fourier series technique
is applied to analyze circuits excited by what type of 
functions? (See         )

Concept Question 13-2: How is the angular frequency
of the nth harmonic related to that of the fundamental 
ω0? How is ω0 related to the period T of the periodic 
function? (See         )

Concept Question 13-3: What steps constitute the
Fourier series solution procedure? (See         )

13-2 Fourier Series Representation
In 1822, the French mathematician Jean-Baptiste Joseph
Fourier developed an elegant formulation for representing
periodic functions in terms of a series of sinusoidal harmonics.
The representation is known today as the Fourier series, and the
formulation is called the Fourier theorem. To guarantee that a
periodic function f (t) has a realizable Fourier series, it should
satisfy a set of conditions known as the Dirichlet conditions.

� Fortunately, any periodic function generated by a
real circuit will meet these conditions automatically and
therefore, we are assured that its Fourier series does
indeed exist. �

The Fourier theorem states that a periodic function f (t) of
period T can be cast in the form

f (t) = a0 +
∞∑

n=1

(an cos nω0t + bn sin nω0t),

(sine/cosine representation) (13.15)

where ω0, the fundamental angular frequency of f (t), is
related to T by

ω0 = 2π

T
. (13.16)

The summation is an infinite series whose first pair of terms
(for n = 1) involve cos ω0t and sin ω0t . Higher values of n

involve sine and cosine functions at harmonic multiples of ω0,
namely 2ω0, 3ω0, etc. The constants a0, an, and bn (for n = 1
to ∞) are collectively called the Fourier coefficients of f (t).
Their values are determined by evaluating integral expressions
involving f (t), namely,

a0 = 1

T

T∫
0

f (t) dt, (13.17a)

an = 2

T

T∫
0

f (t) cos nω0t dt, (13.17b)



“book” — 2015/5/4 — 7:27 — page 678 — #5

678 CHAPTER 13 FOURIER ANALYSIS TECHNIQUES

and

bn = 2

T

T∫
0

f (t) sin nω0t dt. (13.17c)

We will derive these expressions shortly.

� Even though the indicated limits of integration are from
0 to T , the expressions are equally valid if the lower limit
is changed to t0 and the upper limit to (t0+T ) for any value
of t0. In some cases, the evaluation is easier to perform
by integrating from −T/2 to T/2. �

Coefficient a0 is equal to the time-average value of f (t). It
is called the dc component of f (t), because the average values
of the ac components are all zero.

13-2.1 Sine/Cosine Representation

To verify the validity of the expressions given by Eq. (13.17),
we make use of the trigonometric integral properties listed in
Table 13-1.

dc Fourier component a0

Equation (8.5) in Chapter 8 states that the average value of a
periodic function is obtained by integrating it over a complete
period T and then dividing the integral by T . Applying the
definition to Eq. (13.15) gives

1

T

T∫
0

f (t) dt = 1

T

T∫
0

a0 dt

+ 1

T

T∫
0

[ ∞∑
n=1

an cos nω0t + bn sin nω0t

]
dt

= a0 + 1

T

T∫
0

a1 cos ω0t dt + 1

T

T∫
0

a2 cos 2ω0t dt + · · ·

+ 1

T

T∫
0

b1 sin ω0t dt + 1

T

T∫
0

b2 sin 2ω0t dt + · · · .

(13.18)

According to Property 1 in Table 13-1, the average value of a
sine function is zero, and the same is true for a cosine function

Table 13-1: Trigonometric integral properties for any
integers m and n. The integration period T = 2π/ω0.

Property Integral

1

T∫
0

sin nω0t dt = 0

2

T∫
0

cos nω0t dt = 0

3

T∫
0

sin nω0t sin mω0t dt = 0, n �= m

4

T∫
0

cos nω0t cos mω0t dt = 0, n �= m

5

T∫
0

sin nω0t cos mω0t dt = 0

6

T∫
0

sin2 nω0t dt = T/2

7

T∫
0

cos2 nω0t dt = T/2

Note: All integral properties remain valid when the
arguments nω0t and mω0t are phase shifted by a
constant angle φ0. Thus, Property 1, for example,
becomes

∫ T
0 sin(nω0t+φ0) dt = 0, and Property 5 becomes∫ T

0 sin(nω0t + φ0) cos(mω0t + φ0) dt = 0.

(Property 2). Hence, all of the terms in Eq. (13.18) containing
cos nω0t or sin nω0t will vanish, leaving behind

1

T

T∫
0

f (t) dt = a0, (13.19)

which is identical to the definition given by Eq. (13.17a).

an Fourier coefficients

Multiplication of both sides of Eq. (13.15) by cos mω0t (with
m being any integer value equal to or greater than 1), followed
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with integration over [0, T ] yields

T∫
0

f (t) cos mω0t dt =
T∫

0

a0 cos mω0t dt

+
T∫

0

∞∑
n=1

an cos nω0t cos mω0t dt

+
T∫

0

∞∑
n=1

bn sin nω0t cos mω0t dt. (13.20)

On the right-hand side of Eq. (13.20):

(1) The term containing a0 is equal to zero (Property 2 in
Table 13-1).

(2) All terms containing bn are equal to zero (Property 5).

(3) All terms containing an are equal to zero (Property 4),
except when m = n, in which case Property 7 applies.

Hence, after eliminating all of the zero-valued terms and then
setting m = n in the two remaining terms, we have

T∫
0

f (t) cos nω0t dt = an

T

2
, (13.21)

which proves Eq. (13.17b).

bn Fourier coefficients

Similarly, if we were to repeat the preceding process, after
multiplication of Eq. (13.15) by sin mω0t (instead of cos mω0t),
we would conclude with a result affirming the validity of
Eq. (13.17c).

To develop an appreciation for how the components of the
Fourier series add up to represent the periodic waveform,
let us consider the square-wave voltage waveform shown in
Fig. 13-2(a). Over the period extending from −T/2 to T/2,
υ(t) is given by

υ(t) =

⎧⎪⎨
⎪⎩

−A, for − T/2 < t < −T/4,

A, for − T/4 < t < T/4,

−A, for T/4 < t < −T/2.

If we apply Eq. (13.17)—with integration limits
[−T/2, T /2]—to evaluate the Fourier coefficients and
then use them in Eq. (13.15), we end up with the series

(a) Original waveform

(b) First term of Fourier series

(c) Fourier series with 3 terms

Fourier series
with only 1 term

υ(t)

t

−A

A

0
−T/2 T/2

−A

A
υ(t)

t0
−T/2 T/2

(d) Fourier series with 10 terms

(e) Fourier series with 100 terms

−A

A

υ(t)

t0
−T/2 T/2

−A

A
υ(t)

t0
−T/2 T/2

υ(t)

t

−A

A

0
−T/2 T/2

Figure 13-2: Comparison of the square-wave waveform with
its Fourier series representation using only the first term (b), the
sum of the first three (c), ten (d), and 100 terms (e).

υ(t) =
∞∑

n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T

)

= 4A

π
cos

(
2πt

T

)
− 4A

3π
cos

(
6πt

T

)

+ 4A

5π
cos

(
10πt

T

)
− · · · .
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Alone, the first term of the series provides a crude
approximation of the square wave (Fig. 13-2(b)), but as we
add more and more terms, the sum starts to better resemble
the general shape of the square wave, as demonstrated by the
waveforms in Figs. 13-2(c) to (e).

Example 13-1: Sawtooth Waveform

Express the sawtooth waveform shown in Fig. 13-3(a) in terms
of a Fourier series, and then evaluate how well the original
waveform is represented by a truncated series in which the
summation stops when n reaches a specified truncation number
nmax. Generate plots for nmax = 1, 2, 10, and 100.

Solution: The sawtooth waveform is characterized by a
period T = 4 s and ω0 = 2π/T = π/2 (rad/s). Over the
waveform’s first cycle (t = 0 to t = 4 s), its amplitude variation
is given by

f (t) = 5t (for 0 ≤ t ≤ 4 s).

Application of Eq. (13.17) yields:

a0 = 1

T

T∫
0

f (t) dt = 1

4

4∫
0

5t dt = 10,

an = 2

T

T∫
0

f (t) cos(nω0t) dt

= 2

4

4∫
0

5t cos
(nπ

2
t
)

dt = 0,

and

bn = 2

T

T∫
0

f (t) sin(nω0t) dt

= 2

4

4∫
0

5t sin
(nπ

2
t
)

dt = − 20

nπ
.

Upon inserting these results into Eq. (13.15), we obtain
the following complete Fourier series representation for the
sawtooth waveform:

f (t) = 10 − 20

π

∞∑
n=1

1

n
sin
(nπ

2
t
)

.

(a) Original

(b) nmax = 1

(c) nmax = 2

(d) nmax = 10

(e) nmax = 100

t (s)−4 840

10

20
f(t)

t (s)
−4 840

20
f(t)

t (s)
−4 840

10

f(t)
20

t (s)
−4 840

10

f(t)
20

t (s)
−4 840

10

20
f(t)

Figure 13-3: Sawtooth waveform: (a) original waveform,
(b)–(e) representation by a truncated Fourier series with
nmax = 1, 2, 10, and 100, respectively.

� The nmax-truncated series is identical in form to the
complete series, except that the summation is terminated
after the index n reaches nmax. �

Figures 13-3(b) through (e) display the waveforms calculated
using the truncated series with nmax = 1, 2, 10, and 100. As
expected, the addition of more terms improves the accuracy of
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the Fourier series representation, but even with only 10 terms (in
addition to the dc component), the truncated series appears to
provide a reasonable approximation of the original waveform.

Concept Question 13-4: Is the Fourier series representa-
tion given by Eq. (13.15) applicable to a periodic function 
that starts at t = 0 (and is zero for t < 0)? (See         )

Concept Question 13-5: What is a truncated series?
(See         )

Exercise 13-1: Obtain the Fourier series representation
for the waveform shown in Fig. E13.1.

f(t)

−4 −2

−10

t (s)
2 40

0

10

Figure E13.1

Answer:

f (t) =
∞∑

n=1

[
20

n2π2 (1 − cos nπ) cos
nπt

2

+ 10

nπ
(1 − cos nπ) sin

nπt

2

]
.

(See             )

13-2.2 Amplitude and Phase Representation

In the sine/cosine Fourier series representation given by
Eq. (13.15), at each value of the integer index n, the summation
contains the sum of a sine term and a cosine term, with both at
angular frequency nω0. The sum can be converted into a single
sinusoid as follows. For n ≥ 0,

an cos nω0t + bn sin nω0t = An cos(nω0t + φn), (13.22)

where An is called the amplitude of the nth harmonic and
φn is its associated phase. The relationships between (An, φn)

and (an, bn) are obtained by expanding the right-hand side of
Eq. (13.22) in accordance with the trigonometric identity

cos(x + y) = cos x cos y − sin x sin y. (13.23)

Thus,

an cos nω0t + bn sin nω0t

= An cos φn cos nω0t − An sin φn sin nω0t.

(13.24)

Upon equating the coefficients of cos nω0t and sin nω0t on one
side of the equation to their respective counterparts on the other
side, we have

an = An cos φn and bn = −An sin φn, (13.25)

which can be combined to yield the relationships

An =√
a2
n + b2

n

and

φn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− tan−1
(

bn

an

)
an > 0,

π − tan−1
(

bn

an

)
an < 0.

(13.26)

In complex form,

An φn = an − jbn. (13.27)

In view of Eq. (13.22), the cosine/sine Fourier series
representation of f (t) can be rewritten in the alternative
amplitude/phase format

f (t) = a0 +
∞∑

n=1

An cos(nω0t + φn).

(amplitude/phase representation)

(13.28)

Associated with each discrete frequency harmonic nω0 is an
amplitude An and a phase φn. A line spectrum of a periodic
signal f (t) is a visual depiction of its Fourier coefficients, An

and φn. Its amplitude spectrum consists of vertical lines located
at discrete values along the ω axis, with a line of height a0
located at dc (ω = 0), another of height A1 at ω = ω0, a third of
height A2 at ω = 2ω0, and so on. Similarly, the phase spectrum
of f (t) consists of lines of lengths proportional to the values
of φn with each located at its corresponding harmonic nω0.
Line spectra show at a glance which frequencies in the spectrum
of f (t) are most significant and which are not. Example 13-2
provides an illustration.
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(a) Periodic waveform

(b) Amplitude spectrum

(c) Phase spectrum

f(t)

t (s)
−1−2 10

0
3

1

2

ω
ω0 2ω0 3ω0 4ω0 5ω0

ω0 2ω0 3ω0 4ω0 5ω0

0.25
0.2

0.38

0.16
0.11

0.08 0.06

0

0.4

An

A1

A2
A3

A4 A5

a0

ω

ϕn

ϕ2ϕ1 ϕ3 ϕ5ϕ4

90o

−90o
−57.5o

−90o −90o−78o −83o

Figure 13-4: Periodic waveform of Example 13-2 with its
associated line spectra.

Example 13-2: Line Spectra

Generate and plot the amplitude and phase spectra of the
periodic waveform displayed in Fig. 13-4(a).

Solution: The periodic waveform has a period T = 2 s.
Hence, ω0 = 2π/T = 2π/2 = π rad/s, and the functional
expression for f (t) over its first cycle along the positive t axis
is

f (t) =
{

1 − t for 0 < t ≤ 1 s,

0 for 1 ≤ t ≤ 2 s.

The dc component of f (t) is given by

a0 = 1

T

T∫
0

f (t) dt = 1

2

1∫
0

(1 − t) dt = 0.25,

which is equal to the area under a single triangle, divided by
the period T = 2 s.

For the other Fourier coefficients, evaluation of the
expressions given by Eqs. (13.17b and c) leads to

an = 2

T

T∫
0

f (t) cos nω0t dt

= 2

2

1∫
0

(1 − t) cos nπt dt

= 1

nπ
sin nπt

∣∣∣∣
1

0
−
(

1

n2π2 cos nπt + t

nπ
sin nπt

)∣∣∣∣
1

0

= 1

n2π2 [1 − cos nπ ]
and

bn = 2

T

T∫
0

f (t) sin nω0t dt = 2

2

1∫
0

(1 − t) sin nπt dt

= − 1

nπ
cos nπt

∣∣∣∣
1

0
−
(

1

n2π2 sin nπt − t

nπ
cos nπt

)∣∣∣∣
1

0

= 1

nπ
.

By Eq. (13.26), the harmonic amplitudes and phases are given
by

An = +
√

a2
n + b2

n =
[(

1

n2π2 [1 − cos nπ ]
)2

+
(

1

nπ

)2
]1/2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4

n4π4 + 1

n2π2

)1/2

for n = odd

1

nπ
for n = even

and

φn = − tan−1 bn

an

= − tan−1
(

nπ

[1 − cos nπ ]
)

=
{

− tan−1
(nπ

2

)
for n = odd,

−90◦ for n = even.
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The values of An and φn for the first three terms are

A1 = 0.38, φ1 = −57.5◦,
A2 = 0.16, φ2 = −90◦,
A3 = 0.11, φ3 = −78◦.

Spectral plots of An and φn are shown in Figs. 13-4(b) and (c),
respectively.

Exercise 13-2: Obtain the line spectra associated with the
periodic function of Exercise 13-1.

Answer:

An = [1 − cos(nπ)] 20

n2π2

√
1 + n2π2

4

and

φn = − tan−1
(nπ

2

)
.

(See             )

13-2.3 Symmetry Considerations

According to Eq. (13.17), determination of the Fourier
coefficients involves evaluation of three definite integrals
involving f (t). If f (t) exhibits symmetry properties, the
evaluation process can be simplified significantly.

dc Symmetry

Since a0 is equal to the average value of f (t) which is
proportional to the net area under the waveform over the span
of a complete cycle, it follows that a0 = 0 if the waveform is
such that the area above the zero horizontal axis is equal to the
area below it. The waveforms in Figs. 13-5(a), (b), (d), and (e)
are examples of dc-symmetrical functions.

Even and odd symmetry

The waveform of a function f (t) possesses even symmetry if it
is symmetrical with respect to the vertical axis; the shape of the
waveform on the left-hand side of the vertical axis is the mirror
image of the waveform on the right-hand side. Mathematically,
an even function satisfies the condition

f (t) = f (−t) (even symmetry). (13.29)

The waveforms displayed in Figs. 13-5(b) and (c) exhibit even
symmetry, as do the waveforms of sin2 ωt and | sin ωt |, among
many others.

In contrast, the sine and square waves shown in Fig. 13-5(d)
and (e) exhibit odd symmetry; in each case, the shape of the
waveform on the left-hand side of the vertical axis is the inverted
mirror image of the waveform on the right-hand side. Thus, for
an odd function;

f (t) = −f (−t) (odd symmetry). (13.30)

In the case of the square wave, were we to shift the waveform
by T/4 to the left, it would switch from an odd function into an
even function.

13-2.4 Even-Function Fourier Coefficients

Even symmetry allows us to simplify Eq. (13.17) to the
following expressions:

Even Symmetry: f (t) = f (−t)

a0 = 2

T

T/2∫
0

f (t) dt,

an = 4

T

T/2∫
0

f (t) cos(nω0t) dt, (13.31)

bn = 0,

An = |an|, and φn =
{

0 if an > 0,

180◦ if an < 0.

The expressions for a0 and an are the same as given earlier
by Eqs. (13.17a and b), except that the integration limits are
now over half of a period and the integral has been multiplied
by a factor of 2. The simplification is justified by the even
symmetry of f (t).As was stated in connection with Eq. (13.17),
the only restriction associated with the integration limits is
that the upper limit has to be greater than the lower limit by
exactly T . Hence, by choosing the limits to be [−T/2, T /2],
and then recognizing that the integral of f (t) over [−T/2, 0]
is equal to the integral over [0, T /2], we justify the changes
reflected in the expression for a0. A similar argument applies to
the expression for an based on the fact that multiplication of an
even function f (t) by cos nω0t (which itself is an even function)
yields an even function. The rationale for setting bn = 0 for all n
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(a) dc symmetry (b) cos (2πt/T)

dc and even symmetrydc symmetry only
f(t)

−A

−T T
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A

t
T/2

0
0

f(t)
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−A

−T/2 T

A

T/20
0

(c) Even symmetry

Even symmetry only
dc and odd symmetry

(d) sin (2πt/T)

t

f(t)

−T/2 T

A

T/20
0

f(t)

−T T

A

t
T/20

0
−T/2

−A

(e) odd symmetry

dc and odd symmetry
f(t)

−A

−T T

A

tT/2−T/2
0

0

Line of dc symmetry

Line of even symmetry
(equal on both sides)
and odd symmetry (equal
and opposite on both sides)

t

Figure 13-5: Waveforms with (a) dc symmetry, (b and c) even symmetry, and (d and e) odd symmetry.

relies on the fact that multiplication of an even function f (t)

by sin nω0t (which is an odd function) yields an odd function,
and integration of an odd function over [−T/2, T /2] is always
equal to zero. This is because the integral of an odd function
over [−T/2, 0] is equal in magnitude but opposite in sign to the
integral over [0, T /2].

13-2.5 Odd-Function Fourier Coefficients

In view of the preceding discussion, it follows that for a function
with odd symmetry we have the following equations:

Odd Symmetry: f (t) = −f (−t)

a0 = 0, an = 0,

bn = 4

T

T/2∫
0

f (t) sin(nω0t) dt, (13.32)

An = |bn| and φn =
{

−90◦ if bn > 0,

90◦ if bn < 0.

Selected waveforms are displayed in Table 13-2, together with
their corresponding Fourier series expressions.
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Table 13-2: Fourier series expressions for a select set of periodic waveforms.

Waveform Fourier Series

1. Square Wave

f(t)

t

−A
−T

A
0

−T/2 T/2 T
f (t) =

∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T

)

2. Time-Shifted Square
Wave

f(t)

t

−A
−T

A
0

−T/2 T/2 T
f (t) =

∞∑
n=1

n=odd

4A

nπ
sin

(
2nπt

T

)

3. Pulse Train

f(t)

t
−T

τ
A
0
0 T

f (t) = Aτ

T
+

∞∑
n=1

2A

nπ
sin
(nπτ

T

)
cos

(
2nπt

T

)

4. Triangular Wave

f(t)

t
A
0

−A
−T/2 T/2

f (t) =
∞∑

n=1
n=odd

8A

n2π2 cos

(
2nπt

T

)

5. Shifted Triangular
Wave

f(t)

t
A
0

−A
−T/2 T/2

f (t) =
∞∑

n=1
n=odd

8A

n2π2 sin
(nπ

2

)
sin

(
2nπt

T

)

6. Sawtooth

f(t)

t
A
0

−A
−T T

f (t) =
∞∑

n=1

(−1)n+1 2A

nπ
sin

(
2nπt

T

)

7. Backward Sawtooth

f(t)

t
−2T −T

A

0 2TT

f (t) = A

2
+

∞∑
n=1

A

nπ
sin

(
2nπt

T

)

8. Full-Wave Rectified
Sinusoid

f(t)

t
−T 0 2TT

A
f (t) = 2A

π
+

∞∑
n=1

4A

π(1 − 4n2)
cos

(
2nπt

T

)

9. Half-Wave Rectified
Sinusoid

f(t)

t
−T/2 0 TT/2 3T/2

A
f (t) = A

π
+ A

2
sin

(
2πt

T

)
+

∞∑
n=2

n=even

2A

π(1 − n2)
cos

(
2nπt

T

)

Example 13-3: M-Periodic Waveform

Evaluate the Fourier coefficients of the M-periodic waveform
shown in Fig. 13-6(a),

Solution: The M waveform is even-symmetrical, its period
is T = 4 s, ω0 = 2π/T = π/2 rad/s, and its functional form
over the positive half period is:

f (t) =
{

1
2 (1 + t) 0 ≤ t ≤ 1 s,

0 1 ≤ t ≤ 2 s.
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(a) M waveform

f(t)

t
−1−2−3−4−5 10

0
3 4 5

1

2

0.5

(b) Amplitude spectrum

(c) Phase spectrum

ω
ω0 2ω0 3ω0 4ω0 5ω0

ω0 2ω0 3ω0 4ω0 5ω0

0.2

0.43

0.375

0.1

0.23

0.12

0

0

0.5
0.4

0.3

0.1

An

A1

A2
A3 A4 = 0 A5

a0

ω

ϕn

ϕ2

ϕ1 = 0 ϕ4 = 0 ϕ5 = 0

ϕ3

180o 180o 180o

(d) nmax = 5

(f) nmax = 1000

Gibbs
phenomenon

Phase

Amplitude

1000
terms

10 terms

5 terms

(e) nmax = 10

−0.2

0.5

1

0

−0.2
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.5

1

0

0.5

1

0
−0.2

Figure 13-6: Plots for Example 13-3.

Application of Eq. (13.31) yields:

a0 = 2

T

T/2∫
0

f (t) dt = 2

4

1∫
0

1

2
(1 + t) dt = 0.375,

an = 4

T

T/2∫
0

f (t) cos nω0t dt

= 4

4

1∫
0

1

2
(1 + t) cos nω0t dt

= 2

nπ
sin

nπ

2
+ 2

n2π2

(
cos

nπ

2
− 1

)
,

and

bn = 0.
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Since bn = 0, we have for n �= 0

An = |an| and φn =
{

0 if an > 0,

180◦ if an < 0.

Figures 13-6(b) and (c) display the amplitude and phase line
spectra of the M-periodic waveform, and parts (d) through (f)
display the waveforms based on the first five terms, the first ten
terms, and the first 1000 terms of the Fourier series, respectively.

� As expected, the addition of more terms in the Fourier
series improves the overall fidelity of the reproduced
waveform. However, no matter how many terms are
included in the series representation, the reproduction
cannot duplicate the original M-waveform at points of
discontinuity, such as when the waveform jumps from
zero to 1. Discontinuities generate oscillations. �

Increasing the number of terms (adding more harmonics)
reduces the period of the oscillation. Ultimately, the oscillations
fuse into a solid line, except at the discontinuities (see expanded
view of the discontinuity at t = −3 s in Fig. 13-6(f)).

� As n approaches ∞, the Fourier series representation
will reproduce the original waveform with perfect fidelity
at all nondiscontinuous points, but at a point where the
waveform jumps discontinuously between two different
levels, the Fourier series will converge to a level half-way
between them. �

At t = 1 s, 3 s, 5 s, . . . , the Fourier series will converge
to 0.5. This oscillatory behavior of the Fourier series in the
neighborhood of discontinuous points is called the Gibbs
phenomenon.

Example 13-4: Waveform Synthesis

Given that waveform f1(t) in Fig. 13-7(a) is represented by the
Fourier series

f1(t) =
∞∑

n=1

4A

nπ
sin
(nπ

2

)
cos

(
2nπt

T

)
,

(a) f1(t)

f1(t)

t

−A

A

0
−T/2 T/2

(c) f3(t)

f3(t)

t

−A

A

0
−T/2 T/2

(b) f2(t)

f2(t)

t

B

0
−T/2 T/2

Figure 13-7: Waveforms for Example 13-4.

generate the Fourier series corresponding to the waveforms
displayed in Figs. 13-7(b) and (c).

Solution:

(1) Waveform f2(t)

Waveforms f1(t) and f2(t) are similar in shape and have the
same period, but they also exhibit two differences: (1) the dc
value of f1(t) is zero because it has dc symmetry, whereas the
dc value of f2(t) is B/2, and (2) the peak-to-peak value of f1(t)

is 2A, compared with only B for f2(t). Mathematically, f2(t)

is related to f1(t) by

f2(t) = B

2
+
(

B

2A

)
f1(t)

= B

2
+

∞∑
n=1

2B

nπ
sin
(nπ

2

)
cos

(
2nπt

T

)
.
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Technology Brief 30
Bandwidth, Data Rate, and
Communication
In Section 9-4.1, we defined the bandwidth B of a
resonant circuit as the frequency span over which power
transfer through the circuit is greater than half of the
maximum level possible. This common half-power (or
−3 dB) definition for B can be extended to many devices,
circuits, and transmission channels. But how does the
everyday use of the word bandwidth refer to the data
rate of a transmission channel, such as the rate at which
your internet connection can download data?

Signal and Noise in Communication Channels

Every circuit (including switches, amplifiers, filters, phase
shifters, rectifiers, etc.) and every transmission medium
(air, wires, and optical fibers) operates with acceptable
performance over some specific range of frequencies,
outside of which ac signals are severely damped. The
actual span of this operational frequency range is
dictated by the physical characteristics of the circuit or
transmission medium. One such example is the coaxial
cable commonly used to connect a TV to a “cable
network” or to an outside antenna. The coaxial cable is
a high-fidelity transmission medium—causing negligible
distortion or attenuation of the signal passing through
it—so long as the carrier frequency of the signal is not
much higher than about 10 GHz. The “cutoff” frequency
of a typical coaxial cable is determined by the cable’s
distributed capacitance, inductance, and resistance,
which are governed in turn by the geometry of the cable,
the conductivity of its inner and outer conductors, and the
permittivity of the insulator that separates them.

The MOSFET offers another example; in Section 5-7
we noted that the switching speed of a MOSFET circuit

(a) Input

Peak-to-peak
signal amplitude

υin(t)

t

(b) Output

Circuit

Noise amplitude

υout(t)

t

Figure TF30-1: The noise generated by the circuit adds a fluctuating component to the input signal.

is limited by parasitic capacitances, setting an upper limit
on the switching frequency that a given MOSFET circuit
can handle. A circuit with a maximum switching speed
of 100 ps, for example, cannot respond to frequencies
greater than 1/100 ps (or 10 GHz) without distorting the
output waveform in some significant way. Our third exam-
ple is Earth’s atmosphere. According to Fig. TF20-1 (in
Technology Brief 20:The Electromagnetic Spectrum), the
transmission spectrum for the atmosphere is character-
ized by a limited set of transmission windows, with each
window extending over a specific range of frequencies.

The overall effective bandwidth B of a communication
system is determined by the operational bandwidths of
its constituent circuits and the transmission spectra of the
cables or other transmission media it uses. As we will see
shortly, the channel capacity (or data rate) of the system
is directly proportional to B, but it also is influenced by
the intensity and character of the noise in the system.
Noise is random power self-generated by all real devices,
circuits, and transmission media. In fact, any material
at a temperature greater than 0 K (which includes all
physical materials, since no material can exist at exactly
0 K) emits noise power all of the time. Figure TF30-1
illustrates how the noise generated by a circuit modifies
the waveform of the signal passing through it. The input
is an ideal sine wave, whereas the output consists of the
same sine wave but with a fluctuating component added
to it. The fluctuating component represents the noise
generated by the circuit, which is random in polarity
because the voltage associated with the noise fluctuates
randomly between positive and negative values.

If we know both the power PS carried by the signal and
the average power PN associated with the noise, we then
can determine the signal-to-noise ratio (SNR):

SNR = PS

PN
.
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Table TT30-1: Theoretical limits for data transmission capacity given typical SNR and channel bandwidth number
for several common digital communication layers.

Physical Channel Channel Capacity 
(C) 

Typical SNR 
(PS/PN) 

Bandwidth of 
Channel (B) 

Analog phone line ~30 kbps 103 3000 Hz 
802.11g Wifi <60 Mbps <10 20  MHz 

100-BaseT
Ethernet 100 Mbps 103 100 MHz 

10 Gb/s Ethernet 10 Gbps 102 1600 MHz

P (W)

f (Hz)

Passband
Noise

PS

PN

f2f1

B

FigureTF30-2: Typical spectral response of a communi-
cation system with bandwidth B.The signal-to-noise ratio is
given by PS/PN, where PS and PN are the average power
levels of the signal and noise, respectively.

The bandwidth B and the SNR (Fig. TF30-2), jointly
determine the highest data rate that can be transmitted
reliably through a circuit or a communication system.

Shannon-Hartley Theorem

In the late 1940s and early 1950s, Claude Shannon,
building on earlier work by Harry Nyquist and Ralph
Hartley, developed a complete theory that established
the limits of information transfer in a communication
system. This seminal work represents the foundation of
information theory and underlies all of the subsequent
developments that shaped today’s information revolu-
tion, including the Internet, cell phones, satellite com-
munications, and much more. Shannon’s foundational
work also has impacted the development of many related
disciplines, including encryption, encoding, jamming,
efficient use of frequency space, and even quantum-level
information manipulations.

The Shannon-Hartley theorem defines how much
data can be transferred through a channel (with no error)

in terms of the bandwidth B and the SNR. It states that

C = B log2

(
1 + PS

PN

)
,

where C is the channel capacity (or data rate) in bits/
second (bps), B is the bandwidth in Hz, and PS/PN is the
SNR. As an example, let us consider a communication
channel with B = 100 MHz, PS = 1 mW, and PN = 1 μW.
The corresponding SNR is 1000, and the corresponding
value of C is 996 × 106 bits/s or ∼ 996 Mb/s. By way
of comparison, a 100GbE Ethernet connection can
operate at 100 Gbps (or approximately two orders of
magnitude faster), a 100 Base-T Ethernet connection
can manage a maximum rate of only 100 Mbps, 802.11
Wifi networks are rated at 54 Mbps, and the Bluetooth
2.0 protocol used by many portable devices is limited
to 2.1 Mbps. The channel capacity of a conventional
telephone used to support audio transmissions is only
∼33 kbps.Table TT30-1 provides some theoretical limits
for data transmission capacity given typical SNR and
channel bandwidth number for several common digital
communication layers. We should note that when people
use the term “bandwidth” in everyday speech, they really
mean channel capacity; B and C are directly proportional
to one another, but they obviously are not the same
quantity.

According to the expression for C, for a sufficiently high
bandwidth, it is possible to achieve reasonably high data-
transfer rates even when SNR < 1 ! The implication of this
statement is that information can be transmitted reliably
on channels whose noise levels exceed that of the signal,
provided the signal is spread across a wide frequency
spectrum. For example, with a bandwidth of 1 GHz, it is
possible to transfer error-free data at a rate of 95 Mbps,
even when SNR is only 0.1 (that is, with the signal power
an order of magnitude smaller than the noise power).This
is (in part) the basis for ultra-wideband communication
schemes used in cell phones and GPS.
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(2) Waveform f3(t)

Comparison of waveform f1(t) with waveform f3(t) reveals
that the latter is shifted by T/4 along the t axis relative to f1(t).
That is,

f3(t) = f1

(
t − T

4

)
=

∞∑
n=1

4A

nπ
sin
(nπ

2

)
cos

[
2nπ

T

(
t − T

4

)]
.

Examination of the first few terms of f3(t) demonstrates that
f3(t) can be rewritten in the simpler form

f3(t) =
∞∑

n=1
n=odd

4A

nπ
sin

(
2nπt

T

)
.

Concept Question 13-6: What purpose is served by the
symmetry properties of a periodic function?  (See         )

Concept Question 13-7: What distinguishes the phase 
angles φn of an even-symmetrical function from those of 
an odd-symmetrical function? (See         )

Concept Question 13-8:What is the Gibbs phenomenon?
(See         )

Exercise 13-3: (a) Does the waveform f (t) shown in
Fig. E13.3 exhibit either even or odd symmetry? (b) What
is the value of a0? (c) Does the function g(t) = f (t)−a0
exhibit either even or odd symmetry?

f(t)

t (s)
−3−4 1

0
0 4 5 6

3

1

−1

2

−1−2 32

Figure E13.3

Answer: (a) Neither even nor odd symmetry, (b) a0 = 1,
(c) odd symmetry. (See             )

13-3 Circuit Applications
Given the tools we developed in the preceding section for how to
express a periodic function in terms of a Fourier series, we now
examine how to analyze linear circuits when excited by periodic

voltage or current sources. The method of solution relies on the
application of the phasor-domain technique that we introduced
in Chapter 7 for analyzing circuits with sinusoidal signals. A
periodic function can be expressed as the sum of cosine and sine
functions with coefficients an and bn, and zero phase angles,
or as the sum of only cosine functions with amplitudes An

and phase angles φn. The latter form is amenable to direct
application of the phasor-domain technique, whereas the former
will require converting all sin nω0t terms into cos(nω0t − 90◦)
before implementation of the phasor-domain technique.

Even though the basic solution procedure was outlined earlier
in Section 13-1, it is worth repeating it in a form that incorpo-
rates the concepts and terminology introduced in Section 13-2.
To that end, we shall use υs(t) (or is(t) if it is a current source)
to denote the input excitation and υout(t) (or iout(t)) to denote
the output response for which we seek a solution.

Solution Procedure:
Fourier Series Analysis Procedure

Step 1: Use the expression for υs(t) over one cycle
to compute the Fourier coefficients a0, an, and bn

(Eq. (13.17)).

Step 2: Express υs(t) in terms of an amplitude/phase
Fourier series as

υs(t) = a0 +
∞∑

n=1

An cos(nω0t + φn) (13.33)

with An φn = an − jbn.

Step 3: Establish the generic transfer function of the
circuit at frequency ω as

H(ω) = Vout when υs = 1 cos ωt. (13.34)

Step 4: Write down the time-domain solution as

υout(t) = a0 H(ω = 0)

+
∞∑

n=1

AnRe{H(ω = nω0) ej (nω0t+φn)}.
(13.35)

For each value of n, coefficient Ane
jφn is associated with

frequency harmonic nω0. Hence, in Step 4, each harmonic
amplitude is multiplied by its corresponding ejnω0t before
application of the Re{ } operator.
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Example 13-5: RC Circuit

Determine υout(t) when the circuit in Fig. 13-8(a) is excited
by the voltage waveform shown in Fig. 13-8(b). The element
values are R = 20 k� and C = 0.1 mF.

Solution:

Step 1: The period of υs(t) is 4 s. Hence, ω0 = 2π/4 = π/2
rad/s, and by Eq. (13.17),

a0 = 1

T

T∫
0

f (t) dt = 1

4

1∫
0

10 dt = 2.5 V,

(b) Source waveform

(a) RC circuit

Input

Output

C

R

+

_

+
_υs(t) υout(t)

(c) υout(t)

t (s)
−1−2−3−4 10

0
3 4 5

10 V

2

υs(t)

−2−3 −1−4 0
t (s)

42 3 5

5 V

1 V

1

υout(t)

Figure 13-8: Circuit response to periodic pulses (Example
13-5).

an = 2

4

1∫
0

10 cos
nπ

2
t dt = 10

nπ
sin

nπ

2
V,

bn = 2

4

1∫
0

10 sin
nπ

2
t dt = 10

nπ

(
1 − cos

nπ

2

)
V.

Step 2: For n ≥ 1,

An φn = an − jbn = 10

nπ

[
sin

nπ

2
− j

(
1 − cos

nπ

2

)]
.

The values of An φn for the first four terms are

A1 φ1 = 10
√

2

π
−45◦,

A2 φ2 = 10

π
−90◦,

A3 φ3 = 10
√

2

3π
−135◦,

and

A4 φ4 = 0.

Step 3: With RC = 2 × 104 × 10−4 = 2 s, the generic phasor-
domain transfer function of the circuit is

H(ω) = Vout (with Vs = 1)

= 1

1 + jωRC

= 1√
1 + ω2R2C2

e−j tan−1(ωRC)

= 1√
1 + 4ω2

e−j tan−1(2ω). (13.36)

Step 4: The time-domain output voltage is

υout(t) =

2.5 +
∞∑

n=1

Re

⎧⎨
⎩An

1√
1 + 4n2ω2

0

ej [nω0t+φn−tan−1(2nω0)]
⎫⎬
⎭ .

(13.37)
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Using the values of An φn determined earlier for the first four
terms and replacing ω0 with its numerical value of π/2 rad/s,
the expression becomes

υout(t) = 2.5

+ 10
√

2

π
√

1 + π2
cos

[
πt

2
− 45◦ − tan−1(π)

]

+ 10

π
√

1 + 4π2
cos[πt − 90◦ − tan−1(2π)]

+ 10
√

2

3π
√

1 + 9π2
cos

[
3πt

2
− 135◦ − tan−1(3π)

]
· · ·

= 2.5 + 1.37 cos

(
πt

2
− 117◦

)
+ 0.5 cos(πt − 171◦)

+ 0.16 cos

(
3πt

2
+ 141◦

)
· · · V.

The voltage response υout(t) is displayed in Fig. 13-8(c) and
is computed using the series solution given by the preceding
expression with nmax = 1000.

Example 13-6: Three-Stage Phase Shifter

In Chapter 7, we showed that the phasor-domain transfer
function of the three-stage phase shifter shown in Fig. 13-9(a)
is given by Eq. (7.99) as

H(ω) = Vout

Vs
= x3

(x3 − 5x) + j (1 − 6x2)
,

where x = ωRC. Determine the output response to the periodic
waveform shown in Fig. 13-9(b) given that RC = 1 s.

Solution:

Step 1: With T = 1 s, ω0 = 2π/T = 2π rad/s, and υs(t) = t

over [0, 1],

a0 = 1

T

T∫
0

υs(t) dt =
1∫

0

t dt = 0.5,

an = 2

1

1∫
0

t cos 2nπt dt

= 2

[
1

(2nπ)2 cos 2nπt + t

2nπ
sin 2nπt

]∣∣∣∣
1

0
= 0,

(b) Source waveform

(a) RC circuit

(c) υout(t)

+
_υs

υ1 υ2 υ3

υoutRRR

C C C

Stage 1 Stage 2 Stage 3

+

_

t (s)
−1 1

1

2

υs(t)

0
0

Input

t (s)

−0.5

0.5

−1

−1 1 2

υout(t)

0

Output
Gibbs phenomenon
(ringing)

Figure 13-9: Circuit and plots for Example 13-6.

bn = 2

1

1∫
0

t sin 2nπt dt

= 2

[
1

(2nπ)2 sin 2nπt − t

2nπ
cos 2nπt

]∣∣∣∣
1

0

= − 1

nπ
.

Step 2: For n ≥ 1,

An φn = 0 − jbn = 0 + j
1

nπ
= 1

nπ
90◦ V.

Step 3: With RC = 1 and x = ωRC = ω, H(ω) becomes

H(ω) = ω3

(ω3 − 5ω) + j (1 − 6ω2)
.
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Step 4: With ω0 = 2π rad/s, H(ω = 0) = 0, and
An = (1/nπ)ej90◦

, the time-domain voltage is obtained by
multiplying each term in the summation by its corresponding
ejnω0t = ej2nπt , and then taking the real part of the entire
expression:

υout(t) =
∞∑

n=1

Re

{
8n2π2

[(2nπ)((2nπ)2 − 5) + j (1 − 24n2π2)] ej (2nπt+90◦)
}
.

Evaluating the first few terms of υout(t) leads to

υout(t) = 0.25 cos(2πt + 137◦) + 0.15 cos(4πt + 116◦)
+ 0.10 cos(6πt + 108◦) + · · · .

A plot of υout(t) with 100 terms is displayed in Fig. 13-9(c).

Concept Question 13-9:What is the connection between 
the Fourier series solution method and the phasor-domain 
solution technique? (See         )

Concept Question 13-10: Application of the Fourier 
series method in circuit analysis relies on which 
fundamental property of the circuit? (See         )

Exercise 13-4: The RL circuit shown in Fig. E13.4(a)
is excited by the square-wave voltage waveform of
Fig. E13.4(b). Determine υout(t).

Figure E13.4

+

_

+
_ υout(t)υs(t)

R

L

(b)

(a)

t (s)0
0

1

3

υs (V)

1
−1

−1
2

Answer:

υout(t) =
∞∑

n=1
n=odd

4L√
R2 + n2π2L2

cos(nπt + θn);

θn = − tan−1
(

nπL

R

)
.

(See             )

13-4 Average Power

If a circuit is excited by a periodic voltage or current of period T

and associated fundamental angular frequency ω0 = 2π/T ,
then every segment of the circuit will exhibit a voltage across
it (Fig. 13-10) characterized by a Fourier series of the form

υ(t) = Vdc +
∞∑

n=1

Vn cos(nω0t + φυn), (13.38)

where Vdc is the average value of υ(t), Vn is the amplitude of the
nth harmonic, and φυn is the associated phase angle. Similarly,
the current flowing into the circuit segment is also given by a
Fourier series as

i(t) = Idc +
∞∑

m=1

Im cos(mω0t + φim), (13.39)

where similar definitions apply to Idc, Im, and φim . In
Eq. (13.39) we used the integer index m instead of n in order
to keep the two summations distinguishable from one another.

By denoting the current direction such that it is flowing
into the (+) voltage terminal (Fig. 13-10), the passive sign

i(t)

υ(t)
Input circuit
with periodic

excitation

Circuit
segment

Figure 13-10:Voltage across and current into a circuit segment.
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convention stipulates that the product υi represents power flow
into the circuit segment. Hence, the average power is given by

Pav = 1

T

T∫
0

υi dt = 1

T

T∫
0

VdcIdc dt

+
∞∑

n=1

1

T

T∫
0

VnIdc cos(nω0t + φυn) dt

+
∞∑

m=1

1

T

T∫
0

VdcIm cos(mω0t + φim) dt

+
∞∑

m=1

∞∑
n=1

1

T

T∫
0

VnIm cos(nω0t + φυn)

· cos(mω0t + φim) dt. (13.40)

From Table 13-1, integral Property 2 states that

T∫
0

cos(nω0t + φ0) dt = 0 (13.41)

for any integer n ≥ 1 and any constant phase angle φ0.
Consequently, terms 2 and 3 in Eq. (13.40) vanish. Moreover,
the product of the two cosine functions inside the last term is
expandable into

cos(nω0t + φυn) cos(mω0t + φim)

= 1

2
cos(sum of arguments)

+ 1

2
cos(difference between arguments)

= 1

2
cos[(n + m)ω0t + φυn + φim ]

+ 1

2
cos[(n − m)ω0t + φυn − φim ]. (13.42)

Performing the integration over the two terms of Eq. (13.42)
yields zero values, except when n = m. Implementing these
considerations in Eq. (13.40) leads to

Pav = VdcIdc + 1

2

∞∑
n=1

VnIn cos(φυn − φin). (13.43)

We note that 1
2 VnIn cos(φυn−φin) represents the average power

associated with frequency harmonic nω0. Hence:

� The total average power is equal to the dc power
(VdcIdc) plus the sum of the average ac powers associated
with the fundamental frequency ω0 and its harmonic
multiples. �

Example 13-7: ac Power Fraction

The periodic voltage across a certain circuit truncated to the
first three ac terms of its Fourier series is given by

υ(t) = 2 + 3 cos(4t + 30◦) + 1.5 cos(8t − 30◦)
+ 0.5 cos(12t − 135◦) V,

and the associated current flowing into the (+) voltage terminal
of the circuit is

i(t) = 60 + 10 cos(4t − 30◦)
+ 5 cos(8t + 15◦) + 2 cos 12t mA.

Determine the ac fraction of the average power.

Solution: Application of Eq. (13.43) yields

Pav = 2 × 60 + 3 × 10

2
cos(30◦ + 30◦)

+ 1.5 × 5

2
cos(−30◦ − 15◦) + 0.5 × 2

2
cos(−135◦)

= 120 + 7.5 + 2.65 − 0.353 = 129.80 W.

The ac fraction is

7.5 + 2.65 − 0.353

129.8
= 7.55%.

Exercise 13-5: What will the expression given by
Eq. (13.43) simplify to if the associated circuit segment
is (a) purely resistive or (b) purely reactive?

Answer: (a) Pav = VdcIdc + 1
2

∑∞
n 1 VnIn; because

φυ = φi ,  (b) Pav = 0, because for a
=
capacitor, Idc = 0 

and
n 
φυn −

n 
φin = −90◦; and for an inductor, Vdc = 0 and 

φυn − φin = 90◦. (See )
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Technology Brief 31
Synthetic Biology

Whether amplifying, sensing, computing, or commu-
nicating, all of the circuits discussed in this book
manipulate electric charge to process information.
Voltage levels and current intensities all represent the
collective properties of charges inside metals, insulators
and semiconductors. The processing of information,
however, can be accomplished in other media as
well. Mechanical circuits (like the Babbage Engine,
described in Technology Brief 1), optical circuits (where
computation is accomplished by manipulating light),
and chemical circuits (where the operators are the
reactants and products of chemical reactions) all have
been demonstrated or in use for many years. Recently,
engineers have begun to make synthetic information
processing circuits inside biological cells.This new branch
of engineering grew out of biochemical engineering and

(a) (b)

(c)

Figure TF31-1: Building functions with genes and proteins. (a) Consider a protein (red circle) which can bind to a certain,
specific section of DNA within a cell. Upon binding to this sequence (shown in red), the production of another protein (Protein 2,
in yellow) is affected; the gene which encodes for Protein 2 is shown as yellow base pairs in the DNA. In this example, increasing
the amount of Protein 1 increases the production (and thus the amount) of Protein 2 in the cell. This motif is encountered often
in cells. Cells ranging from bacteria to mammals contain relationships like these between proteins and genes. (b) The example
on the left shows a simplified representation of (a) along with a plot showing how the amount of Protein 1 affects the amount of
Protein 2 in the cell. The example on the right shows a similar cartoon, except in this case Protein 1 inhibits the production of
Protein 2 (more Protein 1 in the cell causes less Protein 2). Notice how this right example behaves as a rudimentary protein-
protein inverter. (c) An example of a synthetic gene circuit in which three of the inverters in (b) are linked so that a protein
produced by one gene inhibits the production of the next gene. This produces a chemical oscillator known as a repressilator.

is called synthetic biology. It promises to revolutionize
the way we interact with biological systems.

In order to understand why synthetic biology is so
powerful, and why it is so closely related to electrical
engineering, we need to understand how biological cells
process information. A cell, whether a free swimming
bacterium or a human liver cell, is constantly transducing,
storing and processing information from its environment.
Cells produce molecules called proteins, each of which
can perform a specific function on a specific molecule.
They can be thought of as little molecular robots. For
example, certain proteins on a cell’s membrane act as
sensors, detecting the presence of molecules in the liquid
around the cell. These surface proteins can change the
state of other proteins inside the cell, which in turn affect
other proteins, and so on. These chains of chemical
reactions are called biochemical pathways, and in this
way the cell can adjust what molecules it produces based
on what molecules are in its environment. If, say, the
environment contains glucose, the cell’s sensors can
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Figure TF31-2: By introducing new genes into E. coli, the
bacteria were made sensitive to light. In this example, by a
team from the University of Texas at Austin and the University
of California, San Francisco, a thin film of bacteria was grown in
a Petri dish and exposed to patterns of light with the message
“Hello World.” Each bacterium in the film responded by changing
color depending on the light level it was exposed to.

detect this and begin producing proteins that enable the
cell to use glucose as fuel.

A key component of this regulation process depends
on the genes the cell possesses. Although a discussion
of genes is well beyond the scope of this book, for our
purposes a cell contains a set of molecules called genes,
which store descriptions of all the proteins it can make; a
given gene will usually encode a single type of protein.
In many ways, you can think of the genes as the cell’s
software.When we say a cell expresses a gene, we mean
it has used the information in that gene to make the gene’s
protein. What is important here is that the biochemical
pathways determine which genes are expressed. Thus,
the surface proteins that detect glucose, for example,
cause the cell to express the genes that encode the
proteins that consume glucose. A single cell can make
thousands of different proteins, which can interact with
each other as well as with the cell’s genes.

With the advent of modern molecular biology, our
knowledge of the cell’s pathways has expanded dramat-
ically. In the latter half of the 20th century, biochemical
engineers put this information to work by growing cells
from many different species and modifying them to
perform many useful functions. Waste water treatment,

Figure TF31-3: Researchers at the University of California,
Berkeley, and the University of California, San Francisco have
devised synthetic pathways that may one day allow engineered
bacteria to invade and kill tumors. (top) Modified E. coli
bacteria at normal cell densities or oxygen conditions behave
normally. (middle) Upon encountering low oxygen environments
(associated with tumors) or high cell densities, the modified
bacteria express invasin, a molecule that adheres to tumor cells
and tricks the cells into absorbing the bacteria. (bottom) Once
inside the tumor, the bacteria begin to invade and destroy it.

drug production, food additive production, and many other
useful chemical processes are now carried out using cells.

Even more recently, synthetic biologists have begun
to build information processing circuits into cells
(Fig. TF31-1). These engineers hope to design com-
ponents and circuits that perform many of the same
functions you have studied in this book, using the cell’s
biochemical pathways! Amplification, logical functions,
clocks, memory, multi-channel communication, sensing,
and even rudimentary “software” programs are all being
developed using cells, proteins, and genes instead of
circuit boards and solid-state materials. If these efforts
succeed, our ability to interact and guide the behavior
of existing cells and to build entirely new types of cells
with human-made programs will have a profound impact
on the world of science and technology (Fig. TF31-2 and
Fig. TF31-3). Along with these challenges comes a great
responsibility to understand how our inventions can affect
the natural world. What is very exciting is that synthetic
biologists are realizing that many of the concepts
electrical engineers developed for their electric circuits—
noise, bandwidth, linear analysis, circuit diagrams, etc.—
are proving useful for designing biological circuits!
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13-5 Fourier Transform

The Fourier series is a perfectly suitable construct for
representing periodic functions, but what about nonperiodic
functions? The pulse-train waveform shown in Fig. 13-11(a)
consists of a sequence of rectangular pulses—with a width of
τ = 2 s. The period T = 4 s. In part (b) of the same figure,
the individual pulses have the same shape as before, but T has
been increased to 7 s. So long as T is finite, both waveforms
are amenable to representation by the Fourier series, but what
would happen if we let T → ∞, ending up with the single pulse
shown in Fig. 13-11(c)? Can we then represent the no-longer
periodic pulse by a Fourier series? We will discover shortly that
as T → ∞, the summation

∑∞
n=1 in the Fourier series evolves

into a continuous integral, which we call the Fourier transform.

� When analyzing electric circuits, we apply the Fourier
series representation if the excitation is periodic in
character, and we use the Fourier transform representation
if the excitation is nonperiodic. �

Does that mean that we can use both the Laplace transform
(Chapter 12) and the Fourier transform techniques to analyze
circuits containing nonperiodic sources? If so, which of the
two transforms should we use, and why? We address these
questions later (Section 13-7), after formally introducing the
Fourier transform and discussing some of its salient features.

13-5.1 Exponential Fourier Series

According to Eq. (13.15), a periodic function of period T

and corresponding fundamental frequency ω0 = 2π/T can be
represented by the series

f (t) = a0 +
∞∑

n=1

an cos nω0t + bn sin nω0t. (13.44)

Sine and cosine functions can be converted into complex
exponentials via Euler’s identity:

cos nω0t = 1

2
(ejnω0t + e−jnω0t ), (13.45a)

sin nω0t = 1

j2
(ejnω0t − e−jnω0t ). (13.45b)

(a) τ = 2 s,  T = 4 s

(b) τ = 2 s,  T = 7 s

A

t (s)
−2−4−6−8 4 6 820

τ T

A

t (s)
−2−4−6−8 4 6 820

τ T

A

t (s)
−1 10

τ
(c) τ = 2 s,  T 8

+ 8− 8

Figure 13-11: The single pulse in (c) is equivalent to a periodic
pulse train with T = ∞.

Upon inserting Eqs. (13.45a and b) into Eq. (13.44), we have

f (t) =

a0 +
∞∑

n=1

[
an

2
(ejnω0t + e−jnω0t ) + bn

j2
(ejnω0t − e−jnω0t )

]

= a0 +
∞∑

n=1

[(
an − jbn

2

)
ejnω0t +

(
an + jbn

2

)
e−jnω0t

]

= a0 +
∞∑

n=1

[cne
jnω0t + c−ne

−jnω0t ], (13.46)
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Table 13-3: Fourier series representations for a periodic function f (t).

Cosine/Sine Amplitude/Phase Complex Exponential

f (t) = a0 +
∞∑

n=1

(an cos nω0t + bn sin nω0t) f (t) = a0 +
∞∑

n=1

An cos(nω0t + φn) f (t) =
∞∑

n=−∞
cnejnω0t

a0 = 1

T

T∫
0

f (t) dt Anejφn = an − jbn cn = |cn|ejφn ; c−n = c∗
n

an = 2

T

T∫
0

f (t) cos nω0t dt An =
√

a2
n + b2

n |cn| = An/2; c0 = a0

bn = 2

T

T∫
0

f (t) sin nω0t dt φn =

⎧⎪⎪⎨
⎪⎪⎩

− tan−1
(

bn

an

)
, an > 0

π − tan−1
(

bn

an

)
, an < 0

cn = 1

T

T∫
0

f (t) e−jnω0t dt

a0 = c0; an = An cos φn; bn = −An sin φn; cn = 1
2 (an − jbn)

where we introduced the complex coefficients

cn = an − jbn

2

and

c−n = an + jbn

2
= c∗

n.

(13.47)

As the index n is incremented from 1 to ∞, the second term in
Eq. (13.46) generates the series

c−1e
−jω0t + c−2e

−j2ω0t + · · · ,

which also can be generated by cne
jnω0t with n incremented

from −1 to −∞. This equivalence allows us to express f (t) in
the compact exponential form as

f (t) =
∞∑

n=−∞
cne

jnω0t ,

(exponential representation)

(13.48)

where

c0 = a0, (13.49)

and the range of n has been expanded to [−∞, ∞]. For all
coefficients cn including c0, it is easy to show that

cn = 1

T

T/2∫
−T/2

f (t) e−jnω0t dt. (13.50)

� Even though the integration limits indicated in
Eq. (13.50) are from −T/2 to T/2, they can be chosen
arbitrarily so long as the upper limit exceeds the lower
limit by exactly T . �

For easy reference, Table 13-3 provides a summary of
the relationships associated with all three Fourier series
representations introduced in this chapter, namely the cosine/
sine, amplitude/phase, and complex exponential.

Example 13-8: Pulse Train

Obtain the Fourier series exponential representation for the
pulse-train waveform displayed in Fig. 13-11(a) in terms of
the pulse width τ and the period T . Evaluate and plot the
line spectrum of |cn| for A = 10 and τ = 1 s for each of the
following values of T : 5 s, 10 s, and 20 s.
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Solution: Over a period T extending from −T/2 to T/2,

f (t) =
{

A for − τ/2 ≤ t ≤ τ/2,

0 otherwise.

With the integration domain chosen to be from −T/2 to T/2,
Eq. (13.50) gives

cn = 1

T

T/2∫
−T/2

f (t) e−jnω0t dt

= 1

T

τ/2∫
−τ/2

Ae−jnω0t dt

= A

−jnω0T
e−jnω0t

∣∣∣∣
τ/2

−τ/2

= 2A

nω0T

[
ejnω0τ/2 − e−jnω0τ/2

2j

]
. (13.51)

The quantity inside the square bracket matches the form of one
of Euler’s formulas, namely

sin x = ejx − e−jx

2j
. (13.52)

Hence, Eq. (13.51) can be rewritten in the form

cn = 2A

nω0T
sin(nω0τ/2)

= Aτ

T

sin(nω0τ/2)

(nω0τ/2)
= Aτ

T
sinc(nω0τ/2), (13.53)

where in the last step we introduced the sinc function, which
is defined as*

sinc(x) = sin x

x
. (13.54)

Among the important properties of the sinc function are the
following:

(a) When its argument is zero, the sinc function is equal to 1,

sinc(0) = sin(x)

x

∣∣∣∣
x=0

= 1. (13.55)

Verification of this property can be established by applying
l’Hôpital’s rule to Eq. (13.54) and then setting x = 0.

*An alternative definition for the sinc function is sinc(x) = sin(πx)/(πx),
and it is used in MATLAB and MathScript. Both definitions are used in the
literature, and in this book we adhere to the one given by Eq. (13.54).

(b) Since sin(mπ) = 0 for any integer value of m, the same is
true for the sinc function,

sinc(mπ) = 0, m �= 0. (13.56)

(c) Because both sin x and x are odd functions, their ratio is
an even function. Hence, the sinc function possesses even
symmetry relative to the vertical axis. Consequently,

cn = c−n. (13.57)

Evaluation of Eq. (13.53) with A = 10 leads to the line spectra
displayed in Fig. 13-12. The general shape of the envelope
is dictated by the sinc function, exhibiting a symmetrical
pattern with a peak at n = 0, a major lobe extending between
n = −T/τ and n = T/τ , and progressively smaller amplitude
lobes on both sides. The density of spectral lines depends on
the ratio of T/τ , so in the limit as T → ∞, the line spectrum
becomes a continuum.

13-5.2 Nonperiodic Waveforms

In Example 13-8, we noted that as the period T → ∞ the
periodic function becomes nonperiodic and the associated line
spectrum evolves from one containing discrete lines into a
continuum. We now explore this evolution in mathematical
terms, culminating in a definition for the Fourier transform of
a nonperiodic function. To that end, we begin with the pair of
expressions given by Eqs. (13.48) and (13.50), namely

f (t) =
∞∑

n=−∞
cne

jnω0t (13.58a)

and

cn = 1

T

T/2∫
−T/2

f (t) e−jnω0t dt. (13.58b)

These two quantities form a complementary pair with f (t)

defined in the continuous time domain and cn defined in the
discrete frequency domain as nω0, with ω0 = 2π/T . For a
given value of T , the nth frequency harmonic is at nω0 and
the next harmonic after that is at (n+1)ω0. Hence, the spacing
between adjacent harmonics is

	ω = (n + 1)ω0 − nω0 = ω0 = 2π

T
. (13.59)



“book” — 2015/5/4 — 7:27 — page 700 — #27

700 CHAPTER 13 FOURIER ANALYSIS TECHNIQUE

−4 −2 0
0

1

2

1.5

0.5

2 4
nω0

|cn|Waveforms Magnitude spectra

T = 5 s

0

1

2

1.5

0.5

−4 −2 0 2 4
nω0

|cn|

T = 10 s

τ = 1 s

T = 10 s

0

1

2

1.5

0.5
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Figure 13-12: Line spectra for pulse trains with T/τ = 5, 10, and 20.

If we insert Eq. (13.58b) into Eq. (13.58a) and replace 1/T with
	ω/2π , we get

f (t) =
∞∑

n=−∞

⎡
⎢⎣ 1

2π

T/2∫
−T/2

f (t) e−jnω0t dt

⎤
⎥⎦ ejnω0t 	ω.

(13.60)

As T → ∞, 	ω → dω and nω0 → ω, and the sum becomes
a continuous integral:

f (t) = 1

2π

∞∫
−∞

⎡
⎣ ∞∫
−∞

f (t) e−jωt dt

⎤
⎦ ejωt dω. (13.61)
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Given this new arrangement, we now are ready to offer formal
definitions for the Fourier transform F(ω) and its inverse
transform f (t):

F(ω) = F [f (t)] =
∞∫

−∞
f (t) e−jωt dt (13.62a)

and

f (t) = F−1[F(ω)] = 1

2π

∞∫
−∞

F(ω) ejωt dω, (13.62b)

where F [f (t)] is a shorthand notation for “the Fourier
transform of f (t),” and similarly, F−1[F(ω)] represents the
inverse operation. Occasionally, we also may use the symbolic
form

f (t) F(ω).

Example 13-9: Rectangular Pulse

Determine the Fourier transform of the solitary rectangular
pulse shown in Fig. 13-13(a) and then plot its magnitude
spectrum |F(ω)| for A = 5 and τ = 1 s.

Solution: Application of Eq. (13.62a) with

f (t) = rect(t/τ ) = A

over the integration interval [−τ/2, τ/2] leads to

F(ω) =
τ/2∫

−τ/2

Ae−jωt dt = A

−jω
e−jωt

∣∣∣∣
τ/2

−τ/2

= Aτ
sin ωτ/2

(ωτ/2)
= Aτ sinc

(ωτ

2

)
.

(13.63)

The frequency spectrum of |F(ω)| is displayed in Fig. 13-13(b)
for the specified values of A = 5 and τ = 1 s. The nulls in the
spectrum occur when the argument of the sinc function is a
multiple of ±π (rad/s), which in this specific case correspond
to ω equal to multiples of 2π (rad/s).

(a) f(t)

(b) |F(ω)|

2nd null

|F(ω)|

ω
−6π −4π −2π 2π 4π 6π00

1

2

3

4

5

2nd null

1st null 1st null

τ τ τ τ τ τ

Aτ

t0

f(t)

A

−τ/2 τ/2

t
τA rect ( )

Spectrum 

Signal

Figure 13-13: (a) Rectangular pulse of amplitude A and
width τ ; (b) frequency spectrum of |F(ω)| for A = 5 and τ = 1 s.

Concept Question 13-11: For the cosine/sine and 
amplitude/phase Fourier series representations, the 
summation extends from n = 1 to n = ∞. What are the 
limits on the summation for the complex exponential 
representation? (See         )

Concept Question 13-12: What is a sinc function, and
what are its primary properties? Why is sinc(0) = 1?
(See         )

Concept Question 13-13: What is the functional form 
for the Fourier transform F(ω) of a rectangular pulse of 
amplitude 1 and duration τ ? (See         )

Exercise 13-6: For a single rectangular pulse of width τ ,
what is the spacing 	ω between first nulls? If τ is very
wide, will its frequency spectrum be narrow and peaked
or wide and gentle?

Answer: 	ω = 4π/τ . Wide τ leads to narrow spectrum. 
(See                  )



“book” — 2015/5/4 — 7:27 — page 702 — #29

702 TECHNOLOGY BRIEF 32: BRAIN-MACHINE INTERFACES (BMI)

Technology Brief 32
Brain-Machine Interfaces (BMI)

In most vertebrates (like you), nerves extend from the
brain (the central nervous system), through the spinal
cord and out to your many organs (the nerves that lie
outside the brain are collectively called the peripheral
nervous system). Peripheral nerves carry information
in both directions. On the one hand, peripheral neurons
can fire at the behest of neurons in the brain and
trigger muscle contraction or chemical release (via certain
glands); on the other hand, sensor cells in the periphery
can cause peripheral neurons to fire, sending signals
to the brain to indicate pain, temperature, pressure, etc.
Most of the peripheral neurons pass through the spinal
cord; injuries to the spinal cord can be very dangerous,
as trauma and inflammation can sever these connections,
leading to paralysis, lack of sensory function, etc.

Figure TF32-1: A variety of existing, functional prosthetics. (a) The “Luke arm” built by DEKA Corp.; (b) an exoskeleton built
at the Kazerooni Lab, University of California, Berkeley; (c) an EEG-controlled wheelchair, developed by José del R. Millán’s
group at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland).

There is, of course, a long history of medical and
scientific approaches to helping individuals afflicted
with motor dysfunctions (whether due to trauma or
congenital effects). Among these is the use of prosthetic
devices that can supplement or replace lost function:
prosthetic arms, prosthetic legs, advanced wheelchairs
and exoskeletons have all been developed to aid those
with motor problems (Fig. TF32-1). Historically, the way
to drive these prosthetics is either by making use of
motor functions that a patient still has (using hands
to drive a wheelchair or sucking on a straw to drive
a keyboard, for example) or reading signals from non-
damaged peripheral nerves (recording from a pectoral
muscle nerve, for example, to drive a robot elbow).

In the last decade or so, a slightly different paradigm has
arisen that—while still in its infancy—promises a radical
new way to communicate with prosthetics. The basic
idea is to directly record from neurons in the brain, use
those signals to drive a controller and communicate the
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FigureTF32-2: The basic BMI loop depends on (a) neural recording, (b) a computational device or controller that maps neural
signals to control signals to the prosthetics, and (c) feedback to the user or patient. Perhaps one day BMIs will even drive the
use of portable consumer devices!

control signals to a prosthetic (Fig. TF32-2). In a sense,
a computer—via a neural recording interface—records
signals directly from the brain and uses them, without
a spinal cord, to directly drive a robot prosthetic. This
arena is currently seeing something of a gold rush as
scientific results over the last 10 years and a medical trial
(BrainGate) have encouraged researchers to explore and
develop new technologies. Most central nervous system
recording for BMI applications involves implanting arrays
of recording electrodes (see Section 4-12) into the
motor cortex of the subject. This is a very dangerous
procedure (which involves a craniotomy), so research in
humans has been limited to individuals with severe dys-
functions for whom the risk is appropriate. Once inserted,
the subject trains over days and weeks to drive the pros-
thetic via the electrode array.Among the many remarkable
findings in the recent BMI literature is that the neurons into
which the recording array is inserted themselves learn
to modify their firing behavior as the subject learns to
use the BMI! That is, although scientists initially focused
on what control algorithm would best decode the neural
signals to drive say, a robot arm, they soon found—to their
surprise—that the brain itself would learn to use whatever
algorithm the controller employed. Researchers could
even change algorithms and the subject could relearn the
task, eventually able to switch between controllers.

Many challenges remain and it is an area of
heavy overlap between electrical engineering, computer
science, and neuroscience. Making electrode arrays
that last an appreciable fraction of a patient’s lifetime
is still an unsolved problem: recording arrays typically
fail after a few years. It is not at all clear what
signals are optimal to drive a prosthetic nor which
technology (or energy modality) is optimal for a long-
lasting implant; many approaches are currently being
explored. It is not known what the limits of such
control are: could a subject be trained to operate a
complex, multi-parameter non-motor task, for example
(like imagining speech or interfacing in complex ways
to a tablet)? Ultra-low power electrical recording front
ends and ultra-low power radios are another area of
intense study, as these systems must ultimately be
miniaturized and implanted into a person as unobtrusively
as possible. Lastly, ethical issues abound, ranging
from the acceptability of animal testing to the possible
enhancement possibilities.Some of this remains squarely
in the realm of science fiction, but there is no doubt
these approaches are a possible route to helping
people with severe motor dysfunctions, making it a
worthwhile endeavor in which EE’s are making very big
contributions.
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13-5.3 Convergence of the Fourier Integral

Not every function f (t) has a Fourier transform. The
Fourier transform F(ω) exists if the Fourier integral given by
Eq. (13.62a) converges to a finite number or to an equivalent
expression, but as we shall discuss shortly, it also may exist even
if the Fourier integral does not converge. Convergence depends
on the character of f (t) over the integration range [−∞, ∞].
By character, we mean (1) whether or not f (t) exhibits infinite
discontinuities and (2) how f (t) behaves as t approaches ±∞.
As a general rule, the Fourier integral does converge if f (t) has
no discontinuities (i.e., it is single-valued) and the integral of
its absolute magnitude is finite (absolutely integrable). That is,

∞∫
−∞

|f (t)| dt < ∞. (13.64)

A function f (t) still can have a Fourier transform—even if it
has discontinuities so long as those discontinuities are bounded.
The step function A u(t) exhibits a finite discontinuity at t = 0
if A is finite.

The stated conditions for the existence of the Fourier
transform are sufficient but not necessary conditions. In
other words, some functions may still have transforms even
though their Fourier integrals do not converge. Among such
functions are the constant f (t) = A and the unit step function
f (t) = A u(t), both of which represent important excitation
waveforms in linear circuits. To realize the Fourier transform
of a function whose transform exists but its Fourier integral
does not converge, we need to employ an indirect approach.
The approach entails the following ingredients:

(a) If f (t) is a function whose Fourier integral does not
converge, we select a related second function fε(t) whose
functional form includes a parameter ε. When allowed to
approach a certain limit, fε(t) becomes identical to f (t).

(b) The choice of function fε(t) should be such that its Fourier
integral does converge, and therefore, fε(t) has a definable
Fourier transform Fε(ω).

(c) By taking parameter ε in the expression for Fε(ω) to its
limit, Fε(ω) reduces to the transform F(ω) corresponding
to the original function f (t).

This procedure is illustrated through some of the examples
presented in the next section.

13-6 Fourier Transform Pairs

In this section, we develop fluency in how to move back and
forth between the time domain and the ω domain. We will learn
how to circumvent the convergence issues we noted earlier in
Section 13-5.3, and in the process, we will identify a number
of useful properties of the Fourier transform.

13-6.1 Linearity Property

If

f1(t) F1(ω)

and

f2(t) F2(ω),

then

K1 f1(t) + K2 f2(t) K1 F1(ω) + K2 F2(ω),

(linearity property) (13.65)

(superposition)

where K1 and K2 are constants. Proof of Eq. (13.65) is easily
ascertained through the application of Eq. (13.62a).

13-6.2 Fourier Transform of δ(t − t0)

By Eq. (13.62a), the Fourier transform of δ(t − t0) is given by

F(ω) = F [δ(t − t0)] =
∞∫

−∞
δ(t − t0)e

−jωt dt

= e−jωt
∣∣∣
t=t0

= e−jωt0 . (13.66)

Hence,

δ(t − t0) e−jωt0

and

δ(t) 1.

(13.67a)

(13.67b)

Thus, a unit impulse function δ(t) generates a constant of unit
amplitude that extends over [−∞, ∞] in the ω domain, as
shown in Fig. 13-14(a), and vice versa.
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(a)

(b)

t0
0

f(t)

δ(t)

F(ω)

ω0
0

1

2π δ(ω)

F(ω)

ω0
0t0

0

1

f(t)

Figure 13-14: (a) The Fourier transform of δ(t) is 1 and (b)
the Fourier transform of 1 is 2π δ(ω).

13-6.3 Shift Properties

By Eq. (13.62b), the inverse Fourier transform of
F(ω) = δ(ω − ω0) is

f (t) = F−1[δ(ω − ω0)]

= 1

2π

∞∫
−∞

δ(ω − ω0) ejωt dω = ejω0t

2π
.

Hence,

ejω0t 2π δ(ω − ω0)

and

1 2π δ(ω).

(13.68a)

(13.68b)

Comparison of the plots in Fig. 13-14(a) and (b) demonstrates
the correspondence between the time domain and the ω domain:
an impulse δ(t) in the time domain generates a uniform
spectrum in the frequency domain; conversely, a uniform
(constant) waveform in the time domain generates an impulse
δ(ω) in the frequency domain. By the same token, a rectangular
pulse in the time domain generates a sinc pattern in the
frequency domain, and a sinc pulse in the time domain generates
a rectangular spectrum in the frequency domain, as illustrated
by Fig. 13-15.

It is straightforward to show that the result given by
Eq. (13.68a) can be generalized to

ejω0t f (t) F(ω − ω0),

(frequency-shift property)

(13.69)

which is known as the frequency-shift property of the Fourier
transform. It states that multiplication of a function f (t) by
ejω0t in the time domain corresponds to shifting the Fourier
transform of f (t) by ω0 along the ω axis. The converse of the
frequency-shift property is the time-shift property given by

f (t − t0) e−jωt0 F(ω).

(time-shift property)

(13.70)

13-6.4 Fourier Transform of cos ω0t

By Euler’s identity,

cos ω0t = ejω0t + e−jω0t

2
.

In view of Eq. (13.68a),

F(ω) = F
[
ejω0t

2
+ e−jω0t

2

]
= π δ(ω − ω0) + π δ(ω + ω0).

Hence,

cos ω0t π [δ(ω − ω0) + δ(ω + ω0)], (13.71)

and similarly,

sin ω0t jπ [δ(ω + ω0) − δ(ω − ω0)]. (13.72)

As shown in Fig. 13-16, the Fourier transform of cos ω0t

consists of impulse functions at ±ω0.
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Figure 13-15: Time-frequency duality: a rectangular pulse generates a sinc spectrum and, conversely, a sinc-pulse generates a rectangular
spectrum.

F(ω)

cos ω0t
1

0
0

f(t) π δ(ω − ω0)

−ω0
−1

ω0

π δ(ω + ω0) π

Figure 13-16: The Fourier transform of cos ω0t is equal to two
impulse functions—one at ω0 and another at −ω0.

13-6.5 Fourier Transform of Ae−at u(t) with
a > 0

The Fourier transform of an exponentially decaying function
that starts at t = 0 is

F(ω) = F [Ae−at u(t)]

=
∞∫

0

Ae−at e−jωt dt = A
e−(a+jω)t

−(a + jω)

∣∣∣∣∣
∞

0

= A

a + jω
.

Hence,

Ae−at u(t)
A

a + jω
, for a > 0. (13.73)

13-6.6 Fourier Transform of u(t)

The direct approach to finding F(ω) for the unit step function
leads to

F(ω) = F [u(t)] =
∞∫

−∞
u(t) e−jωt dt

=
∞∫

0

e−jωt dt = e−jωt

−jω

∣∣∣∣
∞

0
= j

ω
(e−j∞ − 1),

which is problematic because e−j∞ does not converge. To
avoid the convergence problem, we can pursue an alternative
approach that involves the signum function, which is defined
by

sgn(t) = u(t) − u(−t). (13.74)

Shown graphically in Fig. 13-17(a), the signum function
resembles a step-function waveform (with an amplitude of 2
units) that has been slid downward by 1 unit. Looking at the
waveform, it is easy to see that one can generate a step function
from the signum function as follows:

u(t) = 1

2
+ 1

2
sgn(t). (13.75)
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(a) Signum function

sgn(t)

t
1
0

−1

(b) Model for sgn(t)

sgn(t)

t
e−εt u(t)

eεt u(−t)

1
0

−1

Figure 13-17: The model shown in (b) approaches the exact
definition of sgn(t) as ε → 0.

The corresponding Fourier transform is given by

F [u(t)] = F
[

1

2

]
+ 1

2
F [sgn(t)] = π δ(ω) + 1

2
F [sgn(t)],

(13.76)
where in the first term we used the relationship given by
Eq. (13.68b). Next, we will obtain F [sgn(t)] by modeling the
signum function as

sgn(t) = lim
ε→0

[e−εt u(t) − eεt u(−t)] (13.77)

with ε > 0. The shape of the modeled waveform is shown in
Fig. 13-17(b) for a small value of ε.

Now we are ready to apply the formal definition of the Fourier
transform given by Eq. (13.62a):

F [sgn(t)] =
∞∫

−∞
lim
ε→0

[e−εt u(t) − eεt u(−t)]e−jωt dt

= lim
ε→0

⎡
⎣ ∞∫

0

e−(ε+jω)t dt −
0∫

−∞
e(ε−jω)t dt

⎤
⎦

= lim
ε→0

⎡
⎣ e−(ε+jω)t

−(ε + jω)

∣∣∣∣∣
∞

0

− e(ε−jω)t

ε − jω

∣∣∣∣∣
0

−∞

⎤
⎦

= lim
ε→0

[
1

ε + jω
− 1

ε − jω

]
= 2

jω
. (13.78)

Use of Eq. (13.78) in Eq. (13.76) gives

F [u(t)] = π δ(ω) + 1

jω
.

Equivalently, the preceding result can be expressed in the form

u(t) π δ(ω) + 1

jω
. (13.79)

Table 13-4 provides a list of commonly used time functions
together with their corresponding Fourier transforms, and
Table 13-5 offers a summary of the major properties of
the Fourier transform—many of which resemble those we
encountered earlier in Chapter 12 in connection with the
Laplace transform.

Example 13-10: Fourier Transform Properties

Establish the validity of the time derivative and modulation
properties of the Fourier transform (Properties 6 and 10 in
Table 13-5).

Solution:

Time derivative property: From Eq. (13.62b),

f (t) = 1

2π

∞∫
−∞

F(ω) ejωt dω. (13.80)

Differentiating both sides with respect to t gives

f ′(t) = df

dt
= 1

2π

∞∫
−∞

jω F(ω) ejωt dω

= jω

⎡
⎣ 1

2π

∞∫
−∞

F(ω) ejωt dω

⎤
⎦ .

Hence, differentiating f (t) in the time domain is equivalent to
multiplying F(ω) by jω in the frequency domain:

f ′(t) jω F(ω). (13.81)
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Table 13-4: Examples of Fourier transform pairs. Note that constant a ≥ 0.

f (t) F(ω) = F [f (t)] |F(ω)|
BASIC FUNCTIONS

1.
δ(t)

t
1 δ(t) 1

ω

1

1a. t
1

t0
δ(t − t0) e−jωt0

ω

1

2.
t

1
1 2π δ(ω)

ω
2π

3.
t

1
u(t) π δ(ω) + 1/jω

ω
π

4. t
1

−1
sgn(t) 2/jω

ω

5.
τ

t

1
rect(t/τ ) τ sinc(ωτ/2) −2π 2π

τ τ
ω

τ

6.
t

|t | −2/ω2

ω

7.
t

1 e−at u(t) 1/(a + jω)

ω
1/a

8. t
1 cos ω0t π [δ(ω − ω0) + δ(ω + ω0)] ωω0−ω0

ππ

9. t
1 sin ω0t jπ [δ(ω + ω0) − δ(ω − ω0)] ωω0

−ω0

π

−π

ADDITIONAL FUNCTIONS

10. ejω0t 2π δ(ω − ω0)

11. te−at u(t) 1/(a + jω)2

12. [e−at sin ω0t] u(t) ω0/[(a + jω)2 + ω2
0]

13. [e−at cos ω0t] u(t) (a + jω)/[(a + jω)2 + ω2
0]

Time modulation property: We start by multiplying both sides
of Eq. (13.80) by cos ω0t , and for convenience, we change the
dummy variable ω to ω′: cos ω0t f (t) = 1

2π

∞∫
−∞

cos ω0t F(ω′) ejω′t dω′.
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Table 13-5: Major properties of the Fourier transform.

Property f (t) F(ω) = F [f (t)]

1. Multiplication by a constant K f (t) K F(ω)

2. Linearity K1 f1(t) + K2 f2(t) K1 F1(ω) + K2 F2(ω)

3. Time scaling f (at)
1

|a| F
(ω

a

)
4. Time shift f (t − t0) e−jωt0 F(ω)

5. Frequency shift ejω0t f (t) F(ω − ω0)

6. Time 1st derivative f ′ = df

dt
jω F(ω)

7. Time nth derivative
dnf

dtn
(jω)n F(ω)

8. Time integral

t∫
−∞

f (t) dt
F(ω)

jω
+ π F(0) δ(ω)

9. Frequency derivative tn f (t) (j)n
dnF(ω)

dωn

10. Modulation cos ω0t f (t) 1
2 [F(ω − ω0) + F(ω + ω0)]

11. Convolution in t f1(t) ∗ f2(t) F1(ω) F2(ω)

12. Convolution in ω f1(t) f2(t)
1

2π
F1(ω) ∗ F2(ω)

Applying Euler’s identity to cos ω0t on the right-hand side leads
to

cos ω0t f (t) = 1

2π

∞∫
−∞

(
ejω0t + e−jω0t

2

)
F(ω′) ejω′t dω′

= 1

4π

[ ∞∫
−∞

F(ω′) ej (ω′+ω0)t dω′

+
∞∫

−∞
F(ω′) ej (ω′−ω0)t dω′

]
.

Upon making the substitution (ω = ω′+ω0) in the first integral
and independently making the substitution (ω = ω′ − ω0) in

the second integral, we have

cos ω0t f (t) = 1

2

[
1

2π

∞∫
−∞

F(ω − ω0) ejωt dω

+ 1

2π

∞∫
−∞

F(ω + ω0) ejωt dω

]
,

which can be cast in the abbreviated form

cos ω0t f (t)
1

2
[F(ω − ω0) + F(ω + ω0)].

(13.82)

Concept Question 13-14: What is the Fourier transform
of a dc voltage? (See         )
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Concept Question 13-15: “An impulse in the time
domain is equivalent to an infinite number of sinusoids,
all with equal amplitude.” Is this a true statement? Can 
one construct an ideal impulse function? (See         )

Exercise 13-7: Use the entries in Table 13-4 to determine
the Fourier transform of u(−t).

Answer:  F(ω) = π δ(ω) − 1/jω. (See )

Exercise 13-8: Verify the Fourier transform expression
for entry #10 in Table 13-4.

Answer: (See )

13-6.7 Parseval’s Theorem

If f (t) represents the voltage across a 1 � resistor, then
f 2(t) represents the power dissipated in the resistor, and
the integrated value of f 2(t) over [−∞, ∞] represents the
cumulative energy W expended in the resistor. Thus,

W =
∞∫

−∞
f 2(t) dt =

∞∫
−∞

f (t)

⎡
⎣ 1

2π

∞∫
−∞

F(ω) ejωt dω

⎤
⎦ dt,

(13.83)
where one f (t) was replaced with the inverse Fourier transform
relationship given by Eq. (13.62b). By reversing the order of
f (t) and F(ω), and reversing the order of integration, we have

W = 1

2π

∞∫
−∞

F(ω)

⎡
⎣ ∞∫
−∞

f (t) ejωt dt

⎤
⎦ dω

= 1

2π

∞∫
−∞

F(ω)

⎡
⎣ ∞∫
−∞

f (t) e−j (−ω)t dt

⎤
⎦ dω

= 1

2π

∞∫
−∞

F(ω) F(−ω) dω

= 1

2π

∞∫
−∞

F(ω) F∗(ω) dω, (13.84)

where we used the reversal property (also known as the
conjugate symmetry property) of the Fourier transform (see

Exercise 13-9), which is given by

F(−ω) = F∗(ω).

(reversal property)

(13.85)

The combination of Eqs. (13.83) and (13.84) can be written as

∞∫
−∞

f 2(t) dt = 1

2π

∞∫
−∞

|F(ω)|2 dω.

(Parseval’s theorem)

(13.86)

� Parseval’s theorem states that the total energy in the
time domain is equal to the total energy in theω domain.�

Exercise 13-9: Verify the reversal property given by
Eq. (13.85).

Answer: (See )

13-7 Phasor vs. Laplace vs. Fourier

Consider a linear circuit with input excitation x(t) and output
response y(t), where x(t) is a voltage or current source and
y(t) is a voltage between two nodes in the circuit or a current
through one of its branches. Our goal is to analyze the circuit
to determine the desired output y(t). Beyond the time-domain
differential equation solution method, which in practice can
accommodate only first- and second-order circuits, we have
available to us three techniques by which to determine y(t).

(a) The phasor-domain technique (Chapter 7).

(b) The Laplace transform technique (Chapter 12).

(c) The Fourier series and transform techniques (Chapter 13).

The applicability conditions for the three techniques,
summarized in Table 13-6, are governed by the duration and
shape of the waveform of the input excitation. Based on its
duration, an input excitation x(t) is said to be:

(1) everlasting (two-sided): if it exists over all time (−∞, ∞),

(2) one-sided: if it starts at or after t = 0; i.e., x(t) = 0 for
t < 0−.
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In real life, there is no such thing as an everlasting excitation.
When we deal with real circuits, there is always a starting
point in time for both the input excitation and output response.
In general, an output signal consists of two components, a
transient component associated with the initial onset of the
input signal, and a steady-state component that alone remains
after the transient component decays to zero. If the input
excitation is sinusoidal and we are interested in only the steady-
state component of the output response, it is often convenient to
regard the input excitation as everlasting, even though, strictly
speaking, it cannot be so. We regard it as such because we
can then apply the phasor-domain technique, which is easier to
implement than the other two techniques.

According to the summary provided in Table 13-6:

• If x(t) is an everlasting sinusoid, the phasor-domain
technique is the solution method of choice.

• If x(t) is an everlasting periodic excitation, such as
a square wave or any repetitive waveform that can be
represented by a Fourier series, then by virtue of the
superposition principle, the phasor-domain technique can
be used to compute the output responses corresponding to
the individual Fourier components of the input excitation,
and then all of the output components can be added up to
generate the total output.

• If x(t) is a one-sided excitation, the Laplace transform
technique is the preferred solution method. An important
feature of the technique is that it can accommodate nonzero
initial conditions of the circuit, if they exist.

• If x(t) is everlasting and its waveform is nonperiodic,
we can obtain y(t) by applying either a bilateral form
of the Laplace transform or the Fourier transform. For
input excitations x(t) whose Laplace transforms do not
exist but their Fourier transforms do, the Fourier transform
approach becomes the only viable option, and the converse
is true for excitations whose Fourier transforms do not exist
but their Laplace transforms do.

The Laplace transform operates in the s domain, where
s = σ + jω is represented by a complex plane with real and
imaginary axes along σ and jω. The Fourier transform operates
along the jω axis of the splane, corresponding to σ = 0. Thus,
for circuits excited by everlasting sinusoidal waveforms,

F(ω) = F(s)
∣∣
σ=0.

(a) Time domain

+
_υs(t)

iC(t)

R2 C

R1

(b) ω-domain

+
_Vs(ω)

IC

R2

R1

1
jωC

Figure 13-18: Circuits for Example 13-11.

13-8 Circuit Analysis with Fourier
Transform

As was mentioned earlier, the Fourier transform technique
can be used to analyze circuits excited by either one-sided
or two-sided nonperiodic waveforms—as long as the circuit
has no initial conditions. The procedure (which is analogous
to the Laplace transform technique) with s replaced by jω is
demonstrated through Example 13-11.

Example 13-11: RC Circuit

The RC circuit shown in Fig. 13-18(a) is excited by a
voltage source υs(t). Apply Fourier analysis to determine
iC(t) if: (a) υs = 10u(t), (b) υs(t) = 10e−2t u(t), and (c)
υs(t) = 10+5 cos 4t , all measured in volts. The element values
are R1 = 2 k�, R2 = 4 k�, and C = 0.25 mF.

Solution:

Step 1: Transfer circuit to ω domain

In the frequency-domain circuit shown in Fig. 13-18(b), Vs(ω)

is the Fourier transform of υs(t).

Step 2: Determine H(ω) = IC(ω)/Vs(ω)

Application of source transformation to the circuit in
Fig. 13-18(b) followed with current division leads to

H(ω) = IC(ω)

Vs(ω)
= jω/R1

R1 + R2

R1R2C
+ jω

= j0.5ω × 10−3

3 + jω
.

(13.87)
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Table 13-6: Methods of solution.

Input x(t)

Duration Waveform Solution Method Output y(t)

Everlasting Sinusoid Phasor Domain Steady-State Component
(no transient exists)

Everlasting Periodic Phasor Domain and Fourier Series Steady-State Component
(no transient exists)

One-sided, Any Laplace Transform (unilateral) Complete Solution
x(t) = 0, for t < 0− (can accommodate nonzero initial conditions) (transient + steady-state)

Everlasting Any Bilateral Laplace Transform Complete Solution
or Fourier Transform (transient + steady-state)

Step 3: Solve for IC(ω) and iC(t)

(a) υs(t) = 10u(t): The corresponding Fourier transform per
entry #3 in Table 13-4 is

Vs(ω) = 10π δ(ω) + 10

jω
.

The corresponding current is

IC(ω) = H(ω) Vs(ω) = j5πω δ(ω) × 10−3

3 + jω
+ 5 × 10−3

3 + jω
.

(13.88)
The inverse Fourier transform of IC(ω) is given by

iC(t) = 1

2π

∞∫
−∞

j5πω δ(ω) × 10−3

3 + jω
ejωt dω

+ F−1
[

5 × 10−3

3 + jω

]
,

where we applied the formal definition of the inverse Fourier
transform to the first term—because it includes a delta
function—and the functional form to the second term—because
we intend to use look-up entry #7 in Table 13-4. Accordingly,

iC(t) = 0 + 5e−3t u(t) mA. (13.89)

(b) υs(t) = 10e−2t u(t): By entry #7 in Table 13-4,

Vs(ω) = 10

2 + jω
.

The corresponding current IC(ω) is given by

IC(ω) = H(ω) Vs(ω) = j5ω × 10−3

(2 + jω)(3 + jω)
. (13.90)

Application of partial fraction expansion (Section 12-5) gives

IC(ω) = A1

2 + jω
+ A2

3 + jω
,

with

A1 = (2 + jω) IC(ω)|jω=−2

= j5ω × 10−3

3 + jω

∣∣∣∣
jω=−2

= −10 × 10−3

and

A2 = (3 + jω) IC(ω)|jω=−3

= j5ω × 10−3

2 + jω

∣∣∣∣
jω=−3

= 15 × 10−3.

Hence,

IC(ω) =
( −10

2 + jω
+ 15

3 + jω

)
× 10−3

and

iC(t) = (15e−3t − 10e−2t ) u(t) mA. (13.91)

(c) υs(t) = 10 + 5 cos 4t:

By entries #2 and #8 in Table 13-4,

Vs(ω) = 20π δ(ω) + 5π [δ(ω − 4) + δ(ω + 4)],
and the capacitor current is

IC(ω) = H(ω) Vs(ω)

= j10πω δ(ω) × 10−3

3 + jω

+ j2.5π × 10−3
[
ω δ(ω − 4)

3 + jω
+ ω δ(ω + 4)

3 + jω

]
.



“book” — 2015/5/4 — 7:27 — page 713 — #40

13-9 MULTISIM: MIXED-SIGNAL CIRCUITS AND THE SIGMA-DELTA MODULATOR 713

The corresponding time-domain current is obtained by applying
Eq. (13.62b) as

iC(t) = 1

2π

∞∫
−∞

j10πω δ(ω) × 10−3ejωt dω

3 + jω

+ 1

2π

∞∫
−∞

j2.5πω × 10−3

3 + jω
δ(ω − 4) ejωt dω

+ 1

2π

∞∫
−∞

j2.5πω × 10−3

3 + jω
δ(ω + 4) ejωt dω

= 0 + j5 × 10−3ej4t

3 + j4
− j5 × 10−3e−j4t

3 − j4

= 5 × 10−3

(
ej4t ej36.9◦

5
+ e−j4t e−j36.9◦

5

)

= 2 cos(4t + 36.9◦) mA. (13.92)

13-9 Multisim: Mixed-Signal Circuits
and the Sigma-Delta Modulator

Historically, circuit designers tended to fall into two broad
classes: those who designed digital circuits and those who
designed analog circuits. As a broad generalization, digital-
circuit designers built logic gates, computational elements,
memories, and so on, whereas analog designers tended to work
on circuits that interfaced with the noncircuit world: amplifiers,
drivers, radio frequency circuits, analog-to-digital converters,
among others. Moreover, digital designers tended to have more
comprehensive and powerful software design tools, mainly
because digital circuits could be abstracted into modules that
made hierarchical analysis possible. For example, a transistor
could be modeled as a simple switch, several of these switches
could be wired together as a simple logic gate, many logic
gates could be wired together to make a counter or a memory,
and so on, all of which can be readily modeled as “black
boxes” in software. Analog circuits, by contrast, defied this
type of compartmentalization due to feedback loops, nonlinear
behavior, and complex topologies; this made analog design
almost an art form.

Advances in silicon fabrication technologies have now
blurred the line between these two worlds considerably. A
new generation of circuits, known as mixed-signal circuits,
contains elements of both worlds (Fig. 13-19). This exciting
area combines the power of analog designs with the scalability,

modularity and computational power of digital circuits. Modern
analog-to-digital conversion (ADC) and digital-to-analog
conversion (DAC) circuits, cell phone communication circuits,
software radio, internet routers, and audio synthesis circuits
are all examples of mixed signal circuits. The advantages are
numerous. Consider software radio, for example. We saw in
Section 9-8 how a superheterodyne receiver works, which is
a perfect example of a multistage analog circuit. But what if
many of the functions of the superheterodyne receiver could
be performed by digital circuits instead? What advantages
might there be? One obvious advantage is the introduction
of computational “intelligence” into the radio itself. If the
receiver is designed, in part or in whole, with digital circuits,
these circuits can be built around computation and memory.
Programs can be loaded that allow the radio to change its power
consumption, transmission patterns and protocols based on user
or environmental parameters; this is often known as cognitive
radio. The integration of analog and digital circuits comes with
certain drawbacks, however. Design remains a challenging, and
highly paid, exercise. Design and testing software for mixed
signal circuits is nowhere near as advanced as that for digital
circuits. The fabrication of these circuits is often confined to
specialized processes not compatible with standard, digital-
processor fabrication methodologies (although this is rapidly
changing).

13-9.1 The Sigma-Delta (	) Modulator and
Analog-to-Digital Converters

So far in this book we have used Multisim to model amplifiers,
digital circuits, filters, resonators, and circuits that employ
feedback. In this section, we will put it all together and show
you how to design a very useful circuit, the Sigma-Delta (	)
Modulator, which since its early development by Inose and
Yasuda in 1962 has now become a standard tool for the design
of inexpensive analog-to-digital converters (ADCs).

There are many ways to convert an analog waveform into a
digital sequence of pulses. The classicADC circuit takes a time-
varying analog voltage, υin(t), and produces a corresponding
time-varying digital output consisting of a number of bits (Vout0,
Vout1, etc.). Figure 13-20(a) shows the process schematically.
Here, a linearly increasing voltage is fed into a 4-bit ADC; as
the input voltage changes with time, the four digital output bits
change their state (either “0” or ”1”). All of the pulses have
the same duration and can change states instantaneously. With
4 binary bits, we can construct 16 different values (i.e., 0000,
0001, . . . , 1111), so this 4-bit ADC converts any input voltage
to one of 24 or, equivalently, 16 different digital values. Modern
ADCs commonly have 12, 16 or even 24 output bits, giving them
very high resolution (e.g., 224 = 16,777,216 different values!).
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Figure 13-19: This mixed-signal chip implements a highly reconfigurable RF receiver based on a down-converting Sigma-Delta A/D
(courtesy Renaldi Winoto and Prof. Borivoje Nikolic, U.C. Berkeley)

Time
(a) Traditional ADC

(b) Σ∆ ADC
Time

Time

Time

Vo
lta

ge
Vo

lta
ge

υout3

υout2

υout1

υout0

υin

υin υout

Figure 13-20: (a) A traditional 4-bit ADC converts an analog
input voltage and produces 4 digital output bits; (b) a 	 ADC
generates a pulse train where the pulse duration is governed by
the magnitude of the input voltage.

One usually trades off speed for resolution; the bits in a fast
12-bit ADC integrated circuit can change states once every 2

microseconds, which means that theADC can measure the input
voltage approximately 500,000 times per second.

Unlike conventionalADCs, the 	ADC generates an output
consisting of a single digital bit. The duration of the voltage
pulse, however, depends on the value of the input voltage
(Fig. 13-20(b)), thereby encoding the magnitude of the input
voltage into the duration of a single pulse, instead of encoding
it into the binary states of several pulses (bits) of equal duration.
The 	 modulator is particularly attractive for designing
and building inexpensive ADC circuits because it can (a) be
made using digital components, which are less expensive to
build and easier to test than analog components, and (b) the
digital components can be reprogrammed and modified by
the user using firmware. Although invented in the 1960s, the
	 modulator was not used commercially until digital CMOS
processes became sufficiently fast (to produce time-varying
output pulses faster than the changes exhibited by the input
signal), small (enabling the mixing of digital with analog circuit
components) and inexpensive to fabricate.

The entire circuit (Fig. 13-21) can be built from analog
components introduced in this book, namely a subtractor,
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Analog
signal

Difference
amp

Integrator
amp

Comparator
amp

Low pass
filter

1−bit
DAC

Digital
pulse
stream

υin(t)

dt+
_

υout(t)

Figure 13-21: Block diagram of a 	 modulator.

an integrator, a comparator, a 1-bit DAC and a low-pass
filter. In real implementations, most of these components are
replaced with digital substitutes, often reprogrammable during
operation. Thus, one could replace the analog filter with an
adjustable digital filter, the integrator with a digital integrator,
and so on. The only analog component in modern 	s is
usually the DAC.

13-9.2 How the 	 Works

Table 13-6 shows the individual subcircuits of the 	

modulator and Fig. 13-22 displays the complete circuit, all
drawn in Multisim. Our basic 	 circuit takes an analog
input, υin(t), subtracts from it a feedback signal, υbit(t), then
integrates this signal, producing υint(t). The integrated signal
is then compared with a reference voltage (in our case, 0 V)

Figure 13-22: Complete Multisim circuit of the 	 modulator.
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Table 13-7: Multisim circuits of the 	 modulator.

Multisim Circuit Description and Notes

Vbit

Subtractor: This is a difference amplifier
(following Table 4-3) with a voltage gain of 1.
VPLUS and VMINUS are the extremes of the
analog input (in the complete circuit, they are
set to ±12 V).

Integrator: This circuit consists of an inverting
integrator amplifier (Section 5-6.1) and an
inverting amplifier (following Table 4-3) with
a voltage gain of 1 (to remove the integrator’s
negative sign).

Comparator: The comparator is a simple op amp with no feedback
(open loop). Since the internal voltage gain A of the op amp is so high
(Section 4-1.2), any positive difference between the noninverting and
the inverting inputs immediately drives the amplifier output to VDD; a
negative difference drives the amplifier output to 0 V. VDD is set to the
desired digital voltage level (5 V, in the case of the complete circuit in
Fig. 13-22).

vout

1-Bit Digital-to-Analog Converter (DAC): The DAC is very similar to
the comparator. The input voltage is compared to a voltage level halfway
between 0 and VDD; this has the effect of transforming an input of VDD
into an output voltage of VPLUS/2 (+6 V in Fig. 13-22) and an input
voltage of 0 V into an output voltage of VMINUS/2 (−6 V in Fig. 13-22).

and produces υout(t). The output of the comparator, υout(t),
can only have two values: VDD or 0, where VDD is the dc
power supply voltage of the comparator. Hence, υout(t) is a

time-varying digital signal. Note that υout(t) is also sent to a
1-bit DAC that converts the digital signal to an analog signal,
υbit(t), which is fed back to the subtractor.
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The overall functionality of the 	 modulator is illustrated
by Fig. 13-23 for an input signal composed of a 1 Hz sinusoid
with an amplitude of 4 V. We observe that the corresponding
output, υout(t), consists of a sequence of pulses whose durations
are proportional to the instantaneous level of the input voltage,
υin(t). Thus, the 	 circuit encodes amplitude information
contained in an analog signal into pulse-duration information
in a digital sequence. After transmission of υout(t) through
downstream digital circuits, the original information can be
retrieved by measuring the durations of the pulses. This can be
accomplished by a digital counter, either in hardware (using a
counter circuit) or in software on a microcontroller. In hardware,
transitions can be detected with Schmidt triggers or similar
edge detectors, and the counter is made to “count” the duration
between transitions.

Figure 13-23: A 1 Hz sinusoidal ac signal, υin(t), blue trace, is
converted to a series of pulses at the output, υout(t), red trace, by
the Sigma Delta modulator. Note that the duration of the pulses
is related to the instantaneous level of voltage υin(t).

Summary

Concepts

• A periodic waveform of period T can be represented by
a Fourier series consisting of a dc term and sinusoidal
terms that are harmonic multiples of ω0 = 2π/T .

• The Fourier series can be represented in terms of a
cosine/sine form, amplitude/phase form, and a complex
exponential form.

• Circuits excited by a periodic waveform can be analyzed
by applying the superposition theorem to the individual
terms of the harmonic series.

• Nonperiodic waveforms can be represented by a Fourier
transform.

• Upon transforming the circuit to the frequency domain,
the circuit can be analyzed for the desired voltage or
current of interest and then the result can be inverse
transformed to the time domain.

• The Sigma-Delta modulator is an example of a mixed-
signal circuit. It converts an analog waveform into a
single-bit digital pulse whose duration is proportional
to the instantaneous magnitude of the waveform.

Mathematical and Physical Models
Fourier Series Table 13-3

Average Power

Pav = VdcIdc + 1

2

∞∑
n=1

VnIn cos(φυn − φin)

Fourier Transform

F(ω) = F [f (t)] =
∞∫

−∞
f (t) e−jωt dt

f (t) = F−1[F(ω)] = 1

2π

∞∫
−∞

F(ω) ejωt dω

sinc Function sinc(x) = sin x

x

Properties of Fourier Transform Table 13-5

2-D Fourier Transform

F(ωx, ωy) = F [f (x, y)]

=
∞∫

−∞
f (x, y) e−jωxxe−jωyy dx dy

f (x, y) = 1

(2π)2

=
∞∫

−∞
F(ωx, ωy) ejωxxejωyy dωx dωy
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Important Terms Provide definitions or explain the meaning of the following terms:

	 ADC
absolutely integrable
amplitude of the nth

harmonic
amplitude/phase
amplitude spectrum
cognitive radio
complete
conjugate symmetry property
dc component
Dirichlet conditions
duration
even function
even symmetry

everlasting
everlasting periodic

excitation
everlasting sinusoid
exponential form
Fourier coefficient
Fourier series
Fourier theorem
Fourier transform
frequency-shift property
frequency spectrum
fundamental angular

frequency
Gibbs phenomenon

harmonic
inverted
line spectrum
magnitude spectrum
mixed signal circuit
nmax-truncated series
null
odd function
odd symmetry
one-sided
one-sided excitation
Parseval’s theorem
periodic function
periodicity property

periodic waveform
phase
phase spectrum
reversal property
Schmidt triggers
Sigma-Delta modulator
signum function
sinc function
spacing between

adjacent harmonics
steady-state component
time-shift property
transient component
truncated series

PROBLEMS

Sections 13-1 and 13-2: Fourier Series

For each of the waveforms in Problems 13.1 through 13.10:

(a) Determine if the waveform has dc, even, or odd symmetry.

(b) Obtain its cosine/sine Fourier series representation.

(c) Convert the representation to amplitude/phase format and
plot the line spectra for the first five nonzero terms.

(d) Use MATLAB software to plot the waveform using a
truncated Fourier series representation with nmax = 100.

13.1 Waveform in Fig. P13.1 with A = 10.

f(t)

A

0
t (s)

−4 4 8

Figure P13.1: Waveform for Problem 13.1.

13.2 Waveform in Fig. P13.2 with A = 4.

f(t)

A

0
0 t (s)

−4 −2 2 4 6 8−6−8

Figure P13.2: Waveform for Problem 13.2.

13.3 Waveform in Fig. P13.3 with A = 6.

f(t)

A

0
0 t (s)

1 2 3−3 −2 −1

Figure P13.3: Waveform for Problem 13.3.

13.4 Waveform in Fig. P13.4 with A = 10.
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f(t)

A

0 1 2 3 4 65
0 t (s)

−4−6 −5 −3 −1−2

Figure P13.4: Waveform for Problem 13.4.

*13.5 Waveform in Fig. P13.5 with A = 20.

f(t)
A

0 1 2 3 4 6 75
0 t (s)

−4−5 −3 −1

−A

−2−6

Figure P13.5: Waveform for Problem 13.5.

13.6 Waveform in Fig. P13.6 with A = 100.

f(t)
A

0
0 t (s)

2 4 6−6 −4 −2

Figure P13.6: Waveform for Problem 13.6.

13.7 Waveform in Fig. P13.7 with A = 4.

f(t)

−A

0 t (s)
−4−6−8 −2 2 4 6 8

Figure P13.7: Waveform for Problem 13.7.

∗
Answer(s) available in Appendix G.

13.8 Waveform in Fig. P13.8 with A = 10.

f(t)

−A

A

0 t (ms)
−3−4 −1 2 3−2 1 4

Figure P13.8: Waveform for Problem 13.8.

*13.9 Waveform in Fig. P13.9 with A = 10.

f(t)

−A

−A/2

A

A/2

0 t (s)
−1 2 3−2 1 4

Figure P13.9: Waveform for Problem 13.9.

13.10 Waveform in Fig. P13.10 with A = 20.

f(t)

−A

A

0 t (s)
−4 −1 1 4−3 2 3−2

Figure P13.10: Waveform for Problem 13.10.

13.11 Obtain the cosine/sine Fourier series representation for
f (t) = cos2(4πt), and use MATLAB software to plot it with
nmax = 2, 10, and 100.

*13.12 Repeat Problem 13.11 for f (t) = sin2(4πt).

13.13 Repeat Problem 13.11 for f (t) = | sin(4πt)|.
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13.14 Which of the six waveforms shown in Figs. P13.1
through P13.6 will exhibit the Gibbs oscillation phenomenon
when represented by a Fourier series? Why?

13.15 Consider the sawtooth waveform shown in
Fig. 13-3(a). Evaluate the Gibbs phenomenon in the
neighborhood of t = 4 s by plotting the Fourier series
representation with nmax = 100 over the range between 3.99 s
and 4.01 s (using expanded scales if necessary).

*13.16 The Fourier series of the periodic waveform shown in
Fig. P13.16(a) is given by

f1(t) = 10 − 20

π

∞∑
n=1

1

n
sin

(
nπt

2

)
.

Determine the Fourier series of waveform f2(t) in
Fig. P13.16(b).

(a) f1(t)

t (s)
−4 840

20

f1(t)

f2(t)

(b) f2(t)

t (s)
−4

−20

840
0

20

Figure P13.16: Waveforms for Problem 13.16.

Section 13-3: Circuit Applications

13.17 The voltage source υs(t) in the circuit of Fig. P13.17
generates a square wave (waveform #1 in Table 13-2) with
A = 10 V and T = 1 ms.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using
R1 = R2 = 2 k� and C = 1 μF.

(c) Plot υout(t) using nmax = 100.

+
_

υs(t)

R1

R2 C υout(t)
+
_

Figure P13.17: Circuit for Problem 13.17.

13.18 The current source is(t) in the circuit of Fig. P13.18
generates a sawtooth wave (waveform in Fig. 13-3(a)) with a
peak amplitude of 20 mA and a period T = 5 ms.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R1 = 500 �,
R2 = 2 k�, and C = 0.33 μF.

(c) Plot υout(t) and is(t) using nmax = 100.

+

_
is(t) υout(t)R1

i1

i2 R2

C

Figure P13.18: Circuit for Problem 13.18.

13.19 The current source is(t) in the circuit of Fig. P13.19
generates a train of pulses (waveform #3 in Table 13-2) with
A = 6 mA, τ = 1 μs, and T = 10 μs.

(a) Derive the Fourier series representation of i(t).

(b) Calculate the first five terms of i(t) using R = 1 k�,
L = 1 mH, and C = 1 μF.

(c) Plot i(t) and is(t) using nmax = 100.

is(t) R L

C

i(t)

Figure P13.19: Circuit for Problem 13.19.

13.20 Voltage source υs(t) in the circuit of Fig. P13.20(a) has
the waveform displayed in Fig. P13.20(b).
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(a) Derive the Fourier series representation of i(t).

(b) Calculate the first five terms of i(t) using R1 = R2 = 10 �

and L1 = L2 = 10 mH.

(c) Plot i(t) and υs(t) using nmax = 100.

(a) Circuit

(b) Waveform

υs(t)

0
t (ms)

−1 1 2

2 V

10 V

υs(t)

R1 R2

L1 L2

i(t)
+
_

Figure P13.20: Circuit and waveform for Problem 13.20.

13.21 Determine the output voltage υout(t) in the circuit of
Fig. P13.21, given that the input voltage υin(t) is a full-wave
rectified sinusoid (waveform #8 in Table 13-2) with A = 120 V
and T = 1 μs.

(a) Derive the Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R = 1 k�,
L = 1 mH, and C = 1 nF.

(c) Plot υout(t) and υin(t) using nmax = 100.

+
_

υin(t)

L

C R υout(t)
+
_

Figure P13.21: Circuit for Problem 13.21.

13.22

(a) Repeat Example 13-5, after replacing the capacitor with
an inductor L = 0.1 H and reducing the value of R to 1 �.

(b) Calculate the first five terms of υout(t).

(c) Plot υout(t) and υs(t) using nmax = 100.

13.23 Determine υout(t) in the circuit of Fig. P13.23, given
that the input excitation is characterized by a triangular
waveform (#4 in Table 13-2) with A = 24 V and T = 20 ms.

(a) Derive Fourier series representation of υout(t).

(b) Calculate first five terms of υout(t) using R = 470 �,
L = 10 mH, and C = 10 μF.

(c) Plot υout(t) and υs(t) using nmax = 100.

+
_

υs(t)

L

C
R υout(t)

+
_

Figure P13.23: Circuit for Problem 13.23.

13.24 A backward-sawtooth waveform (#7 in Table 13-2)
with A = 100 V and T = 1 ms is used to excite the circuit
in Fig. P13.24.

(a) Derive Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R1 = 1 k�,
R2 = 100 �, L = 1 mH, and C = 1 μF.

(c) Plot υout(t) and υs(t) using nmax = 100.

+

_

υs(t)

R1

R2
υout(t)

+
_

L
C

Figure P13.24: Circuit for Problem 13.24.

13.25 The circuit in Fig. P13.25 is excited by the source
waveform shown in Fig. P13.20(b).

(a) Derive Fourier series representation of i(t).

(b) Calculate the first five terms of υout(t) using
R1 = R2 = 100 �, L = 1 mH, and C = 1 μF.

(c) Plot i(t) and υs(t) using nmax = 100.
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υs(t)

i(t)
+
_

R1 R2

LC

Figure P13.25: Circuit for Problem 13.25.

*13.26 The RC op-amp integrator circuit of Fig. P13.26 is
excited by a square wave (waveform #1 in Table 13-2) with
A = 4 V and T = 2 s.

(a) Derive Fourier series representation of υout(t).

(b) Calculate the first five terms of υout(t) using R1 = 1 k�,
R1 = 10 k�, and C = 10 μF.

(c) Plot υout(t) using nmax = 100.

+

_
+
_υs(t)

υout(t)
+

R1

R2

C

Figure P13.26: Circuit for Problem 13.26.

13.27 Repeat Problem 13.26 after interchanging the locations
of the 1 k� resistor and the 10 μF capacitor.

Section 13-4: Average Power

13.28 The voltage across the terminals of a certain circuit and
the current entering into its (+) voltage terminal are given by

υ(t) = [4 + 12 cos(377t + 60◦) − 6 cos(754t − 30◦)] V,

i(t) = [5 + 10 cos(377t + 45◦) + 2 cos(754t + 15◦)] mA.

Determine the average power consumed by the circuit, and the
ac power fraction.

*13.29 The current flowing through a 2 k� resistor is given by

i(t) = [5 + 2 cos(400t + 30◦) + 0.5 cos(800t − 45◦)] mA.

Determine the average power consumed by the resistor, as well
as the ac power fraction.

13.30 The current flowing through a 10 k� resistor is given
by a triangular waveform (#4 in Table 13-2) with A = 4 mA
and T = 0.2 s.

(a) Determine the exact value of the average power consumed
by the resistor.

(b) Using a truncated Fourier series representation of the
waveform with only the first four terms, obtain an
approximate value for the average power consumed by
the resistor.

(c) What is the percentage of error in the value given in (b)?

13.31 The current source in the parallel RLC circuit of
Fig. P13.31 is given by

is(t) = [10 + 5 cos(100t + 30◦) − cos(200t − 30◦)] mA.

Determine the average power dissipated in the resistor given
that R = 1 k�, L = 1 H, and C = 1 μF.

is(t) RCL

Figure P13.31: Circuit for Problem 13.31.

13.32 A series RC circuit is connected to a voltage source
whose waveform is given by waveform #5 in Table 13-2, with
A = 12 V and T = 1 ms. Using a truncated Fourier series
representation composed of only the first three nonzero terms,
determine the average power dissipated in the resistor, given
that R = 2 k� and C = 1 μF.

Sections 13-5 and 13-6: Fourier Transform

For each of the waveforms in Problems 13.33 through 13.42,
determine the Fourier transform.

*13.33 Waveform in Fig. P13.33 with A = 5 and T = 3 s.

f(t)

t (s)

A

T

Figure P13.33: Waveform for Problem 13.33.

13.34 Waveform in Fig. P13.34 with A = 10 and T = 6 s.
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f(t)

t (s)

A

T/2−T/2

Figure P13.34: Waveform for Problem 13.34.

13.35 Waveform in Fig. P13.35 with A = 12 and T = 3 s.

f(t)

t (s)

A

T/3

A/3

2T/3

2A/3

T

Figure P13.35: Waveform for Problem 13.35.

13.36 Waveform in Fig. P13.36 with A = 2 and T = 12 s.

f(t)

t (s)

A

T/3

A/2

2T/3 T

Figure P13.36: Waveform for Problem 13.36.

13.37 Waveform in Fig. P13.37 with A = 1 and T = 3 s.

f(t)

t (s)

A

−A

T/30 2T/3 T

Figure P13.37: Waveform for Problem 13.37.

13.38 Waveform in Fig. P13.38 with A = 1 and T = 2 s.

f(t)

t (s)

A

T/2−T/2

A/2

Figure P13.38: Waveform for Problem 13.38.

*13.39 Waveform in Fig. P13.39 with A = 3 and T = 1 s.

f(t)

t (s)

A

−A

−T−2T

2TT

Figure P13.39: Waveform for Problem 13.39.

13.40 Waveform in Fig. P13.40 with A = 5, T = 1 s, and
α = 10 s−1.
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f(t)

t (s)

A(1 − e−αt )

T

Figure P13.40: Waveform for Problem 13.40.

13.41 Waveform in Fig. P13.41 with A = 10 and T = 2 s.

f(t)

t (s)

A
A cos(2πt/T)

T/4−T/4

Figure P13.41: Waveform for Problem 13.41.

13.42 Find the Fourier transform of the following signals with
A = 2, ω0 = 5 rad/s, α = 0.5 s−1, and φ0 = π/5.

(a) f (t) = A cos(ω0t − φ0), − ∞ ≤ t ≤ ∞
(b) g(t) = e−αt cos(ω0t) u(t)

13.43 Find the Fourier transform of the following signals with
A = 3, B = 2, ω1 = 4 rad/s, and ω2 = 2 rad/s.

(a) f (t) = [A + B sin(ω1t)] sin(ω2t)

(b) g(t) = A|t |, |t | < (2π/ω1)

13.44 Find the Fourier transform of the following signals with
α = 0.5 s−1, ω1 = 4 rad/s, and ω2 = 2 rad/s.

(a) f (t) = e−αt sin(ω1t) cos(ω2t) u(t)

(b) g(t) = te−αt , 0 ≤ t ≤ 10α

13.45 Using the definition of Fourier transform, prove that

F [t f (t)] = j
d

dω
F(ω).

13.46 Let the Fourier transform of f (t) be

F(ω) = A

(B + jω)
.

Determine the transforms of the following signals (using A = 5
and B = 2).

(a) F(3t − 2)

*(b) t f (t)

(c) d f (t)/dt

13.47 Let the Fourier transform of f (t) be

F(ω) = 1

(A + jω)
e−jω + B.

Determine the Fourier transforms of the following signals (set
A = 2 and B = 1).

(a) f
(

5
8 t
)

(b) f (t) cos(At)

(c) d3f/dt3

13.48 Prove the following two Fourier transform pairs.

(a) cos(ωT ) F (ω) 1
2 [f (t − T ) + f (t + T )]

(b) sin(ωT ) F (ω) 1
2j

[f (t + T ) − f (t − T )]

Section 13-8: Circuit Analysis with Fourier Transform

13.49 The circuit in Fig. P13.19 is excited by the source
waveform shown in Fig. P13.33.

(a) Derive the expression for υout(t) using Fourier analysis.

(b) Plot υout(t) using A = 5, T = 3 ms, R1 = 500 �,
R2 = 2 k�, and C = 0.33 μF.

(c) Repeat (b) with C = 0.33 mF and comment on the results.

13.50 The circuit in Fig. P13.19 is excited by the source
waveform shown in Fig. P13.34.

(a) Derive the expression for υout(t) using Fourier analysis.

(b) Plot υout(t) using A = 5, T = 3 s, R1 = 500 �,
R2 = 2 k�, and C = 0.33 mF.

Section 13-10: Multisim

13.51 Design a Sigma-Delta converter that converts a
sinusoidal voltage input with a magnitude always ≤ |1 V| and
generates a digital signal with 0–5 V range. No voltage into any
op amp can exceed ±20 V.

13.52 Design a Sigma-Delta converter that converts a
sinusoidal current input with a magnitude always ≤ |1 mA| and
generates a digital signal with 0–5 V range. (Hint: The easiest
way to do this is to add an additional op-amp buffer ahead of
the subtractor input to convert the current signal into a voltage
signal.) No voltage into any op amp can exceed ±20 V.
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Potpourri Questions

13.53 How is data rate related to bandwidth and SNR?

13.54 In brain-machine interfaces, what are the electrodes 
connected to?

Integrative Problems: Analytical / Multisim / myDAQ

To master the material in this chapter, solve the following prob-
lems using three complementary approaches: (a) analytically,
(b) with Multisim, and (c) by constructing the circuit and using
the myDAQ interface unit to measure quantities of interest
via your computer. [myDAQ tutorials and videos are available
on                        .]

†m13.1  Fourier Series Representation: Consider the periodic
voltage waveform υ(t) shown in Fig. m13.1.

(a) Determine if the waveform has dc, even, or odd symmetry.

(b) Obtain its cosine/sine Fourier series representation.

(c) Convert the representation to amplitude/phase format and
plot the amplitude line spectrum for n = 0 using A = 10V
and T = 4 ms.

υ(t)

t
−T/4−T/2 T/4 T/2

A

Figure m13.1 Voltage waveform for Problem m13.1.

m13.2 Circuit Applications: The sawtooth voltage wave-
form υs(t) shown in Fig. m13.2(a) with A = 5 V and T = 2 ms
serves as the input to the circuit of Fig. m13.2(b).

(a) Determine the Fourier series representation of υo(t).

(b) Plot υo(t) and υs(t) with MathScript or MATLAB as
follows:

(1) Time 0 ≤ t ≤ 5 ms,

(2) Sum of nmax = 100 terms, and

(3) Circuit components R = 5.6 k� and C = 0.1 μF.

Use sufficient time resolution to display Gibbs phe-
nomenon ringing.

† Complete solution available on .

(c) Measure the maximum value of υo(t) from the plot, and
also measure the first time at which the maximum value
occurs after t = 0.

R

C

R R

υs
υo+

_

(b) Circuit

(a) Waveform

υs(t)

t
−T T0 2T

A

Figure m13.2 Voltage waveform for Problem m13.2.

m13.3 Fourier Transform: For the waveform shown in
Fig. m13.3:

(a) Determine its Fourier transform.

(b) Plot the amplitude |F(ω)| with MathScript or MATLAB
as follows:

(1) Frequency 0 ≤ f ≤ 4000 Hz (remember to convert
angular frequency ω to oscillation frequency f ),

(2) A = 10, and

(3) τ = 1, 2, and 4 ms (create three distinct plots)

(c) Determine the frequency at which the first null occurs in
each of the three plots.

(d) Discuss the relationship between the rectangular pulse
width and the width of the main lobe of the amplitude
spectrum.

. . . . . .
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f(t)

t
−τ/2 τ/20

A

Figure m13.3 Rectangular pulse waveform for Problem
m13.3.

m13.4 Circuit Analysis with Fourier Transform: The
circuit of Fig. m13.4(a) is excited by the double-pulse
waveform shown in Fig. m13.4(b).

(a) Derive the expression for υo(t) using Fourier analysis.

(b) Plot υs(t) and υo(t) on the same graph over the time
span 0 ≤ t ≤ 5 ms with MathScript or MATLAB for the
following values: A = 5 V, T = 1 ms, R = 5.6 k�, and
C = 0.1 μF.

(c) Determine the value of υo(t) at time t = 2 ms and
t = 3 ms.

υs(t)

t (ms)
3T 4T 5T

A

T 2T

+

_

+

_
C

R

υo(t)υs(t)

(b) Waveform

(a) Circuit

Figure m13.4 Double-plus waveform and circuit for
Problem m13.4.
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Symbol Quantity SI Unit Abbreviation

A Cross-sectional area meter2 m2

A Op-amp gain dimensionless —
B Bandwidth radians/second rad/s
C Capacitance farad F
d Distance or spacing meter m
E Electric field volt/meter V/m
F Force newton N
F Fourier transform (variable) (variable)
f Frequency hertz Hz
G Conductance siemen S
G Closed-loop gain dimensionless —
G Power gain dimensionless —
g MOSFET gain constant amperes/volt A/V
H Transfer function (variable) (variable)
I, i Current ampere A
k Spring constant newtons/meter N/m
LLL Laplace transform (variable) (variable)

APPENDIX A
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Symbol Quantity SI Unit Abbreviation

L Inductance henry H
L, � Length meter m
N Number of turns dimensionless —
P, p Power watt W
P Mechanical stress newtons/meter2 N/m2

pf Power factor dimensionless —
Q, q Charge coulomb C
Q Reactive power volt·ampere reactive VAR
Q Quality factor dimensionless —
R Resistance ohm �

S Cross-sectional area meter2 m2

S Complex power volt·ampere VA
s Complex frequency radians/second rad/s
T , t Time second s

u Velocity meters/second m/s
V, υ Voltage (potential difference) volt V
W Width meter m
W, w Energy joule J
X Reactance part of impedance ohm �

Y Admittance siemen S
Z Impedance ohm �

α Piezoresistive coefficient meters2/newton m2/N
α Damping coefficient nepers/second Np/s
β Common-emitter current gain dimensionless —
β Air resistance constant newtons·second/meter N·s/m
ε Permittivity farads/meter F/m
� Magnetic flux linkage weber Wb
λ Time shift second s
λ Wavelength meters m
μ Magnetic permeability henrys/meter H/m
ρ Resistivity ohms/meter �/m
σ Conductivity siemens/meter S/m
τ Time constant or duration second s
φ Phase radians rad
χe Electrical susceptibility dimensionless —
ξ Damping factor dimensionless —
ω Angular frequency radians/second rad/s
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Solving Simultaneous
Equations

Electric circuit analysis methods help us solve for the
unknown voltages and currents in the circuits:

• Kirchhoff’s circuit law solves for unknown branch
currents.

• Node-voltage method solves for unknown node voltages.

• Mesh-current method solves for unknown mesh currents.

In order to solve for n of these unknown currents or voltages, we
need n independent equations that relate known values (such as
the resistors, voltage and current sources, and other elements
in the circuit) to the unknown voltages or currents. Once we
have these n equations, we can write them in standard matrix
form and solve them using either Cramer’s rule (by hand) or
matrix inversion (using MATLAB, MathScript RF Module,
similar software solvers, or your engineering calculator). This
Appendix provides a brief overview of these approaches.

B-1 Review of Cramer’s Rule
Let us assume that the application of Kirchhoff’s current and
voltage laws to a certain circuit led to the following set of
equations:

2(i1 + i2) − 10 + (3i2 − i1 − 4i3) = 0 (B.1a)

−3(i1 + i2) + 2(i1 + 3i3) = 0 (B.1b)

i1 − 5 − i2 = 0 (B.1c)

Our task is to solve the three independent, simultaneous, linear
equations to determine the values of the three unknowns, i1
to i3. [Recall that independence means that none of the three
equations can be generated through a linear combination of
the other two.] One way to accomplish the specified task is

to apply the method of elimination of variables. If we solve
for i1 in Eq. (B.1c), for example, and then use the expression
i1 = (i2 + 5) to replace i1 in Eqs. (B.1a and b), we end up with
two new equations containing only two variables, i2 and i3.
Repeat of the substitution procedure leads to a single equation
in only one unknown, which can be solved directly. Once that
unknown has been determined, it is a straightforward process
to solve for the values of the other two variables.

Such a solution method might prove effective for solving
a simple set of three simultaneous equations, but what if the
circuit we wish to analyze happens to contain a large number of
variables? In that case, the more expeditious approach is to take
advantage of Cramer’s rule, whose implementation procedure
is both systematic and straightforward.

Our review of Cramer’s rule will initally use the set of three
simultaneous equations given by Eq. (B.1) to demonstrate the
mechanics of the solution procedure for a system of order 3.
Afterwards, we will treat the general case of a system of order n

(consisting of n independent equations in n unknowns).

B-1.1 System of Order 3

Step 1: Cast Equations in Standard Form

Before we can apply Cramer’s rule, we need to regularize the
simultaneous equations into a standard system of the following
form:

a11i1 + a12i2 + a13i3 = b1, (B.2a)

a21i1 + a22i2 + a23i3 = b2, (B.2b)

a31i1 + a32i2 + a33i3 = b3, (B.2c)

where the a’s are the coefficients of the variables, i1 to i3, and the
b’s are the unaffiliated constants. By expanding the bracketed

APPENDIX B
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quantities in Eq. (B.1) and collecting terms, we can convert the
equations into the standard form defined by Eq. (B.2). Such a
process leads to:

i1 + 5i2 − 4i3 = 10, (B.3a)

−i1 − 3i2 + 6i3 = 0, (B.3b)

i1 − i2 = 5. (B.3c)

This generates a matrix equation of the form AI = B, where I
is the vector of n unknowns (currents i1 through i3 in this case):⎡

⎣ 1 5 −4
−1 −3 6
1 −1 0

⎤
⎦
⎡
⎣i1

i2
i3

⎤
⎦ =

⎡
⎣10

0
5

⎤
⎦ . (B.4)

Note that a11 = 1, a21 = −1, and a33 = 0. The regularized set
of three linear, simultaneous equations given by Eq. (B.4) is a
system of order 3.

Step 2: General Solution

According to Cramer’s rule, the solutions for i1 to i3 are given
by

i1 = �1

�
, (B.5a)

i2 = �2

�
, (B.5b)

i3 = �3

�
, (B.5c)

where � is the value of the characteristic determinant of the
system represented by Eq. (B.4), and �1 to �3 are the affiliated
determinants for variables i1 to i3. The procedure for evaluating
these determinants is covered in Steps 3 and 4. Before we do
so, however, we should note that in view of the fact that �

appears in the denominator in Eq. (B.5), Cramer’s rule cannot
provide solutions for the unknown variables when � = 0. This
is not surprising, because for any system of n unknowns, the
condition � = 0 occurs when one, or more, of the equations
is not independent. This means that the system contains more
unknowns than the available number of independent equations,
in which case it has no unique solution.

Step 3: Evaluating the Characteristic Determinant

The characteristic determinant is composed of thea-coefficients
of the 3 × 3 system of equations:

� =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ . (B.6)

Each element in the determinant has an address jk specified by
its row number j and column number k. Thus, a12 is in the first
row (j = 1) and second column (k = 2). For the system given
by Eq. (B.4),

� =
∣∣∣∣∣∣

1 5 −4
−1 −3 6

1 −1 0

∣∣∣∣∣∣ . (B.7)

To evaluate �, we expand it in terms of the elements of one of
its rows. For simplicity, we will always perform the expansion
using the top row. The expansion process converts � from a
determinant of order 3 into the sum of 3 terms, each containing
a determinant of order 2. Expanding Eq. (B.7) by its top row
gives

� = a11C11 +a12C12 +a13C13 = C11 +5C12 −4C13, (B.8)

where C11, C12, and C13 are the cofactors of elements a11, a12,
and a13, respectively. The cofactor of any element ajk located
at the intersection of row j and column k is related to the minor
determinant of that element by

Cjk = (−1)j+kMjk, (B.9)

and the minor determinant Mjk is obtained by deleting from
the parent determinant all elements contained in row j and
column k. Hence, M11 is given by � after removal of the top
row and the left column,

M11 =
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ =
∣∣∣∣−3 6
−1 0

∣∣∣∣ . (B.10)

For a determinant of order 2, expansion by the top row gives

M11 = a22M22 − a23M23 = a22a33 − a23a32, (B.11)

which is equivalent to diagonal multiplication of the upper-
left and lower-right corners to get a22a33, followed with
multiplication of the other two corners to get a23a32, and then
subtracting the latter term from the former. Substituting the
values of the coefficients we have

M11 = (−3) × 0 − 6 × (−1) = 6. (B.12a)

Similarly, M12 is obtained by removing from � the elements
in row 1 and the elements in column 2,

M12 =
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ = a21a33 − a23a31

= (−1) × 0 − 6 × 1 = −6. (B.12b)
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Finally, M13 is obtained by removing from � row 1 and
column 3,

M13 =
∣∣∣∣−1 −3

1 −1

∣∣∣∣ = (−1)× (−1)− (−3)× 1 = 4. (B.12c)

Inserting the values of the three minor determinants in Eq. (B.8)
gives

� = C11 + 5C12 − 4C13

= M11 − 5M12 − 4M13

= 6 − 5 × (−6) − 4 × 4 = 20. (B.13)

Step 4: Evaluating the Affiliated Determinants

The affiliated determinant �1 for variable i1 is obtained by
replacing column 1 in the characteristic determinant � with a
column comprised of the b’s in Eq. (B.2). That is,

�1 =
∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
10 5 −4

0 −3 6
5 −1 0

∣∣∣∣∣∣ . (B.14)

Evaluation of �1 follows the same rules of expansion discussed
earlier in Step 3 in connection with the evaluation of �. Hence

�1 = 10

∣∣∣∣−3 6
−1 0

∣∣∣∣− 5

∣∣∣∣0 6
5 0

∣∣∣∣− 4

∣∣∣∣0 −3
5 −1

∣∣∣∣
= 10 × 6 − 5 × (−30) − 4 × 15 = 150.

Application of Eq. (B.5a) gives

i1 = �1

�
= 150

20
= 7.5.

Similarly, �2 is obtained from � upon replacing column 2
with the b-column, and �3 is obtained from � upon replacing
column 3 with the b-column. The procedure leads to �2 = 50,
�3 = 50, i2 = �2/� = 50/20 = 2.5, and i3 = �3/� = 2.5.

B-1.2 System of Order n

For a regularized system of linear simultaneous equations given
by

a11i1 + a12i2 + a13i3 + · · · + a1nin = b1, (B.15a)

a21i1 + a22i2 + a23i3 + · · · + a2nin = b2, (B.15b)

...
...

...
...

...
...

an1i1 + an2i2 + an3i3 + · · · + annin = bn, (B.15n)

the solution for any variable ik of the system is

ik = �k

�
, (B.16)

where � is the characteristic determinant and �k is the affiliated
determinant for variable ik . Analogous with the 3 × 3 system
of Section 3-1, � is composed of the a-coefficients:

� =

∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
...

an1 an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
, (B.17)

and �k is obtained from � by replacing column k with the
b-column. For example, �2 is given by

�2 =

∣∣∣∣∣∣∣∣∣

a11 b1 a13 · · · a1n

a21 b2 a23 · · · a2n

...
...

...
...

an1 bn an3 · · · ann

∣∣∣∣∣∣∣∣∣
. (B.18)

To determine the value of a determinant of order n, we can
carry out a process of successive expansion, analogous with that
outlined in Step 3 of Section 3-1. The first step in the expansion
process converts � from a determinant of order n into a sum of
n terms, each containing a determinant of order (n−1). Each of
those new determinants can then be expanded into the sum of
determinants of order (n − 2), and the process can be contined
until it reaches a determinant of order 1, which consists of a
single element.

B-2 Matrix Solution Method

The system of three simultaneous equations given by Eq. (B.2)
can be cast in matrix form as

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
⎡
⎣i1

i2
i3

⎤
⎦ =

⎡
⎣b1

b2
b3

⎤
⎦ , (B.19)

or in symbolic form as

AI = B, (B.20)
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where

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , (B.21a)

I =
⎡
⎣i1

i2
i3

⎤
⎦ , (B.21b)

B =
⎡
⎣b1

b2
b3

⎤
⎦ . (B.21c)

Matrix A is always a square matrix (same number of rows and
columns), so long as the system of simultaneous equations
contains the same number of independent equations as the
number of unknowns. The solution for the unknown vector I is
given by

I = A−1B, (B.22)

where A−1 is the inverse of matrix A. The inverse of a square
matrix is given by

A−1 = adj A
�

, (B.23)

where adj A is the adjoint of A and � is the determinant
of A. The adjoint of A is obtained from A by replacing
each element ajk with its cofactor Cjk , and then transposing
the resultant matrix, wherein the rows and columns are
interchanged. Thus,

adj A = [Cjk]T . (B.24)

To illustrate the matrix solution method, let us return to the
three simultaneous equations given by Eq. (B.3). Matrices A
and B are given by

A =
⎡
⎣ 1 5 −4

−1 −3 6
1 −1 0

⎤
⎦ , (B.25a)

B =
⎡
⎣10

0
5

⎤
⎦ . (B.25b)

According to Eq. (B.24), adj A is given by

adj A =
⎡
⎣C11 C12 C13

C21 C22 C23
C31 C32 C33

⎤
⎦

T

=
⎡
⎣C11 C21 C31

C12 C22 C32
C13 C23 C33

⎤
⎦ . (B.26)

Each cofactor is a 2 × 2 determinant. Application of the
definition given by Eq. (B.9) leads to

adj A =
⎡
⎣6 4 18

6 4 −2
4 6 2

⎤
⎦ . (B.27)

Upon incorporating Eqs. (B.22) and (B.23) and using the value
of � obtained in Eq. (B.13), we have

I =
⎡
⎣i1

i2
i3

⎤
⎦ = 1

20

⎡
⎣6 4 18

6 4 −2
4 6 2

⎤
⎦
⎡
⎣10

0
5

⎤
⎦ . (B.28)

Standard matrix multiplication leads to

i1 = 1

20

[
6 4 18

]⎡⎣10
0
5

⎤
⎦ = 1

20
(6×10+4×0+18×5) = 7.5.

(B.29)
Similarly, multiplication using the second and third rows of
adj A leads to i2 = i3 = 2.5.

B-3 MATLAB or MathScript Solution

In MATLAB or MathScript software, matrices A and B of
Eq. (B.25) are entered as:

A = [
1 5 −4; −1 −3 6; 1 −1 0

] ;
B = [10; 0 ; 5];

The solution of AI = B is obtained by entering the statement

I = A \ B;

The MATLAB or MathScript response would be

I =
7.5000

2.5000

2.5000.

More information on using MATLAB and MathScript is
available in Appendix E.
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Overview of Multisim
by Joe Steinmeier

Included on the book’s website is a brief tutorial for 
getting started with Multisim. Multisim is a useful program 
for simulating and analyzing circuits. While the textbook 
introduces many of Multisim’s fundamental concepts, in the 
interest of space, many others are left out. The tutorial strives 
to review as well as continue the textbook’s coverage of 
Multisim. Importantly, the demos help clear up common 
stumbling blocks and the sometimes strange idiosyncrasies 
of the Multisim software.

The tutorial consists of 43 basic “Demos,” which are mixtures 
of problems, solutions, investigations, and experiments in 
Multisim. The Demos are distributed among Chapters 2–9 
and also Chapters 12 and 13. Each demo attempts to focus 
on introducing one main concept of Multisim, although it is 
unavoidable that other concepts are introduced throughout. An 
index is included to allow for the quick referencing of the 
tutorial. 

The demos are intended to help you become proficient in 
Multisim via simple but powerful examples. As you study 
each chapter in class, it is a good idea to at least skim over 
them and do some of the sample problems on the book 
website. Multisim can be an invaluable tool when trying to 
understand how any circuit works!

The demos, grouped by chapter, cover the following material:

Chapter 2

2.1 Introduction to Multisim/The Three-way Switch

Reviews layout basics with a simple, yet elegant, circuit
involving three-way switches and light bulbs.

2.2 Resistor Network Analysis

Introduces the Multimeter tool and resistor circuits with
many resistors.

2.3 Thermal Sensing Wheatstone Bridge

Demonstrates a variable resistor sensor in a Wheatstone
bridge circuit.

2.4 The Wattmeter in Multisim

Introduces power measurement in resistive circuits using
the Wattmeter tool.

2.5 A Study of Dependent Sources

Discusses the various dependent sources in Multisim,
their limitations and uses.

2.6 An Introduction to ABM Sources

Discusses the Analog Behavioral Modeling (ABM)
sources in Multisim, which allow for the creation of
formula-based dependent sources.

Chapter 3

3.1 DC Circuit Analysis I

Discusses how to use the Measurement Probes and the
Interactive Simulation mode to solve for the voltages and
currents in simple circuits.

3.2 DC Circuit Analysis II

Discusses how to use the DC Operating Point Analysis
tool to solve for the voltages and currents in simple circuits.

APPENDIX C

For information on the acquisition of the Multisim software, see the book's website (http://CAD.eecs.umich.edu).
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3.3 Multisim and Thévenin and Norton Circuits

Discusses a general technique, using the Measurement
Probe, for determining Thévenin/Norton equivalents of
any circuit.

3.4 Maximum Power Transfer

Uses the Wattmeter and the Interactive Simulation
mode to examine power transfer in resistive circuits.

3.5 Plotting Power Transfer in Multisim

Demonstrates how to make an ABM source behave like
a time-varying resistor and uses this component in a
Parameter Sweep analysis to plot power transfer as a
function of a varying resistance. This demo presents a very
useful technique for plotting how a DC output changes as
a function of a changing device parameter.

Chapter 4

4.1 Operational Amplifiers in Multisim

Introduces the DC Operating Point Analysis tool and
uses it to analyze an inverting op-amp circuit. Also
provides very nice tips on making attractive, easy-to-read
plots in Multisim.

4.2 Introducing the Function Generator and the Oscillo-
scope

Introduces the Function Generator and Oscilloscope
instruments and uses them to measure the voltage gain
of an op-amp circuit. Also discusses the Interactive
Simulation tool in more detail.

4.3 Introduction to Signal Sources and the Transient
Analysis

Introduces time-varying sources and the Transient
Analysis tool in the context of a simple op-amp circuit.

4.4 Using an Operational Amplifier in a Simple Audio
Mixer

Combines the lessons of Demos 4.1, 4.2, and 4.3 to build
a three-channel op-amp audio mixer and analyze its time-
dependent behavior.

Chapter 5

5.1 Introduction to Transient Circuits

Discusses how to build interactive switch-based tran-
sients in circuits with the Interactive Simulation tool.

5.2 Transient Analysis and First-Order Circuits

Discusses how to build voltage-controlled switches to
generate transients with the Transient Analysis tool.

5.3 Inductors in Multisim

Extends Demos 5.1 and 5.2 to switch-driven transients in
circuits with inductors.

5.4 Time Constants in RC Circuits

Uses the Parameter Sweep tool to plot the response of
an RC circuit as you vary the value of R.

Chapter 6

6.1 Parallel RLC Circuit Analysis

Applies the Oscilloscope and both types of switches
discussed in Demos 5.1 and 5.2 to analyze the transient
behavior of RLC circuits.

6.2 An Over-, Under-, and Critically Damped Circuit

Applies ABM sources to modeling the three fundamental
types of transient responses in an RLC circuit.

Chapter 7

7.1 Measuring Impedance with the Network Analyzer

A good introduction into the Network Analyzer tool.

7.2 Introduction to AC Analysis

Discusses how to produce frequency response plots using
the AC Analysis tool. The demo uses an RLC circuit as an
example, but the technique is useful for any type of circuit.

7.3 AC Thévenin Circuit Determination

Uses the AC Analysis tool and the Network Analyzer
instrument to determine the open circuit voltage and com-
plex impedance of an RLC circuit at a specific frequency.
Using this data, the demo shows how to calculate the
Thévenin equivalent circuit and demonstrates that the
transient response of the original circuit and its Thévenin
equivalent are the same.

7.4 Making an Impedance Purely Real

Uses the AC Analysis tool and the Network Analyzer
instrument to adjust a circuit’s frequency response.

7.5 Modeling an AC-to-DC Power Supply

Builds, tests, and analyzes a rectifier circuit, very similar
to that in Section 7-9, using Multisim.
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7.6 Phase Shift Circuits in Multisim

A good companion demo to Example 7-19 in Chapter 7.

7.7 The Logic Analyzer: An Introduction

Describes the Logic Analyzer used in Example 7-19 of
Section 7-10 in more detail.

Chapter 8

8.1 Introduction to RMS Values in Multisim

Discusses how to use the Multimeter instrument to obtain
root-mean-square (rms) values for voltage, current, and
power in a circuit.

8.2 AC Power Using AC Analysis

8.3 Power Factor in Multisim

These two demos (8.2 and 8.3) discuss the somewhat
tricky business of plotting complex power and power
factors as a function of frequency using the AC Analysis
tool. Because of Multisim’s variable and equation
nomenclature, a user can easily spend a long time trying to
enter the right equations in the analysis tools. This demo
clarifies the jargon!

8.4 Three-Phase in Multisim

Demonstrates the three-phase source component in
Multisim using the Measurement Probe and the
Transient Analysis tool.

8.5 Maximizing Power Delivered to a Load in a Complex
Circuit

Uses the AC Analysis tool to calculate the power delivered
to a load as a function of frequency. A good companion
demo to Section 8-6.

Chapter 9

9.1 Introduction to Filters in Multisim

Demonstrates how to use the Bode Plotter instrument and
the AC Analysis tool to generate Bode plots of any circuit.

9.2 Modeling a (Very)-Low-Pass Filter in Multisim

Models a real-life application of a low-pass filter.
Frequency response and transient response are shown with
the various Multisim analysis tools.

9.3 Speaker Crossover Circuit (Plotting Multiple Filters at
Once)

This is a great companion demo to Technology Brief 18:
Electrical Engineering and theAudiophile. It demonstrates
how to design and test a basic audio crossover circuit with
the AC Analysis tool.

9.4 AC Parameter Sweep in a Radio Tuner Circuit

Uses the Parameter Sweep tool and the AC Analysis
tool to demonstrate how varying a capacitor’s value adjusts
a filter’s response, thereby acting as a tuner (or “station
selector”) for a radio receiver.

9.5 60-Hz Active Notch Filter

Offers an analysis of a multi-stage op-amp bandstop (or
notch) filter. A good companion demo to Sections 9-7 and
9-9.

Chapter 12

12.1 Piecewise Linear Sources

Provides more detail on the piecewise linear source.

12.2 Exponential Sources

Provides more detail on the exponential source.

Chapter 13

13.1 Introduction to the Spectrum Analyzer

13.2 Fourier Analysis in Multisim

These two demos (13.1 and 13.2) describe how to measure
a signal’s various frequency components using either
the Spectrum Analyzer instrument and/or the Fourier
Analysis tool.

13.3 Analysis of a Square Wave

This demo uses the Spectrum Analyzer and Oscillo-
scope to demonstrate the construction of a square wave
from superimposed sinusoidal components at different
frequencies (i.e., the sum of the Fourier components).
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Mathematical Formulas

D-1 Trigonometric Relations

sin x = ± cos(x ∓ 90◦)

cos x = ± sin(x ± 90◦)

sin x = − sin(x ± 180◦)

cos x = − cos(x ± 180◦)

sin(−x) = − sin x

cos(−x) = cos x

sin2 x = 1

2
(1 − cos 2x)

cos2 x = 1

2
(1 + cos 2x)

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

2 cos x cos y = cos(x + y) + cos(x − y)

sin 2x = 2 sin x cos x

cos 2x = 1 − 2 sin2 x

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

sin x − sin y = 2 cos

(
x + y

2

)
sin

(
x − y

2

)

cos x + cos y = 2 cos

(
x + y

2

)
cos

(
x − y

2

)

cos x − cos y = −2 sin

(
x + y

2

)
sin

(
x − y

2

)

ejx = cos x + j sin x (Euler’s identity)

sin x = ejx − e−jx

2j

cos x = ejx + e−jx

2

cos2 x + sin2 x = 1

2π rad = 360◦

1 rad = 57.30◦

D-2 Indefinite Integrals (a and b are

constants)

∫
sin ax dx = −1

a
cos ax

∫
cos ax dx = 1

a
sin ax

∫
eax dx = 1

a
eax

∫
ln x dx = x ln x − x

∫
xeax dx = eax

a2 (ax − 1)

APPENDIX D
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∫
x2eax dx = eax

a3 (a2x2 − 2ax + 2)

∫
x sin ax dx = 1

a2 sin ax − x

a
cos ax

∫
x cos ax dx = 1

a2 cos ax + x

a
sin ax

∫
x2 sin ax dx = 2x

a2 sin ax − a2x2 − 2

a3 cos ax

∫
x2 cos ax dx = 2x

a2 cos ax + a2x2 − 2

a3 sin ax

∫
eax sin bx dx = eax

a2 + b2 (a sin bx − b cos bx)

∫
eax cos bx dx = eax

a2 + b2 (a cos bx + b sin bx)

∫
eax sin2 bx dx =

eax

a2 + 4b2

[
(a sin bx − 2b cos bx) sin bx + 2b2

a

]
∫

eax cos2 bx dx =

eax

a2 + 4b2

[
(a cos bx + 2b sin bx) cos bx + 2b2

a

]
∫

sin ax sin bx dx =
sin(a − b)x

2(a − b)
− sin(a + b)x

2(a + b)
, a2 �= b2

∫
cos ax cos bx dx =
sin(a − b)x

2(a − b)
+ sin(a + b)x

2(a + b)
, a2 �= b2

∫
sin ax cos bx dx =

− cos(a − b)x

2(a − b)
− cos(a + b)x

2(a + b)
, a2 �= b2

∫
sin2 ax dx = x

2
− sin 2ax

4a∫
cos2 ax dx = x

2
+ sin 2ax

4a

∫
dx

x2 + a2 = 1

a
tan−1 x

a∫
dx

(x2 + a2)2 = 1

2a2

(
x

x2 + a2 + 1

a
tan−1 x

a

)
∫

x2 dx

a2 + x2 = x − a tan−1 x

a

D-3 Definite Integrals (m and n are
integers)

2π∫
0

sin nx dx =
2π∫

0

cos nx dx = 0

π∫
0

sin2 nx dx =
π∫

0

cos2 nx dx = π

2

π∫
0

sin nx sin mx dx = 0, n �= m

π∫
0

cos nx cos mx dx = 0, n �= m

π∫
0

sin nx cos nx dx = 0

π∫
0

sin nx cos mx dx =

⎧⎨
⎩

0, if m + n = even and m �= n

2n

n2 − m2 , if m + n = odd and m �= n

2π∫
0

sin nx cos mx dx = 0

∞∫
0

sin ax

ax
dx = π

2a
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MATLAB and MathScript

E-1 Background

MATLAB

MATLAB is a computer program developed and sold by the 
Mathworks, Inc.

“MATLAB” is an abbreviation for MATrix LABoratory. 
It was originally based on a set of numerical linear algebra 
programs, written in FORTRAN, called LINPACK. So 
MATLAB tends to formulate problems in terms of vectors and 
arrays of numbers, and often solves problems by formulating 
them as linear algebra problems.

MathScript: For information on the acquisition of Math-
Script, see the book's website (CAD.eecs.umich.edu).

MathScript is a computer program developed and sold 
by National Instruments, as a module in LabView. The 
basic commands used by MATLAB also work in 
MathScript, but higher-level MATLAB commands may not 
work in MathScript. For the purposes of this Circuits book, all 
necessary commands work equally well in both MATLAB and 
MathScript.

A student version of MathScript is available for free 
for students using this book (see http://c3.eecs.umich.edu/ 
for instructions). Access to MATLAB is not required to use 
this book. In this sequel, we use “M/M” to designate 
“MATLAB or MathScript.”

Getting Started

To use the student version of MathScript, download 
LabView and then select MathScript under “Tools.”

We will use this font to represent typed commands and 
generated output. You can get help for any command, such as 
plot, by typing at the prompt help plot.

Some basic things to know about M/M:

• Inserting a semicolon “;” at the end of a command
suppresses the output; without it M/M will type the results
of the computation. This is harmless, but it is irritating to
have numbers flying by on your screen.

• Inserting ellipses “. . . ” at the end of a command means
it is continued on the next line. This is useful for long
commands.

• Inserting “%” at the beginning of a line makes the line a
comment; it will not be executed. Comments are used to
explain what the program is doing at that point.

• clear eliminates all present variables. Programs should
start with a clear.

• whos shows all variables and their sizes.

• M/M variables are case-sensitive: t and T are different
variables.

• save myfile X,Y saves the variables X and Y in the
file myfile.mat for use in another session of M/M at another
time.

• load myfile loads all variables saved in myfile.mat,
so they can now be used in the present session of M/M.

• quit ends the present session of M/M.

.m Files

An M/M program is a list of commands executed in succession.
Programs are called “m-files” since their extension is “.m,” or
“scripts.”

APPENDIX E
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To write an .m file, at the upper left, click:
File → New → m-file
This opens a window with a text editor.
Type in your commands and then type:
File → Save as → myname.m
Make sure you save it with an .m extension. Then you can run

the file by typing its name at the prompt: >> myname. Make
sure the file name is not the same as a MATLAB command!
Using your own name is a good idea.

You can access previously-typed commands using uparrow
and downarrow on your keyboard.

To download a file from a web site, right-click on it, select
save target as, and use the menu to select the proper file type
(specified by its file extension).

E-2 Basic Computation

E-2.1 Basic Arithmetic

• Addition: 3+2 gives ans=5

• Subtraction: 3-2 gives ans=1

• Multiplication: 2*3 gives ans=6

• Division: 6/2 gives ans=3

• Powers: 2̂ 3 gives ans=8

• Others: sin,cos,tan,exp,log,log10

• Square root: sqrt(49) gives ans=7

• Conjugate: conj(3+2j) gives ans=3-2i

Both i or j represent
√−1; answers use i. pi represents π .

e does not represent 2.71828.

E-2.2 Entering Vectors and Arrays

To enter row vector [1 2 3] and store it in A type at the prompt
A=[1 2 3]; or A=[1,2,3];

To enter the same numbers as a column vector and store
it in A, type at the prompt either A=[1;2;3]; or A=[1
2 3];A=A’; Note A=A’ replaces A with its transpose.
“Transpose” means “convert rows to columns, and vice-versa.”

To enter a vector of consecutive or equally-spaced numbers,
follow these examples:

• [2:6] gives ans=2 3 4 5 6

• [3:2:9] gives ans=3 5 7 9

• [4:-1:1] gives ans=4 3 2 1

To enter an array or matrix of numbers, type, for example,
B=[3 1 4;1 5 9;2 6 5]; This gives the array B and its
transpose B’

B =
⎡
⎣3 1 4

1 5 9
2 6 5

⎤
⎦ B ′ =

⎡
⎣3 1 2

1 5 6
4 9 5

⎤
⎦

Other basics of arrays:

• ones(M,N) is an M × N array of “1”

• zeros(M,N) is an M × N array of “0”

• length(X) gives the length of vector X

• size(X) gives the size of array X

For B above, size(B) gives ans=3 3

• A(I,J) gives the (I,J)th element of A. For B above,
B(2,3) gives ans=9

E-2.3 Array Operations

Arrays add and subtract point-by-point:
X=[3 1 4];Y=[2 7 3];X+Y gives ans=5 8 7

But X*Y generates an error message.
To compute various types of vector products:

• To multiply element-by-element, use X.*Y This gives
ans=6 7 12. To divide element-by-element, typeX./Y

• To find the inner product of X and Y
(3)(2) + (1)(7) + (4)(3) = 25, use X*Y’ This gives
ans=25

• To find the outer product of X and Y

⎡
⎣(3)(2) (3)(7) (3)(3)

(1)(2) (1)(7) (1)(3)

(4)(2) (4)(7) (4)(3)

⎤
⎦ use X’*Y

This gives the above matrix.
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A common problem is when you think you have a row
vector when in fact you have a column vector. Check by
using size(X); in the present example, the command gives
ans=1,3 which tells you that X is a 1 × 3 (row) vector.

• The following functions operate on each element
of an array separately, giving another array:
sin,cos,tan,exp,log,log10,sqrt
cos([0:3]*pi) gives ans=1 -1 1 -1

• To compute n2 for n = 0, 1 . . . 5, use
[0:5].̂ 2 which gives ans=0 1 4 9 16 25

• To compute 2n for n = 0, 1 . . . 5, use
2.̂ [0:5] which gives ans=1 2 4 8 16 32

Other array operations include:

• A=[1 2 3;4 5 6];(A(:))’
Stacks A by columns into a column vector and transposes
the result to a row vector. In the present example, the
command gives ans=1 4 2 5 3 6

• reshape(A(:),2,3)
Unstacks the column vector to a 2×3 array which, in this
case, is the original array A.

• X=[1 4 1 5 9 2 6 5];C=X(2:8)-X(1:7)
Takes differences of successive values of X. In the present
example, the command gives C=3 -3 4 4 -7 4 -1

• D=[1 2 3]; E=[4 5 6]; F=[D E]
This concatenates the vectors D and E (i.e., it appends
E after D to get vector F) In the present example, the
command gives F=1 2 3 4 5 6

• I=find(A>2) stores in I locations (indices) elements
of vector A that exceed 2.
find([3 1 4 1 5]<2) gives ans=2 4

• A(A>2)=0 sets to 0 all values of elements of vector
A exceeding 2. A=[3 1 4 1 5]; A(A<2)=0 gives
A=3 0 4 0 5

M/M indexing of arrays starts with 1, while signals and
systems indexing starts with 0. For example, the DFT is
defined using index n = 0, 1 . . . N − 1, for k = 0, 1 . . . N − 1.
fft(X), which computes the DFT of X, performs

fft(X)=X*exp(-j*2*pi*[0:N-1]’*[0:N-1]/N);

E-2.4 Solving Systems of Equations

To solve the linear system of equations

[
1 2
3 4

] [
x

y

]
=
[

17
39

]

using

A=[1 2;3 4];Y=[17;39];X=A\Y;X’
gives ans=5.000 6.000, which is the solution [x y]′.

To solve the complex system of equations

[
1 + 2j 3 + 4j

5 + 6j 7 + 8j

] [
x

y

]
=
[

16 + 32j

48 + 64j

]

[1+2j 3+4j;5+6j 7+8j]\[16+32j;48+64j] gives

ans=
2 − 2i

6 + 2i
,

which is the solution.
These systems can also be solved using inv(A)*Y, but we

do not recommend it because computing the matrix inverse of
A takes much more computation than just solving the system of
equations. Computing a matrix inverse can lead to numerical
difficulties for large matrices.

E-3 Partial Fractions

E-3.1 Rectangular-to-Polar Complex Conversion

If an M/M result is a complex number, then it is presented in its
rectangular form a+bj. M/M recognizes both i and j as

√−1,
so that complex numbers can be entered as 3+2j or 3+2i.

To convert a complex number X to polar form, use
abs(X),angle(X) to get its magnitude and phase (in
radians), respectively. To get its phase in degrees, use
angle(X)*180/pi

Note atan(imag(X)/real(X)) will not give the
correct phase, since this formula is only valid if the real part is
positive. angle corrects this.

The real and imaginary parts of X are found using real(X)
and imag(X), respectively.
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E-3.2 Polynomial Zeros

To compute the zeros of a polynomial, enter its coefficients
as a row vector P and use R=roots(P). For example, to
find the zeros of 3x3 − 21x+18 (the roots of 3x3 − 21x+18=0)
use P=[3 0 -21 18];R=roots(P);R’, giving ans=
-3.0000 2.0000 1.0000, which are the roots.

To find the monic (leading coefficient is one) polynomial
from the values of its zeros, enter the numbers as a column vector
R and use P=poly(R). For example, to find the polynomial
having {1, 3, 5} as its zeros, use R=[1;3;5];P=poly(R),
giving P=1 -9 23 -15. The polynomial is therefore
x3 − 9x2 + 23x-15.

Note that polynomial are stored as row vectors, and roots are
stored as column vectors.

Pole-zero diagrams are made using zplane. To produce the
pole-zero diagram of

H(z) = z2 + 3z + 2

z2 + 5z + 6
,

type zplane([1 3 2],[1 5 6]). The unit circle |z|=1
is also plotted, as a dotted line.

E-3.3 Partial Fraction Expansions

Partial fraction expansions are a vital part of signals and
systems, and their computation is onerous (see Chapter 3).
M/M computes partial fraction expansions using residue.
Specifically,

H(s) = b0sM + b1sM−1 + · · · + bM

a0sN + a1sN−1 + · · · + aN

has the partial fraction expansion (if M ≤ N )

H(s) = K + R1

s − p1
+ · · · + RN

s − pN

The poles {pi} and residues {Ri} can be computed from
coefficients {ai} and {bi} using

B=[b0 b1 . . . bM ];A=[a0 a1 . . . aN ]
[R P]=residue(B,A);[R P]

The residues {Ri} are given in column vector R, and poles {pi}
are given in column vector P.

To compute the partial fraction expansion of

H(s) = 3s + 6

s2 + 5s + 4
,

use the command

[R P]=residue([3 6],[1 5 4]);[R P]

This gives

[
2 −4
1 −1

]
, so R=

[
2
1

]
and P=

[−4
−1

]
, from which we

read off

H(s) = 2

s + 4
+ 1

s + 1
.

In practice, the poles and residues both often occur in
complex conjugate pairs. Then use

Rept + R∗ep∗t = 2|R|eat cos(ωt + θ),

R = |R|ejθ and p = a + jω, to simplify the result.
To compute the partial fraction expansion of

H(s) = s + 7

s2 + 8s + 25
,

use the command

[R P]=residue([1 7],[1 8 25]);[R P]

This gives

[
0.5000 − 0.5000i −4.000 + 3.000i

0.5000 + 0.5000i −4.000 − 3.000i

]

from which we have

H(s) = 0.5 − j0.5

s + 4 − j3
+ 0.5 + j0.5

s + 4 + j3
,

which has the inverse Laplace transform

h(t) = (0.5 − j0.5)e(−4+j3)t + (0.5 + j0.5)e(−4−j3)t

From abs(0.5-0.5j),angle(0.5-0.5j),

h(t) = 2

√
2

2
e−4t cos(3t − π

4
) = √

2e−4t cos(3t − π

4
).

Both h(t) expressions are valid for t > 0.
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If H(s) is proper but not strictly proper, the constant K is
nonzero. It is computed using

[R P K]=residue(B,A);[R P],K

since K has size different from R and P.
To find the partial fraction expansion of

H(s) = s2 + 8s + 9

s2 + 3s + 2
,

use the command

[R P K]=residue([1 8 9],[1 3 2]);[R P] K

gives

[
3 −2
2 −1

]
, K=1 so R=

[
3
2

]
, P=

[−2
−1

]
, from which we read

off

H(s) = 1 + 3

s + 2
+ 2

s + 1
.

Double poles are handled as follows:
To find the partial fraction expansion of

H(s) = 8s2 + 33s + 30

s3 + 5s2 + 8s + 4
,

use the command

[R P]=residue([8 33 30],[1 5 8 4]);

[R P] gives

⎡
⎣3 −2

4 −2
5 −1

⎤
⎦, so R=

⎡
⎣3

4
5

⎤
⎦, P=

⎡
⎣−2

−2
−1

⎤
⎦. We then

read off

H(s) = 3

s + 2
+ 4

(s + 2)2 + 5

s + 1
.

In practice, we are interested not in an analytic expression for
h(t), but in computing h(t) sampled every Ts seconds. These
samples can be computed directly from R and P, for 0 ≤ t ≤ T :

t=[0:Ts:T];H=real(R.’*exp(P*t));

Since R and P are column vectors, and t is a row vector,
H is the inner products of R with each column of the array
exp(P*t). R.’ transposes R without also taking complex
conjugates of its elements. real is necessary since roundoff
error creates a tiny (incorrect) imaginary part in H.
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myDAQ Quick Reference Guide
by Nathan Sawicki∗

NI myDAQ is a student instrumentation and data acquisition
device that allows students to make electronic measurements
from their PC (Fig. F-1). Usually the circuit is built on a
breadboard, which allows for making electrical connections
between components without permanently soldering the
connections. myDAQ converts the PC into an electronic
instrumentation laboratory containing a variety of voltage
sources (DC, AC, pulse, etc.) with which to excite the circuit,
and standard test equipment (multimeter, oscilloscope, etc.) for
measuring the voltage and current responses of the circuit. The
physical wire connections made between the circuit and the
myDAQ are essentially the same as those one would make to a
real source or test equipment, and the graphical displays on the
PC are visually very much like those one would see on the real
test equipment.

This appendix is a quick reference guide for the myDAQ and
how to use it. Additional material including video tutorials, are
available on the book website http://c3.eecs.umich.edu/.

F-1 Getting Started with the myDAQ

Follow the directions that came with your myDAQ to (a) install
the NI ELVISmx software (if you have a MAC instead of a PC,
you will need to install a Windows emulator before installing
the myDAQ software), (b) install the 20-pin connector in the
myDAQ, and (c) connect the myDAQ to the PC.

F-1.1 USB Port

Connect the myDAQ to the PC using the USB cable that came
with the MyDAQ. The light next to the USB port will indicate
that the myDAQ is functional (Fig. F-2).

∗This appendix was originally written by Mr. Sawicki, a fourth-year
student at the University of Michigan, and later edited by the book authors.

myDAQ Circuit
PC

Figure F-1: myDAQ connected to a PC and an electric circuit.
The PC is used to provide the voltage inputs to the circuit, as
well as to measure its output voltages and currents.

F-1.2 Source Ports

Install the 20-Screw Terminal Connector into the myDAQ (you
may need to press hard to insert the connector). This will give
you access to:

(1) analog voltage sources (± 15 V (left) and +5 V (far right
pin)), which are always “on,”

(2) two grounds, AGND and DGND, which are connected
internally in the myDAQ,

(3) two analog output ports, A0 and A1, which can provide
variable DC, AC, and other waveforms up to ±10 V peak,

(4) a digital I/O port DIO (which we will not be using in this
book), and

(5) Audio In and Audio Out ports.

APPENDIX F

Note: The myDAQ board, which does not come with 
the book, can be purchased directly from National 
Instruments.
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Measurement
ports

Terminal
connector

USB port

Light

Figure F-2: myDAQ unit.

The myDAQ does not provide a current source, so we will
demonstrate how to build one later on in this appendix. To
access any of these ports, use the screwdriver that came with the
myDAQ to loosen the screw at the top of the terminal, install
the (stripped) end of the wire, and retighten the screw.

� The ±15 V and 5 V sources are always “on” when
the myDAQ is operational. The other sources are “on”
or “off,” depending on the choices selected in the control
panel on the PC display. Be careful not to short (touch)
these sources to each other, to ground, to parts of your
circuit where you do not intend them to be, or to you. Be
careful when measuring within your circuit that metal
probe tips do not accidentally touch (short) multiple
points in the circuit. Although the current produced by
the myDAQ is low, do not touch these sources (you can
touch the insulated parts of wires, etc., but avoid touching
the stripped ends and other bare metal parts attached to
these sources). It is always a good idea when building
or modifying circuits to disconnect the source from the
circuit while making changes. �

F-1.3 Measurement Ports

The three measurement ports (Fig. F-2) provide access to the
digital multimeter (DMM: voltmeter, ohmmeter, ammeter, as
well as diode test). Depending on the type of measurement you
wish to make, connect the probes that came with the myDAQ to
these ports. One probe (black) should always be connected to
the COM port, which is the common/reference/ground node.
Then, connect the other (red) probe to one of the HI ports:

Voltmeter

Volts

Ammeter

Amps

IVΩ

com

A

Figure F-3: DMM ports. Note that these three connections
represent the same three connections on the DMM graphic shown
throughout the book.

(a) The left port is for voltage, resistance, and diode
measurements, and

(b) the right port is used for current measurements.
Figure F-3 shows the proper connection for voltage and
resistance measurements. The connection for current uses
the right red port instead of the left one.

�WARNING: The maximum allowable myDAQ voltage
is 60 VDC/Vrms. DO NOT plug the myDAQ into
circuits with hazardous voltages, such as wall outlets
and car batteries; doing so could damage the myDAQ
or cause injury. READ the NI myDAQ User Guide and
Specifications prior to NI myDAQ use. Be careful when
using the ammeter to connect it in SERIES with the
current being measured, NOT in parallel, or you could
blow out the fuse on the myDAQ. �

F-1.4 NI ELVISmx Instrument Launcher

Run the NI ELVISmx software. If the instrument launcher
is not already open, go to Start�All Programs�National
Instruments�NI ELVISmx for NI ELVISMX & NI
myDAQ�NI ELVISmx Instrument Launcher.
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Figure F-4: Instrument launcher.

The instruments used in this book include (Fig. F-4):

DMM: (Digital Multimeter): Measures magnitudes
of voltage, current, and resistance.

Scope: Measures time-varying voltages.

FGEN (Function Generator): Source for time
varying (oscillating) voltages including sine waves,
square waves, rectangular functions, and pulse trains.

Bode: Measures the frequency response of a circuit.

ARB (Arbitrary Waveform Generator): Source for
arbitrary waveforms including variable DC voltages.

F-2 Measuring Resistance

1. Software: Run the NI ELVISmx software. Select the digital
multimeter (DMM) from the instrument launcher. Select the
ohmmeter, and its setup as shown in Fig. F-5. Select either
Auto Range (a good start) or a range slightly above the value
you expect to measure. Follow the instructions in step 3 below
to connect the resistor you want to test to myDAQ, then press
RUN. It will take a few seconds from when you connect the
resistor to when the correct value is shown on the PC display.

2. Connection: Connect probe cables to the left HI and COM
ports on the myDAQ as shown.

(b) PC display(a) Select DMM on Instrument Launcher

Measuring a
1 kΩ resistor

Auto or
Specify Range

Figure F-5: Using DMM to measure resistance.
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Figure F-6: Connecting probes to a resistor.

3. Measure: Touch the pointy ends of the probes to either end
of a resistor (red/black polarity does not matter). It is safe to
hold the resistor and probes in your fingers. The probes are also
pointy enough to poke directly into the protoboard holes, plus
they have small gouges to help steady them against wires, as
shown in Fig. F-6. For easier connection, you can use additional
clips to connect the probes to your wires. It is important to have
good quality connections between the measurement probes and
your circuit, which requires steady pressure or additional clips.
The resistor in the figure (Brown-Black-Red) is a 1 k� resistor.

NOTE: If you are measuring a resistor in a circuit, your
measurement will include the effect of other connected circuit
elements. Remove the resistor from the circuit if you are trying
to measure its resistance alone.

F-3 Measuring Voltage

Specification: The maximum voltage the myDAQ can be
connected to is 60 V DC/Vrms. Do not connect the myDAQ
to a voltage higher than this.

Software: Run the NI ELVISMX software. Select the DMM
option (Fig. F-7).

Connection: Connect probe cables to the leftr HI and COM
ports on the myDAQ as shown in Fig. F-6.

When connecting the voltmeter to the circuit, the red lead
should be connected to the (+) terminal of the voltage being
measured, and the black lead should be connected to the (−)

terminal, as shown in Fig. F-8(b). Figure 1-18(b) of the text
shows the connections for measurement of differential voltages
and node voltages.

Measure AA Battery: Touch the red DMM probe to the
positive battery terminal while touching the black DMM
probe to the negative battery terminal. Press hard enough
to make a good electrical connection. You should see the
DMM reading change to a value close to the battery’s
voltage rating. AAA, AA, C, D cells should all give a
reading of around 1.5 V. Now see what happens if you
switch the leads and put the red lead on the − terminal
and the black lead on the + terminal.

Measure myDAQ Voltages: Now let’s measure the voltages
that come out of the myDAQ. Press RUN on the DMM, so that
it is measuring voltage. You should see 0.0 V on the PC display
until you connect the probes across an electrical device or a
circuit. Press the red myDAQ probe to the screw on the +15 V
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(a) Select DMM on Instrument Launcher (b) PC display

Figure F-7: Using DMM to measure voltage.

(a) Probe leads

(b) Voltmeters connected to measure voltage difference
Vab and node voltage Va (relative to ground)

−

Node Va

Measures
Vab

Measures Va
(relative to

ground)
Node Vb

R1

R2

Vs
+

Figure F-8: Connecting probes to measure voltage.

connection on the 20-pin terminal and the black probe to the
AGND pin.You should see a voltage close to +15 V. Repeat for
the −15V and +5V measurements. What happens if you switch
the + (red) and − (black) DMM leads in your measurements?
Press the Stop button when you have finished your readings.

Evaluate: Was the voltage you measured from your battery
lower than its voltage rating? If so, why? What happened when
you switched the leads?

F-4 Measuring Current

Specification: The maximum current the myDAQ can be
connected to is 1A DC/Arms. Do not connect the myDAQ
to a current higher than this.

Software: Run the NI ELVISMX software. Select the DMM
software. Select the DC ammeter ( ), and its setup as shown
in Fig. F-9. Select either Auto Range (a good start) or a range
slightly above the value you expect to measure (20 mA is a good
range for this test). Press RUN. The DMM is now measuring
current (which will be 0.0 until you connect the probes in series
with a current you want to measure).

Connection: Connect the Probes to the myDAQ as shown in
Fig. F-10. When connecting the ammeter to the circuit, the red
lead is where the current comes in (the “tail” of the current
arrow), and the black lead is where the current leaves (the “tip/
head” of the arrow). Figure F-10(b) shows the connections. If
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(a) Select DMM

(b) PC display

Measuring
current through
a 1 kΩ resistor
with a 15 V
source

Auto or
Specify Range

Figure F-9: Using DMM to measure current.

the display result is negative, it means the current is flowing in
the opposite direction.

Measuring I : Since the myDAQ does not have a built-in current
source (current sources are not standard sources), we need to
build a simple circuit and measure the current flowing through
it.

To that end, build the circuit in Fig. F-11(a) with V = +15 V
(from the myDAQ) and R = 1 k�:

• Connect a red wire (with both ends stripped) to the myDAQ
+15 V and a similar black wire to the myDAQ AGND
(Fig. F-11(b)). Tighten the screws in the 20-terminal
connector to hold them securely in place.

� The myDAQ is on, and the voltages are live, so don’t
let the ends of the red and black wires touch each
other. �

• Insert a 1 k� resistor (a resistor with brown-black-red
lines) in your protoboard as shown in Fig. F-11(b). In the

(a) Probe connection

(b) DMM connections for measuring current

−

V12

Volts

Amps
I

R
V

+

Voltmeter

1 2
Ammeter

Figure F-10: Probe connections for measuring current.

protoboard, Row 2 corresponds to node 1 in Fig. F-11(a).
The other end of the resistor (row 8) is node 2.

• Connect the red wire from the myDAQ +15 V output to
another point on row 2 on the protoboard. This is also
node 1 in Fig. F-11(a).

• Connect the red probe from the myDAQ to the other end
of the resistor, using an alligator clip to make a good
connection. This is node 2.

• Connect the black wire from AGND to another row in the
protoboard. This will be node 3. Connect a small piece of
wire onto which you can clip the black alligator lead in
this row also.

• Connect the black probe from the myDAQ ammeter
(COM) to the black wire alligator clip connected toAGND
(node 3). Connect the red probe from the myDAQ ammeter
(right-HI) to the other end of the red alligator clip (node 2).

• You have now completed the circuit, and (ideally) the
display is I = 15 V/1 k� = 15 mA.

� NOTE: Unclip the leads when you finish your
measurement, as prolonged current will heat up the
resistor. �
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(a) Circuit diagram

(b) Circuit connections

Ammeter

1 kΩ
Node 1

Node 2
15 V

+
_

Figure F-11: Measuring current through a 1 k� resistor.

Measuring current with ammeter: On the DMM panel on
the PC, press Run. You should see the DMM reading change
to a value close to the expected current. Repeat using 5 V from
the myDAQ. Now see what happens if you switch the ammeter
probes. Once you have taken your readings, hit the Stop button
and unclip the leads. Current flows so long as the leads are
connected, and prolonged current will heat up the resistor.

� If you accidentally try to make a voltage
or resistance reading with the ammeter probe
connections instead of the voltmeter connections, you
can blow out the fuse on the myDAQ. Plan ahead.
If you are not planning to make additional current
measurements, return the probes to their voltmeter
connections. �

Measuring current with voltmeter: A very common way to
“measure” the current is to measure the voltage and use Ohm’s
law to calculate the current. This is shown in Fig. F-12.

• Return the DMM probes to the voltmeter position.

• Build the circuit in Fig. F-11(a) with a +15 V myDAQ
source and 1 k� resistor as shown in Fig. F-12. As soon as

(a) DMM connections

(b) Measuring voltage

Figure F-12: Measuring current by applying Ohm’s law.

you connect the red and black wires and insert the resistor,
current starts to flow, so don’t leave it this way too long or
the resistor will heat up.

{ Connect one end of the resistor to +15 V in row 2,
which corresponds to node 1 in Fig. F-12(a).

{ Connect the black wire from the myDAQ AGND to
the other end of the resistor. (this will be node 2 in
Fig. F-12(a)).

• Measure the voltage from node 1 (red voltmeter probe) to
node 2 (black voltmeter probe).

• Remove the resistor and then measure the resistance
between nodes 1 and 2.

• Determine the current I = V/R.

Once you have taken your readings, hit the Stop button and
disconnect the voltage (+15 V) from the circuit.

Evaluate: Were the currents you measured higher or lower than
expected? If so, why? What happened when you switched the
DMM leads? How similar were the current readings using the
ammeter with those using the voltmeter/Ohm’s law?
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Debug: If current = 0

There are several reasons you might have read zero current:

• Did you make solid connections between power/ground
and the circuit? Are the connections in the 20-pin socket
tight, and did they make good connection to the resistor.
If the voltage measured across the resistor is 0, the answer
is “probably not.”

• Did you connect to the circuit properly? Look very
carefully at the picture of the connections to the resistor.
Note that the connections on the protoboard need to be in
the same row as the resistor. Read about the protoboard in
the next section.

• Did you make solid connections to the measurement
probes?Are they in the correct DMM locations, depending
on if you are measuring volts, ohms, or amps? Did you
make a solid connection to the circuit?

• Is the myDAQ plugged in and running (probably, or you
would have noticed this by now).

• Is something broken . . . possibly the fuse?

Debug: If you think you might have blown the fuse

Exceeding the NI myDAQ ammeter maximum current rating
of 1 amp will most likely blow the protection fuse, in which

case the ammeter will always read zero and appear as an open
circuit. To check the fuse, follow the video tutorial:
https://decibel.ni.com/content/docs/DOC-12879.

F-5 Building with the Protoboard /
Breadboard

A breadboard (also known as a protoboard or plugboard)
is a base on which circuits are hand-built or prototyped.
Breadboards allow connections between components and wires
without permanently soldering the connection. They come in
different shapes and sizes, but their basic connections are all
the same. See the picture in Fig. F-13, showing the front (plug
side) of the breadboard and the back side, which shows the
metal clips that make up the nodes on the breadboard. (The
back side is normally protected by a paper or plastic backing.
If you remove this backing, the clips fall out, so just leave it in
place.) The metal clips pinch onto the wires stuck into the plug
side to make electrical connections.

Each horizontal clip on the breadboard creates a node, so each
ROW of the board is one node, and any wires plugged in on that
row are connected to the same node. The vertical clips on the
sides of the board create nodes that extend the full length of each
side of the board. They are marked with red and blue lines and
are often called rails. These rails are commonly used for power
and ground by plugging a voltage (such as from the myDAQ)

Figure F-13: Breadboard front (plug side) and back (metal clips create nodes).
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Figure F-14: 8-pin dual-in-line package (DIP) chip plugged in
across the divider on the breadboard. Each of the 8 pins is in a
separate row (node). A small dot on the upper left corner of the
chip, or a small dibet in the top of the chip, indicates which side
is up.

on the red rail and ground (such as AGND from the myDAQ)
on the blue rail. This makes power and ground convenient to
the many places it is needed throughout the breadboard.

The plastic center divider is just the right width to allow a
dual-in-line package (DIP) chip to be plugged in with its legs in
the holes on either side of this divider. We use this for op-amp
chips (see Fig. F-14).

Build example: Series and parallel resistors

Figure F-15 shows light bulbs connected in series and in
parallel, and Fig. F-16 shows an example of two 1 k� resistors
connected in series (between rows 40 and 50) and in parallel
(between rows 30 and 35). Note that for the series combination,
one end of each of the two resistors is plugged into row 45.

Evaluate: Measure the resistance of the series and parallel pair
of resistors. Build other combinations of these four resistors as
well. How close were the measurements to what you expected?

Connect +5 V across the series and parallel resistors. For the
parallel combination, plug +5 V into row 30, and AGND into
row 35. For the series combination, plug +5 V into row 40 and
AGND into row 50. Measure the voltage across each resistor.
Calculate the current through each resistor using Ohm’s law.
Verify that series resistors have the same current through them,
and parallel resistors have the same voltage across them.

F-6 Using the NI myDAQ as a Current
Source

The NI myDAQ cannot act as a stand-alone current source.
However, we can use circuit elements to convert an input voltage
into a steady current, thereby acting like a current source. One

(a) Series circuit

(b) Parallel circuit

Battery

Battery

+ _

+ _

Figure F-15: Two light bulbs connected (a) in series and (b) in
parallel.

Figure F-16: Protoboard connections for two resistors in series
and in parallel.

such circuit element is the LM317 regulator. This tutorial 
explains how to use the LM317 to generate a current source.

Using the LM317 voltage regulator

The LM317 has three wires: Vin, Vout, and VAdjust. There 
are several different packages for the LM317, three of which 
are shown in Fig. F-17.
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TO-39 (H)
Metal can package

Case is output
Bottom view

NS Package Number H03A

Input

Adjustment

Output

Vadj
Vout

Vin

Vout

Vout

ADJ Vin

(a) (b)

(c)

Figure F-17: Three types of LM317 packages. Note that (b) 
has the flat side up. For the circular configuration in (c), the pin 
arrangement corresponds to a bottom view of the metal can.

Building a current source

Figure F-18 shows how to connect the LM317 to build a current 
source.

• Connect +15 V to Vin.

• Calculate the adjustment resistor based on your desired
current current output:

Iout = 1.25

Radj
.

• Connect Radj between Vout and VAdjust.

Iout 

Radj

Figure F-18: Circuit configuration for building a current 
source using the LM317 regulator.

• The current output comes from the VAdjust port, so connect
one end of a wire there and the other end to the + node of
your load.

• Connect AGND to the ground node of your circuit.

Example 1: Build the circuit in Fig. F-19(a).

• Build the LM317 current source circuit shown in
Fig. F-19(b). The circuit requires a 1.84 mA current
source, so select

Radj = 1.25

0.00184
= 679.3 � (round to 680 �).

Connect Iout to the 1 k� load resistor.

• Measure the voltage across the 1 k� resistor. You should
get V = (1.84A)(1 k�) = 1.84 V.

Example 2: Easily adjustable current source.

The current source of Example 1 is fine, except that it requires
us to recalculate and purchase a new resistor every time we
change the magnitude of the current source. If you want to use
your myDAQ at home, this may not always be practical. Instead,
replace the 680 � resistor with a potentiometer, which you can
adjust with a screw or dial. However, the potentiometer can
be turned down to R = 0, which conceptually would make the
current go to infinity. In reality, the myDAQ (and most sources)
has an inherent current limit. The myDAQ can provide 32 mA
from the +15 V source. Although the myDAQ will limit the
current to about 32 mA, even if you try to draw more, it is
bad practice and can potentially damage the source if you try
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(a) Desired circuit

(b) Wiring configuration

(c) Equivalent current source circuit

Iout

a

0
1.0 kΩ1.84 mA R1

Figure F-19: Current source circuit example.

to drive it beyond its limit. Therefore, the minimum Radj you
should use is:

Radj(min) = 1.25

32 mA
= 39 �.

To be safe, insert a 39 � current limiting resistor in series with
the potentiometer. Now let’s consider what size potentiometer to

use. The larger the potentiometer, the smaller the current. Also
the larger the potentiometer, the more sensitive it is when you
turn the dial (the harder it is to dial the current you want). So, we
should use the smallest potentiometer that gives us the minimum
current required. For Radj(max) = 1 k�, the minimum current
would be

Imin = 1.25

1 k�
= 1.25 mA,

which is small enough for any of the examples in this book. A 
1 k� potentiometer is therefore a good choice. Our final circuit 
should look like that shown in Fig. F-20.

Storing the current source

The current source configuration is small enough that it can be 
stored on a breadboard without being disassembled. It is 
recommended that you build the LM317 circuit once, neatly, 
perhaps trimming the leads of the LM317 to make it fit snugly 
against the board. This way, you can use it whenever the need 
arises to construct a circuit with a current source.

F-7 Creating Waveforms with the
Function Generator (FGEN)

A function generator is used for creating AC and periodic 
voltage waveforms. The NI ELVISMX function generator is 
capable of creating sinusoidal, ramp, and square wave sources. 
It can also perform a sweep over a range of frequencies.

Specifications: The A0 output is limited to ±10 VDC or Vrms
and a current maximum of 2 mA.

Software: Run the NI ELVISmx software. Select the function 
generator FGEN from the instrument launcher. Press RUN to 
start a continual waveform or SWEEP to sweep sequentially 
through a range of frequencies.

Select the settings for your waveform:

Produces a sinusoidal waveform

Produces a ramp waveform

Produces a square wave

Frequency Range: From 200 mHz to 20 kHz. Note: Period
T (s) = 1/Frequency (Hz).

Amplitude: Peak-to-peak (Vpp) up to 10 V. Vrms (for a sine
wave) = √

2 Vpp.

DC Offset: Adds VDC to the waveform, from −5 V to +5 V.
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Iout

Load

LM371

Current limiting resistor (39 Ω)

Potentiometer

Voltmeter

+
_

Figure F-20: Current source with LM317 regulator and a potentiometer to adjust Iout .

(b) Waveform selection (c) PC display

(a) Select FGEN

Figure F-21: Using the function generator.
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Figure F-22: Sweep settings for function generator.

Figure F-23:Analog output port for voltage output for function
generator.

Duty Cycle (only available for square wave): % of time the
waveform is HI.

Sweep Settings: Sweep (step) through frequencies from Start
Frequency through Stop Frequency in steps of size Step. The
Step Interval (sometimes called dwell time) is the amount of
time the function generator stays at each frequency (Fig. F-22).

Signal Route: Select which Analog Output (AO = 0 or 1)
channel the waveform will appear on.

Connection: The voltage waveform you create is accessible
from the Analog Output ports (AO = 0 or AO = 1) on the 20-
pin connector. Connect a red wire to the AO port (0 or 1), as
shown in Fig. F-23. This will be the (+) side of your voltage
source. Connect a black wire to the AGND port, and this will
be the (−) side of your voltage source. Tighten the screws to
hold the wires in place. Press RUN when you are ready to turn
on the function generator.

F-8 Measure a Time-Varying Voltage
with the Oscilloscope

The oscilloscope is used to measure time-varying voltages
(Fig. F-24). You can think of it as a voltmeter that measures
signals as a function of time. The scope can measure either one
or up to two individual channels simultaneously, which is often
useful when comparing input and output voltages.

Software: Run the NI ELVISmx software. Select the
oscilloscope from the instrument launcher. If you are not sure
what settings to use, the Autoscale button is a good start. Press
RUN.

Channel Settings: Decide which Analog Input (AI = 0 and/or
AI = 1) to use, and check the Enable box(es) for channels to
be viewed.

Scale Volts/Div (y axis): Select how large each division is
appropriate along the y axis (volts/division).

Vertical Position (DC offset): This feature introduces a vertical
offset to create a better view of the waveform, if needed. Set to
0 initially.

Timebase (x axis): Select how large each division is
appropriate along the x axis (seconds/division).

Trigger Type: Toggle for when the waveform appears on
screen.

(a) Immediate, displays the waveform instantly.
(b) Edge, the waveform is displayed only if its magnitude

is higher or lower than the Level (V) setting. This is used to
stabilize your view of the waveform.

Acquisition Mode: It is recommended that you Run
Continuously. The Once setting will display one waveform
without re-acquiring a new signal.

Connection: Connect the analog inputs to the circuit to be
measured. The scope connection works essentially the same
as the voltmeter connection. There are two channels (AI = 0
and AI = 1). Each channel has a (+) connection that should be
connected to the (+) node of the voltage to be measured, and a
(−) connection to be connected to the (−) node of the voltage
to be measured. Figure F-25 shows a red lead connected to
0+ and a black lead connected to 0−. These should then be
connected across the voltage to be measured. Channels 0 and 1
can be used at the same time or separately. Click Run on the user
interface and you are ready to view your oscillating voltage.

Example: Measuring the AC voltage from the function
generator

Use the myDAQ Function Generator to create a 4 Vpp 100 Hz
AC sine wave. Connect it to the Scope by matching the red and
black wires in the two photos of Fig. F-26. You should obtain
the waveform seen in the scope window in Fig. F-22(b).

Evaluate: Experiment with all of the settings on the function
generator and verify their magnitudes and time periods on the
scope. Remember that the period = 1/frequency.
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(a) Select Scope

(b) PC display

Figure F-24: Using the oscilloscope.

F-9 Creating a Variable DC Source
with the Arbitrary Waveform
Generator

The arbitrary waveform generator is used to create variable
DC voltage sources or user-defined arbitrary time domain
waveforms. We will use the ARB generator to create a variable
voltage source. The generator can output one or two distinct

waveforms.† This tutorial covers only the basics of the ARB
generator. See the online information for more details.‡

Specifications: The A0 output is limited to ±10 VDC or Vrms
and a current maximum of 2 mA.

Software: Run the NI ELVISmx software. Select the arbitrary
waveform generator (ARB) from the instrument launcher

†If two waveforms are to run continuously, they must be the same length
in time and number of samples.

‡Video tutorial: https://decibel.ni.com/content/docs/DOC-12941
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Figure F-25: Scope mode cable connections.

(a) Function generator (b) Scope

Figure F-26: Wire connections for displaying the waveform
generator output shown in Fig. F-22(b).

(Fig. F-27(a)). The waveform window (Fig. F-27(b)) provides
a view of available functions, just like the oscilloscope option.
Select and enable the output channel(s). These can also be
the A0 or audio output channels. Select a waveform for each
channel you enable. (You will create a waveform file using the
editor described below if you want to use a custom output.)
Select the Update Rate on the waveform window to be the
same as the Sample Rate on the editor window. Select Run
Continuously or Run Once. Select the Gain. The system
creates a variable DC voltage source by creating and saving a
DC waveform with magnitude 1.0 and then adjusting the gain to
create the desired DC voltage. Press RUN to start the generator.

Use the Waveform Editor to create a custom waveform as
described below. Start this waveform by selecting it from the
Waveform Name folder, and then set the Gain. In this example,
you create a 1 V DC voltage with a Sampling/Update Rate of
1 kHz named 1VDC 1kHz.wdt. To change its voltage level,
set the Gain to whatever voltage is needed (2 V in this case).
The voltage waveform (2 V DC in this example) will appear in
the User Interface window, and you can then use it for other
applications.

Click the Waveform Editor icon to begin creating your
custom waveform (Fig. F-28 will appear).

Create a waveform:

• Set the Sample Rate. Remember this setting, or add it to
the filename, because you will need to specify this as the
Update Rate in the ARB user interface (Fig. F-27).

• Add as many segments as desired in your waveform. For
the Variable DC Voltage example, only one segment is
needed.

• Set the time duration of each segment (10 ms for this
example).

• For each segment add a New Component. Specify the
component from the Function Library, an expression, or
sketch. For this example, use Function Library � DC
Level (Offset = 1.0) to create a 1 V DC voltage.

• You can add additional components to each segment.
Specify if these are to be added (+), subtracted (−),
multiplied (×), divided (/), or frequency modulated (FM).
For the variable DC voltage, no additional components are
needed.

• Save your file as a *.wdt file. Choose a name that describes
the waveform and include in it its sample rate. Use 1 VDC
1 kHz as the filename for this example.

Connection: The waveform voltage you create is accessible
from the Analog Output ports (AO = 0 or AO = 1) on the
20-pin connector (Fig. F-29). Connect a red wire to the AO
port (0 or 1). This will be the (+) side of your voltage source.
Connect a black wire to the AGND port; this will be the (−)
side of your voltage source. Tighten the screws to hold the wires
in place.

F-10 Measuring Frequency Response
with the Bode Analyzer

A Bode analyzer is used to plot the frequency response of
a circuit or system (known as a Bode plot).§ The frequency
and phase of voltages in a circuit become very important
when capacitors and inductors are used. When these or other
frequency-dependent components are used, the circuit may act
differently at different frequencies. A Bode plot yields two
important pieces of information for any measurable voltage in
a circuit:

§http://www.ni.com/white-paper/11504/en/.
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(a) Select ARB

(b) PC display

Figure F-27: Arbitrary Wave Generator (ARB).

(1) The magnitude of a specific voltage in the circuit over a
specified range of frequencies.

(2) The associated phase of said voltage over the same range
of frequencies.

Software: Run the NI ELVISmx software. Select the Bode
Analyzer from the instrument launcher (Fig. F-30). The Bode
analyzer effectively drives the circuit with a Vin frequency
sweep from the function generator (AO = 0). It reads Vin in the
stimulus channel (AO = 0 by default) and Vout in the response

channel (AI = 1). It then compares them and plots the Gain
= Vout/Vin in either linear or log scale. This is the frequency
response of the system.

To demonstrate how this is done, let’s measure the frequency
response of the voltage across the capacitor in the series RC
circuit of Fig. F-31(a). The Bode Analyzer User Interface is
shown in Fig. F-31(b).

(1) Connect Vin and set up its frequency sweep.

Vin will be generated at the AO = 0 output.
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Figure F-28: Waveform Editor User Interface.

Figure F-29: Cable connections for ARB.

• Connect AO = 0 to the Vin+ node in the circuit (node a).

• Connect AGND to the ground node in the circuit.

Start/Stop Frequency: Set the range of frequencies to be
measured.

Steps per decade: This specifies how many data points are
measured per frequency decade (10–100 Hz is a decade, for
example).

Peak Amplitude: The Bode analyzer sends out a signal at
AO = 0. Peak amplitude selects the amplitude of this signal.

Mapping: Choose whether the x axis (frequency) is graphed
logarithmically or linearly.

(2) Connect the stimulus (measurement) channel.

Stimulus Channel: This channel measures the stimulus. The
myDAQ defaults to AI = 0 as the stimulus channel. Connect
AI = 0+ in the same place as Vin+ (node a) and AI = 0− at
the ground of your circuit.

(3) Connect the response (measurement) channel.

Response Channel: This channel measures the frequency
response of Vout. The myDAQ defaults toAI = 1 as the response
channel. Connect the AI = 1+ port to the (+) node of Vout
(node b) and the AI = 1− port to the (−) node of Vout (ground,
in this example).

(4) Press Run.You should see plots of the magnitude and phase
of the frequency response of Vout on the PC display.
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Figure F-30: Bode analyzer.

(a) RC circuit

(b) Bode analyzer display and user interface

1 μF

1 kΩ

0

+
_

υin υout

R1

C1

a
b

+
−~

Figure F-31: (a) RC circuit and (b) its gain magnitude and phase plots.
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Answers to Selected Problems

Chapter 1

1.1 (b) 4 µA

(d) 390 GV

1.3 ( c ) 4 pF

1.13 I = 18 A along −z

1.14 ( c ) i(t) = 0.12e−0.4t (pA) 

1.15 (d) q(t)  = 1.7t[1 − e−1.2t ] nC 

1.16 (b) �Q(1, 12) = 2.948 (C) 

1.17 (b) i = 0 @ t = 3 s.

1.20 i = 4.8 A

1.22 (b) i = 0

1.23   (a)  i = 0

1.25 ( a ) V2 = 48 V

1.26 ( a ) −4 V

1.29 I = 5 A,  W = 432 kJ

1.31 ( a ) p(0) = 0.5 W; p(0.25 s) = 

1.36 Pmax = 6 W

1.38 Vy = 1.2 V

1.40 Vz = 2.5 V

Chapter 2

2.1 � ≈ 2 km

2.3 (b) R ≈ 1, 174 �

2.7 R = 6.41 �; i = 17.2 A

2.11 R = 2500 �

2.15 Ix = 2.43 A

2.17 I1 = 2 A, I2 = 1 A, I3 = 2 A, I4 = 1 A

2.19 Ix = 3.57 A; Iy = 2.86 A

2.23 P = 0.32 W

2.25 V1 = −6 V, V2 = 0, V3 = 6 V

2.29 I0 = 31 A

2.34 R = 3 k�

2.36 Vx = 8 V

2.38 Req = 9 �

2.41 (a ) Req = 5.5 �

2.44 I = 2 A

2.49 I = 1.97 A

2.51 I = 3.8 mA

2.55 P = 40 W

2.59 P = 4 W

APPENDIX G
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2.61 Req = 10 �

2.63 ( a ) R3 = 1.5 �

2.66 H = 0.6 mm

2.67 I1 = 0, I2 = 0.1 A

Chapter 3

3.1 I = 3 A

3.3 P = −120 W

3.5 VR = 7 V

3.7 Ix = −0.1 A

3.11 P = −24 W

3.13 Ix = 0.77 A

3.15 Ix = 8 A

3.17 Vx = 1.41 V

3.20 Ix = 0.151 A

3.23 Vx = −2.85 V

3.26 V = 10 V

3.28 V = 5 V

3.30 Ix = −0.1 A

3.32 Vx = 4 V

3.34 Vx = −3 V

3.36 Ix = 6.25 A

3.39 Ix = 8 A

3.42 Vx = 1.67 V

3.45 I0 = 0.6 A

3.48 Ix = 2 A

3.52 V1 = 25.5 V; V2 = 4.5 V

3.56 Vx = 1.5 V

3.58 I = 0.05 A

3.62 Vx = −2.094 V

3.64 VTh = 4 V; RTh = 5.2 �

3.68 VTh = −7.6 V;  RTh = 1.6 � 

3.72 IN = 7.71 A, RN = 4.54 � 

3.74 IN = 0.217 A; RTh = 9.2 � 

3.77 VTh = 1 V,  RTh = 2.4 � 

3.80 VTh = 3 V,  RTh = 1.5 � 

3.83 Pmax = 2.09 mW

3.85 Pmax = 10 mW

3.89 I0 ≈ IREF

3.93 Vout ≈ (RL/RE)Vin

Chapter 4

4.1 υo = −10 V

4.3 υo = −10 V

4.6 (d) G = −100

4.9 Rf = 16 k�

4.13 G = RL(R1 + R2)/[R1(R3 + RL)]
4.14 (b) Rf = 180 k�

4.16 RL = 4 k�

4.19 G = 0.33; −21 V ≤ υs ≤ 21 V

4.21 −2 V ≤ υs ≤ 2 V

4.24 υo = 6.5 V

4.30 υo = (38 − 4υs) V; 5.5 V ≤ υs ≤ 13.5 V

4.35 υo = −3.23 V

4.38 υo = 0.826 V, P = 0.34 mW

4.40 (a ) G1 = −6, G2 = −20

4.46 υo = −[(R3/R2)(R1 + R2)/(R1 + Rs)]υs

4.50 υo = 8.5υs

4.52 υo = −5.19 V

4.54 υs = −0.1 V

4.56 G = 2 × 105 to 2 × 106

4.60 υo = 2.5 − 104υs
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Chapter 5

5.3 υ(t) = 10u(t − 2 μs) − 10u(t − 7 μs) V

5.7 υo = 12 V; τ = 2 s.

5.9 υ(t) = 2 + 8e−0.5t V

5.15 υ1 = −12 V; υ2 = 6 V; υ3 = 2 V

5.17 Ceq = 4 μF

5.19 Ceq = 2.95 F

5.21 8 μF: 60 V; 3 μF: 60 V; 6 μF: 20 V; 6 μF: 30 V;
12 μF: 10 V; 10 μF: 30 V

5.25 i(t) = (0.25 − e−0.2t ) A

5.29 υC1 = 20 V; υC2 = 12 V; iL1 = 0; iL2 = 2 A

5.31 Leq = 5 mH

5.33 ( c ) iC(∞) = 0; υC(∞) = 8 V

5.36 υ(t) = 14e−11.67t V

5.39 υ(t) = [−18 + 24e−1.25t ] V

5.43 υ(t) = 5.35e−1000(t−0.1)/45 V

5.45 υC(t) = 4e−100t/1.5 V

5.48 i(t) = 2e−100t/3 A

5.50 i1(t) = 2.88e−10t mA; i2(t) = 0.72e−20t mA

5.53 i(t) = 0.3(1 − e−8t ) A

5.56 i(t) = [20 − 30e−500t ] mA

5.60 υout(t) = υout(0) + υi(t) + 1

RC

t∫
0

υi dt

5.63 iout(t) = 0.6e−2t (mA)

5.65 (b) υout(t) = −24(1 − e−2t ) V

5.68 ( a ) υout1(t) = −0.5t V

5.73 W = 0.2 μm

Chapter 6

6.1 υC(0) = 12 V, iL(0) = 0, iC(0) = −3 A,
υL(0) = 12 V, υC(∞) = 0, iL(∞) = 4 A

6.3 (a ) υC(0) = −12 V, iL(0) = 3 mA

6.7 i1(0) = 1 A; i2(0) = 2 A

6.10 iC(0) = −3 A, υC(0) = −24 V, iR(0) = −3 A,
υR(0) = −24 V, iL(0) = 0, υL(0) = −24 V,
υL(∞) = 0, iR(∞) = 0, υC(∞) = 0, iL(∞) = 0

6.12 υC(t) = (12.64e−2.68t − 3.64e−9.32t )

6.14 iL(t) = −90e−6t A

6.16 υC(t) = V0 cos(ωdt); ωd = 1/
√

LC

6.18 iC(t) = −[(40/3)e−0.5t sin 0.375t] A

6.22 iC(t) = (12 sin t − 6 cos t)e−2t A

6.25 υC(t) = 0.4 + (2.44t − 0.2)e−5.81t mV

6.28 (a ) υC(∞) = 10 V

6.29 υC(t) = (12 + 3e−60t ) V

6.32 υC(t) = 4−e−6000t [10 cos(11431t)−5.25 sin(11431t)]V

6.35 υC(t) =
4
3 + [ 20

3 cos(745.4t) + 5.96 sin(745.4t)
]
e−666.7t V

6.38 iL(t) = 1.5 mA

6.40 iL(t) = [32 − (32 + 6400t)e−400t ] mA

6.43 (a ) iL(t) =
−2 + [4.5 cos(526.8t) + 7.26 sin(526.8t)]e−850t A,

(b) wC(∞) = 0

6.46 (a ) iL(t) = 2 A

(b) No, the solution method is applicable to dc sources
only.

6.48 iC(t) ={
(−0.0045e−83t + 0.1045e−1917t ) A for 0 ≤ t ≤ 1 ms

(2.43 × 10−3 cos 400t − 0.017 sin 400t) A for t ≥ 1 ms

6.50 υ(t) = (24 − 14.4e−2t + 6.4e−3t ) V

6.52 ( c ) [3 cos 0.433t + 5.2 sin 0.433t]e−0.75t A

6.54 υC(t) = 2.4 − (0.4 cos 3.74t − 0.428 cos 3.74t)e−6t V

6.56 i2(t) = (2.3e0.89t + 97.7e−5.61t ) μA

6.58 υout(t) = −8e−20t sin 74.83t V
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Chapter 7

7.1 A = 4 V, f = 4 kHz, t = 0.25 ms, φ = 45◦

7.3 υ(t) = 12 cos(8π × 103t + 60◦) V

7.6 �t = 1/9 μs, waveform shifts backwards

7.9 υ(t) = 12 cos(100πt − 45◦) V

7.10 ( c ) z3 = 7.21e−j146.3◦

( e ) z5 = 5e−j53.13◦

7.11 ( c ) z3 = −1.22(1 + j)

( f ) z6 = 3 + j4

7.14 (b) z2 = 100e−j73.74◦

( f ) Im(z∗) = −6

7.15 ( c ) z1z∗
2 = 10e−j105◦

7.16 (b) ez = −2.45 − j2.24

7.18 (b) B = 42.5e−j161.99◦

7.20 (b) 62.2e−j4.61◦

7.22 (b) V2 = 2ej108◦
V

7.23 ( c ) i2(t) = 2 cos(2π × 103t + 150◦) A

7.25 ( c ) ZC = −j3.18 �

7.27 (b) υ2(t) = 5.49 cos(1000t − 18◦) V

7.29 iC(t) = 9.4 cos(2π × 104t − 21.48◦) mA

7.32 υab(t) = 0.42 cos(300t − 186.35◦) V

7.34 (b) Z2 = (98.5 + j1524) �

7.36 Z = (5.32 − j1.69) �

7.38 IR = 2.528ej35.56◦
A

7.40 ( a ) Z = (5 + j5) �

(b) I = 3.54 A

7.44 L = 0 or 2.5 mH

7.48 VTh = −12 V; ZTh = 0

7.50 ZL = (6 + j2) �

7.51 ZL = (2 − j1) k�

7.56 f = 795.8 Hz

7.58 iC(t) = 1.25 cos(400t − 6.35◦) A

7.60 V1 = (20.7 + j16.1) V,
V2 = −(20.7 + j42.1) V

7.62 IC = 1.93ej4.9◦
A

7.65 Vout =
(

3 + j1

5

)
Vs

7.68 ix(t) = 24.72 cos(5 × 105t − 74.06◦) A

7.71 VTh = 10e−j30.5◦
V, ZTh = (2.9 − j3) �

7.74 ia(t) = 2.06 cos(35t + 152.75◦) A

7.77 Ia = 4.4e−j21.45◦
A

7.80 υout(t) = V0 sin ωt

7.83 υout(t) = 11.32 cos(377t + 152.05◦) V

Chapter 8

8.1 (a ) Vav = 2 V

(b) Vrms = 2.31 V

8.4 (a ) Iav = 3 A

(b) Irms = 3.46 A

8.7 (a ) Vav = 2 V

(b) Vrms = 3.79 V

8.10 (a ) Vav = 2 V

(b) Vrms = 2.38 V

8.12 (a ) Vav = 0.432 V

(b) Vrms = 0.5136 V

8.15 ( c ) Vav = 12 V, Vrms = 12.32 V

8.17 ( c ) S = 330ej15◦
VA, Pav = 318.76 W,

Q = 85.41 VAR, pf = 0.97 (lagging)

8.18 ( c ) S = 2.5e−j75◦
VA, Pav = 0.65 W,

Q = −2.415 VAR, pf = 0.26 (leading)

8.21 S = 0.665e−j79.35◦
VA, pf = 0.185 (leading)

8.23 Pav(200 �) = 5.52 W, Pav(100 �) = 1.38 W,
Pav(source) = 6.9 W

8.26 Pav = 496.4 mW

8.29 PL = 0.186 W
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8.31 Sload = (0.38 + j0.26) VA

8.33 PL = 3.933 mW

8.36 PL = 0.713 W

8.39 Pav = 0.2 mW

8.43 Zeq = (29 + j8.93) �, inductive
Z1 = inductive, Z2 = capacitive, Z3 = inductive

8.45 C = L/(R2 + ω2L2)

8.48 ( a ) Z1 = (10.5 − j5.2) �; Z2 = (7.23 + j5.05) �

8.50 ( a ) pf = 0.673 lagging

8.52 ZL = (0.6 − j0.2) �, Pmax = 6.78 W

8.55 ZL = (1.33 − j4) �, Pmax = 4.18 W

8.58 ZL = (5.1568 + j0.72) �, Pmax = 0.8 W

8.60 ZL = (22.9 + j39.8) �, Pmax = 38.9 mW

Chapter 9

9.1 ω0 = 104 rad/s

9.3 ω0 = 105 rad/s

9.5 ω0 = 5 × 104 rad/s

9.8 Km = 50; Kf = 2 × 104

9.11 (b) ω0 = 1 rad/s

9.13 (b) −23 dB

9.14 ( a ) 20.81 dB

9.16 ( c ) 0.25

9.21 H(ω) = −2000ω

(1 + jω)(100 + jω)

9.23 H(ω) = −(10 + jω)(100 + jω)/50ω

9.26 ( a ) ω0 = 104 rad/s, Q = 40, B = 250 rad/s,
ωc1 = 9875 rad/s, ωc2 = 10125 rad/s

9.29 ω0 = 5 rad/s; Q = 20; B = 25 rad/s; ωc1 = 487.5
rad/s; ωc2 = 512.5 rad/s

9.32 (b) H(ω) = j10−3ω

1 + j2.5ω/1000 + (jω/1000)2

9.35 (a ) H(ω) = 1

2

(
jω/ωc

1 + jω/ωc

)
, with ωc = 1.25 × 104

rad/s

9.37 (a ) H(ω) = 1 + jωC(R1 + R2)

1 + jωR1C

9.39 (a ) H(ω) = 1

1 + j0.4ω/5000 + (jω/5000)2

9.41 (a ) H(ω) =
[ −j (ω/ωc1)

(1 + jω/ωc2)(1 + jω/ωc3)

]
, with

ωc1 = 104 rad/s, ωc2 = 200 rad/s, ωc3 = 2 × 106

rad/s

9.46 H(ω) = −10

9.50 78 to 98 MHz, or 98 to 118 MHz

Chapter 10

10.4 V1 = 100 −60◦ V (rms), negative phase sequence 

10.7 υab(t) = 34.79 cos(377t + 113.06◦) V
υbc(t) = 81.58 cos(377t + 47.78◦) V
υca(t) = 101.2 cos(377t − 114.02◦) V

10.11 iL1(t) = 22.73 cos(2πf t + 16.9◦) A
iL2(t) = 27.71 cos(2πf t − 100.5◦) A
iL3(t) = 26.56 cos(2πf t + 129.0◦) A

10.14 iL1(t) = 27.31 cos(2πf t + 7.62◦) A
iL2(t) = 32.71 cos(2πf t − 114.2◦) A
iL3(t) = 29.54 cos(2πf t + 117.5◦) A

10.17 IL1 = 10.02 −59.3◦ A (rms)

10.20 In = 1.64 143.2◦ A (rms)

10.23 ST = 29.68 −3.56◦ kVA

10.26 ST = 29.68 −3.56◦ kVA, 58.2%

10.28 IL1 = 25.61 −28.37◦ A (rms)
IL2 = 25.61 −148.37◦ A (rms)
IL3 = 25.61 91.69◦ A (rms)

10.30 IL1 = 69.62 −19.1◦ A (rms)
IL2 = 69.62 −139.1◦ A (rms)
IL3 = 69.62 100.9◦ A (rms)
pf = 0.9449

10.32 C = 2.261 mF

10.34 P1 = 3.35 kW, P2 = 6.194 kW

10.36 P1 = P2 = 50.82 W
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Chapter 11

11.1 ( a ) i(t) = 0.293 cos(120πt − 125.8◦) A

(b) P = 8.57 W

11.4 Vout = 2.629 164.4◦ V

11.7 Ix = 0.8622 −51.9◦ A

11.9 Vout = 0.8 −73.3◦ V

11.11 Vout = 24.83 −155.6◦ V

11.13 ( c ) Leq = 2 H

11.15 Zin = 18.28 −38.9◦ �

11.17 Zin = 14.03 30.8◦ �

11.19 Leq = 5.1 H

11.21 Zin = (0.3 + j9.9) �

11.24 Vout = 26.63 33.7◦ V

11.26 Ix = 24.25 −129◦ mA

11.28 PL = 0.83 W

11.31 PL = 2.676 W

11.33 n = 8/3

Chapter 12

12.4 ( c ) F3(s) = 12e−4s

s + 3

12.5 ( a ) H1(s) =
[

48

s + 3
+ 12

(s + 3)2

]
e−4s

( c ) H3(s) = 60

(s + 2)4

12.7 ( c ) F3(s) = 10e−3s

s + 4

12.9 (b) f2(t) = [2e−2t − 4e−3t cos t] u(t)

12.10 ( c ) f3(t) = 2e−3t cos(2t + 45◦) u(t)

12.11 (b) f2(t) = 4(1 + cos 3t) u(t)

12.12 iL(t) = 8(e−t − e−2t ) u(t) A

12.15 iL(t) = 1.14e−0.5(t−2) sin(0.87(t − 2)) u(t − 2) A

12.18 υ(t) = [1.5 − 1.56e−4t + 0.072e−12t ] u(t) V

12.22 iL(t) = (0.012e−0.13t − 0.81e−3.31t ) u(t) mA

12.25 iL(t) = 30e−2t sin t u(t)

12.28 iL(t) = [2 + 7e−0.67t cos(1.43t − 1012.5◦)] u(t) A

12.31 iL(t) = [1.25 + 2.58e−1.75t cos(0.97t − 61◦)] u(t) A

12.34 υC(t) =
10(1 − e−0.25t ) u(t) − 10[1 − e−0.25(t−2)] u(t − 2) V

12.37 iL(t) = (21.52e−2t − 112.14e−t − 5.38e−5t ) u(t) A

12.44 (a ) υout(t) = 2[1 − e−104t (1 + 104t)] u(t) V

Chapter 13

13.5 (a ) even and dc symmetry

(b) f (t) =
∞∑

n=1

160

(nπ)2

[
cos

(nπ

4

)
− cos

(
3nπ

4

)]

· cos

(
nπt

4

)

13.5 (a ) Odd and dc symmetry

(b) f (t) =
∞∑

n=1

10

nπ
[2 − cos(nπ)] sin(nπt)

13.12 f (t) = 1
2 − 1

2 cos(8πt)

13.16 f2(t) = −40

π

∞∑
n=1

1

n
sin

(
nπt

4

)

13.26 (a ) υout(t) =
∞∑

n=1

100 ×
(

4

nπ

)2

sin
(nπ

2

)
cos(nπt + 90◦) V

13.29 Pav = 54.5 mW; ac power fraction = 8.26%

13.33 F(ω) = 5

3ω2 [(1 + j3ω)e−j3ω − 1]

13.39 F(ω) = 3

ω

[
−2j − 2j

ω
(sin ω − sin 2ω)

]

13.46 (b) t f (t)
5

(2 + jω)2
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Absolutely integrable, 704

ac analysis, 385–458

Accelerometer, 303

Acoustic touchscreens, 395

ac power, 459–499

average power, 463–464, 467

complex power, 467–472

maximum power transfer, 476, 481–482

power factor, 472–476

Active device, 2

Active digitizers, 395

Active filters, 536–538

Active matrix display, 191

Active noise control, 509

Active shutter 3-D, 638

ADC, 154

Adder, 200

Additivity property, 116

Admittance, 403

Air-core solenoid, 270

Alternating current (ac), 4, 23, 385, 386

American Wire Gauge, 52

Ammeter, 27–28

Ampere-hours, 29

Amplifiers
common collector, 178
common emitter, 178
operational, 183–247

Amplitude modulation (AM), 548
Amplitude/phase format, 681
Amplitude spectrum, 681
AM radio band, 548
Analog, 154–156
Analog circuits, 223–224
Analog signals, 154
Analog-to-digital converter (ADC), 154
Analysis techniques, 115–182

bipolar junction transistor (BJT), 158–161
by-inspection methods, 129–133
mesh-current method, 123–125, 128–129
nodal analysis with Multisim, 161–163
node-voltage method, 117–123
source superposition, 133–135, 140

Thévenin and Norton circuits, 140–151
AND logic gate, 156, 539
Angular frequency, 386
Apparent power, 473
Arbitrary waveform generator, myDAQ, 756–757
Artificial eye retina, 363
Artificial sources, 117
ASCII, 154

767



“book” — 2015/5/11 — 17:43 — page 768 — #2

768 INDEX

Audible spectrum, 544
Autotransformer, 618
Average ac power, 463–464, 467
Average power, 460, 693–694
Average real power, 582
Average value, 460
Average values of periodic waveforms, 460–462

B
Backlight, 191
Balanced circuits, 83
Balanced condition, 85, 572–573
Balanced load, 573
Balanced networks, 573, 576, 579–582
Balanced source, 573
Balanced three-phase generators, 568–572
Bandpass filter, 501, 523–528
Bandreject filter, 502, 529–530
Bandwidth, 524, 688
Bandwidth data rate, 688–689
Base, 158
Biochemical pathways, 695
Bipolar junction transistor (BJT), 158–161
Bit, 154
Bit-patterned media (BPM), 294
Block, 140
Block diagram, 141
Bode diagram, 514
Bode plots, 512–522
Bouncy switch, 227
Brain stimulation, 363–364
Branch, 17
Bridge circuit, 157
Bridge rectifier, 433, 434
Buffer, 208
Bus, 306
Bus circuit, 568
Bus speed, 306
By-inspection methods, 129–133

mesh analysis by inspection, 132–133
nodal analysis by inspection, 130–132

C
Cables, 545
Cantilever beam, 578
Capacitance, 258

Capacitive MEMS actuator, 338–339
Capacitive impedance, 403
Capacitive sensor/MEMS accelerometer, 336–337
Capacitive sensors applications, 301–303
Capacitive touch buttons, 301
Capacitive touchscreens, 393–394
Capacitors, 258–264, 268–269

electrical properties, 259–263
in the s-domain, 653
series and parallel, 263–264, 268–269
supercapacitors, 265–267

Carrier frequency, 547
Cascaded active filters, 538–43, 547
Cascaded systems, 149–151
Cathode ray tube (CRT), 190–191
Cell-phone circuit architecture, 2–4
Center-tapped pole transformer, 568
Characteristic equation, 342
Charge, 20–22
Charged capacitor, RC circuit, 276–279
Charge/discharge, 285
Charging-up mode, RLC circuit, 334–335
Chassis ground, 26
Circuit analysis by Laplace transform, 630–673

Multisim analysis, 662–664
partial fraction expansion, 644–647, 650–652
s-domain circuit analysis, 655–662
s-domain circuit element models, 652–654

Circuit analysis with Fourier transform, 711–713
Circuit breaker, 86
Circuit diagram, 15
Circuit elements, 35–40
Circuit equivalence, 67
Circuit gain, 186
Circuit representation, 15–20
Circuit response, 279
Circuit simulation software, 225–228

Multisim, 225–227
3-D modeling tools, 227–228

Circuit theory, 50
Clock speed, 277
Closed-loop gain, 186
CMOS (complementary MOS), 222

switching speed, 306–310
Coaxial capacitor, 259
Cochlear implant, 363
Cognitive prostheses, 363
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Cognitive radio, 713
Collector, 158
MEMS accelerometers, 337–338
Common collector amplifier, 178
Common-emitter amplifier, 159, 178
Compensated load, 474
Complementary MOS, 222
Complex conjugate, 390
Complex frequency, 634
Complex number, 389
Complex power, 460, 467–472, 582
Computer memory circuits, 203–205

Ferroelectric RAM (FeRAM), 205
Magnetoresistive RAM (MRAM), 205
Nano RAM (RAM), 205
random-access memories (RAMs), 204–205
read-only memories (ROMs), 203–204

Conductance, 69
Conductance matrix, 131
Conduction current, 21
Conductivity, 51
Conductors, 51
Conjugate matched, 481
Conjugate symmetry property, 710
Connected in parallel, 540
Connected in series, 539
Convergence condition, 634–635
Convergence of Fourier integral, 704
Corner frequency, 503
Cosine-referenced, 387
Cosmic rays, 465
Coupling coefficient, 611–612
Cramer’s rule, 729–731
Critically damped response, 346–348
Critical temperature TC, 57
Crossover circuits, 546
Crystal oscillators, 423–424
Cumulative charge, 23–24
Current, 22–24
Current coil, 591
Current-controlled voltage source, 39
Current divider, 74
Current division, 74–75
Current measurement, myDAQ, 747–750
Current mirror, 178
Cutoff frequency, 503

D
Damped natural frequency, 348
Damping coefficient, 342
Damping factor, 517
dB scale, 512–515
dc gain, 503
dc magnetic field, 608
Deep brain stimulation (DBS), 363
Definite integrals, 737
Degree of selectivity, 524
Delay time, 663
�-configuration, 586
Delta function, 631
�-load configuration, 583
�-source configuration, 570
Delta-Wye (�-Y) transformation, 82–83
Demodulation, 548
Dependent source, 35, 38–40, 97–99
Dependent source circuit, 66–67, 120–121, 125
Dependent voltage source, 38
Deposition, 136
Design, 3
Destructive interference, 509
Dielectric, 51
Difference amplifier, 206–207
Differential measurement approach, 215
Digital and analog, 154–156
Digital inverter, 220–221, 231–234
Digital light processing (DLP), 194
Digital light projector (DLP), 339
Digital signal, 154
Digital-to-analog converter (DAC), 155, 216–219
Digital wattmeter, 591
Dimension, 9
Diode, 87–91
DIP configuration, 184
Direct current (dc), 4, 22
Dirichlet conditions, 677
Discharging mode, RLC circuit, 335, 340
Display technologies, 190–194
Distinct complex poles, 650–651
Distinct real poles, 645–646
Distributed elements, 358
Domain transformation, 633
Dot convention, 603
Double Data Rate 4 RAM (DDR4RAM), 205
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Down-conversion, 549
Downswing time constant, 434
Drain, 219
Drift, 21
Drift velocity, 21
Duration, 22
Duration of the pulse, 254
Dynamic circuit, 249
Dynamic RAMs (DRAMs), 204
Dynamic range, 195

E
Early time response, 249
Earth ground, 26
Effective value, 462
Electrical engineering for audiophiles, 544–546
Electrical noise, 609
Electrical permittivity, 258
Electrical properties

of capacitors, 259–263
of inductors, 270–273
of sea ice measurement, 126–127

Electrical safety, 32–33
Electrical susceptibility, 258
Electric field, 30–31, 258
Electrochemical capacitor, 267
Electrolytic capacitor, 267
Electromagnetic compatibility, 386
Electromagnetic energy, 465
Electromagnetic resonance touchscreens, 395
Electromagnetic spectrum, 465–466
Electron drift, 21
Electron gun, 190
Electronic design automation (EDA), 225
Electronic ink, 192–194
Emitter, 158
Encode, 696
Energy, 577
Energy considerations for magnetically coupled circuits,

615–617
Energy consumption, 34–35
Energy density, 265
Energy dissipated, 525
Energy harvesting, 577
Energy scavenging, 577
Equivalent capacitance, 308

�-equivalent circuit, 614
Equivalent circuits, 35, 67–69, 73–80, 410–414, 613–615,

618–619
resistors and sources in parallel, 73–77
resistors in series, 68–69
sources in series, 69, 73
source transformation, 77–80, 410
Thévenin equivalent circuit, 410–413

Equivalent-circuit op-amp model, 187–189
Equivalent voltage source, 36
Equivalent resistance Rs, 36
Equivalent resistor, 68
Etching, 136
Euler’s identity, 389
Even function, 683
Even symmetry, 683
Everlasting, 710–711
Expansion coefficient, 645
Exponential form, 698
Exponential Fourier series, 697–699
Exponential function, 256
Exponential waveform, 256–257
Exposure, 137
Extraordinary node, 16–17

F
Fall time, 663
Feature size, 294
Feedback, 195
Feedback control, 511
Feedback loop, 70
Feedback resistance, 198
Feedforward control, 511
Ferrite-core inductor, 270
Ferroelectric RAM (FeRAM), 205
Fibrillation, 32
Filter, 501
Filter order, 530–532, 536
Final condition, 280
Final value, 250
First-order circuit, 249, 278, 331
First-order lowpass RC filter, 530–532
First-order RC circuit, 275
Fluid gauge, 302
Forced response, 287
Forcing function, 277
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Forward bias, 59–60, 88, 433
Forward voltage VF, 60
Fourier analysis technique, 674–726
Fourier circuit applications, 690–693
Fourier coefficient, 677
Fourier series analysis technique, 675–677
Fourier series representation, 677–687, 690

amplitude/phase representation, 681–683
odd-function Fourier coefficients, 684–690
sine/cosine representation, 678–681
symmetry considerations, 683–684

Fourier theorem, 675
Fourier transform, 697–701, 704

convergence of Fourier integral, 704
exponential Fourier series, 697–699
nonperiodic waveforms, 699–701

Frequency, 386
Frequency conversion, 549–550
Frequency domain, 396
Frequency domain technique, 386
Frequency filters, 500
Frequency modulation (FM), 548
Frequency response measurement, myDAQ, 757–760
Frequency response of circuits and filters, 500–565
Frequency scaling, 508
Frequency-selective circuits, 501
Frequency shift, 640
Frequency-shift property, 705
Frequency spectrum, 701
Full-wave rectifier, 434
Functional blocks, 227
Functional forms, 516–518
Function generator (FGEN), myDAQ, 753–755
Fundamental angular frequency, 677
Fundamental dimension, 9
Fundamental SI unit, 9
Fuse, 86–87

G
Gain-control resistance, 215
Gain factor, 503
Gain roll-off rate, 518
Gate, 219
Genes, 696
Giant magnetoresistance (GMR), 294
Gibbs phenomenon, 687

Glasses-free 3-D, 638
Google Earth, 648–649
Gradient coils, 609
Grapher, 96–97
Graphical user interface (GUI), 225
Ground, 26–27
Ground hatch, 301

H
Half-power frequency
Half-wave rectifier, 434
Hard disk drive (HDD), 293–294
Hardware description languages (HDL), 226
Harmonic, 676
Heterodyne receiver, 548
High-definition television (HDTV), 192
High-frequency gain, 503
High input resistance, 188
Highpass filter, 502, 528–529
High-temperature superconductors, 58
Historical timeline, 4–9
Homogeneity property, 116
Homogeneous, 341
Homogeneous solution, 341
Humidity sensor, 302

I
Ideal diode, 88
Ideal current source, 37
Ideal voltage source, 35–36
Idealized response, 503
Ideal op-amp

current constraint
differentiator, 297
integrator, 295–297
model, 196–198
voltage constraint, 197

Ideal resistor, 54–55
Ideal transformers, 432–433, 617–619

equivalent circuits, 618–619
input impedance, 618

IF, 548
Iff, 390
IF filter/amplifier, 549
Image intensifier, 479–480
Imaginary, 389
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Impedance in the s-domain, 653–654
Impedance-matching network, 482
Impedance of circuit elements, 397–400
Impedance transformations, 403–410

parallel impedances, 404–407
series impedances, 404–407
Y-� transformation, 407–410

Impedance Z, 398
Impedance Zs, 140
Implantation, 136
Impulse function, 631
Indefinite integrals, 736–737
Independent current source, 37–38
Independent voltage source, 35–36
Inductance, 269
Inductive impedance, 403
Inductors, 269–275, 601

electrical properties of inductors, 270–273
in the s-domain, 653
series and parallel combinations of inductors, 273–275

Infrared rays, 466
Infrared touchscreens, 395
Initial condition, 260
Initial time step, 369
Initial value, 250
In parallel, 18
In-parallel connections, 55–56
In phase, 467
Input and output resistances, 141–143
Input impedance, 612–613, 618
Input resistance, 142, 198
In series, 27
In-series connections, 55–56
Instantaneous current, 460
Instantaneous power, 460
Instantaneous values of periodic waveforms, 460–462
Instantaneous voltage, 460
Instrumentation amplifier, 214–216
Integrated circuit, 136
Integrated circuit fabrication process, 136–139
Interconnects, 139
Intermediate frequency, 548
International system of units, 9
Inverse Laplace transform, 635–636
Inverter, 160
Inverting adder, 200
Inverting amplifiers, 198–200

Inverting input, 185, 188
Inverting pins, 185
Inverting summing amplifier, 200–202, 206
Invoke initial and final conditions, 332
Ionized, 21
Iron-core inductor, 586
Iron-core solenoid, 270
IV analyzer, 234
i–υ relationship, 35, 54

J
Junction, 88, 139

K
Kilowatt-hours, 29
Kirchhoff’s current law (KCL), 60–62
Kirchhoff’s voltage law (KVL), 62–63
Knee voltage, 88

L
Laplace transform, 631
Laplace transform pair, 634
Laplace transform properties, 639–641

frequency shift, 640
time differentiation, 640
time integration, 640–641
time scaling, 639
time shift, 639

Laplace transform technique, 633–636
Larmor frequency, 608
Lattice, 57
Law of conservation of charge, 60
Law of conservation of energy, 62
Law of conservation of power, 29
Least significant bit, 216
Lenticular-lens arrays, 638
Lenz’s law, 609
Light-emitting diodes (LEDs), 59–60, 88, 93–95, 192
Linear and nonlinear elements, 116–117
Linear circuits, 35, 116–117

advantages, 117
homogeneity property, 116
linear and nonlinear elements, 116–117
superposition principle, 116

Linear circuits and source superposition, 133–135, 140
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Linear dynamic range, 195
Linear i–υ relationship, 35
Linear property, 704
Linear region, 54
Linear resistor, 54
Linear transformer, 611
Line current, 572
Line spectrum, 681
Line-to-line voltage, 572
Line voltage, 572
Liquid crystal displays (LCD), 191–192
Load circuit, 142, 151
Load impedance ZL, 140
Loading, 209
Load resistance, 142
Local oscillator, 549
Loop 17
Loosely coupled, 611
Low output resistance, 188
Lowpass filter, 502, 529
Lumped elements, 358

M
Maglev trains, 57
Magnetically coupled circuits, 601–629

energy considerations, 615–617
ideal transformers, 617–619
magnetic coupling, 602–607
three-phase transformers, 619–622
transformers, 611–615

Magnetically coupled voltage, 601
Magnetic coupling, 602–607
Magnetic dipole moment, 608
Magnetic field, 608
Magnetic flux, 602
Magnetic-flux linkage, 269, 602
Magnetic permeability, 269, 602
Magnetic resonance imaging (MRI), 57, 608–610
Magnetoresistive RAM (MRAM), 205
Magnitude, 570
Magnitude scaling, 507
Magnitude scaling factor, 507
Magnitude spectrum, 528
Matched load, 483
Matching network, 459

Mathematical formulas, 736–737
definite integrals, 737
indefinite integrals, 736–737
trigonometric relations, 736

MATLAB and MathScript, 738–742
basic computation, 739–740
partial fractions, 740–742

MATLAB or MathScript solution, 732
definite integrals, 737
indefinite integrals, 736–737
trigonometric relations, 736

Matrix solution method, 731
Maximum gain, 195
Maximum power transfer, 151–153, 157–158, 476, 481–482
Mean value, 462
Mechanical harvesting, 578
Mechanical load, 70
Mechanical stress, 70, 90
MEMS, 14
Mesh, 17, 123
Mesh analysis by inspection, 132–133
Mesh-current method, 123–125, 128–129
Metal-oxide semiconductor field-effect transistor

(MOSFET), 219
Mica capacitor, 259
Micro- and nanotechnology, 10–14
Microchannel plate (MCP), 480
Microelectromechanical systems (MEMS), 14, 336
Micromechanical sensors and actuators, 336–339

capacitive MEMS actuator, 338–339
capacitive MEMS accelerometer, 336–337
microelectromechanical systems (MEMS), 336

Miniaturized energy harvesting, 577–578
mechanical harvesting, 578
radio frequency scavenging, 578
thermoelectric harvesting, 577–578

Mixed-signal circuits, 155–156, 713
Mixer, 140–141
Modulation, 547–548
Moisture and chemical sensors, 71–72
Moore’s law, 10–13
MOSFET, 219, 223–224, 688
MOSFET gain constant, 220
Most significant bit, 216
Motherboard, 306
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Multisim, 91–92, 95–99, 161–163, 225–227, 231–234,
437–442, 482–485, 550–554, 662–664, 713–717,
733–735

ac analysis, 437–442
circuit response, 310–312, 369–373
circuit simulation software, 225–227
dependent sources, 97–99
digital inverter, 231–234
drawing the circuit, 91–92, 95–96
sigma-delta modulator, 713–717
nodal analysis with, 161–163
nontrivial inputs, 662–664
op amps and virtual instruments, 230–231
overview, 733–735
power measurement, 482–485
solving the circuit, 96–97
spectral response, 550–554

Mutual capacitive sensing, 393
Mutual inductance, 269, 602
Mutual inductance voltage, 602
Mutual voltage, 603
myDAQ quick reference guide, 743–760

arbitrary waveform generator, 756–757
current measurement, 747–750
frequency response measurement, 757–760
function generator (FGEN), 753–755
NI myDAQ as current source, 751–753
protoboard/breadboard, 750–751
resistance measurement, 746–747
time-varying voltage measurement, 755–756

N

Nanocapacitor, 259
Nano RAM (RAM), 205
National Institute for Standards and Technology (NIST),

424
Natural response, 276, 287, 341
Natural response, RL circuit, 287–288
Near-IR, 478
Negative feedback, 195–196
Negative phase sequence, 570
Negative saturation, 186
Nepers/second (Np/s), 342
Net charge, 20, 24
Network, 573

Neural interface, 229
Neural probes, 229
Neural stimulation and recording, 363–365
Neurons, 229
Neutral node, 572
Neutral terminal, 570
Neutral wire, 570
NI myDAQ as current source, 751–753
nmax-truncated series, 680
NMOS versus PMOS transistors, 221–223
Nodal analysis

by inspection, 130–132
with Multisim, 161–163

Node, 16
Node-voltage method, 117–123

circuits with dependent sources, 120–121
general procedure, 117–120
supernodes, 121–123

Node voltages, 27
Noise-cancellation headphones, 509–511
Noninverting amplifier, 188, 197
Noninverting summer, 201–202, 206
Nonlinear elements, 116–117
Nonperiodic waveforms, 250–258, 699–701

exponential waveform, 256–257
and Fourier analysis technique, 699–701
pulse waveform, 253–256
ramp-function waveform, 252–253
step-function waveform, 250–252

Nonplanar, 19
Normalized power, 512
Norton’s theorem, 149
NOT logic gate, 156
npn configuration, 158
n-type semiconductor, 88
Nuclear magnetic resonance (NMR), 608
Null, 701

O

Odd function, 683
Odd-function Fourier coefficients, 684–687, 690
Odd symmetry, 683
Offset voltage VF, 88
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Ohm’s law, 51–56, 59–60
conductance, 69
ideal resistor, 54–55
in-parallel connections, 55–56
in-series connections, 55–56
light-emitting diodes (LEDs), 59–69
resistance, 52–54
superconductivity, 57–58

One-sided excitation, 711
One-sided transform, 634
One-way valve, 88
Op-amp integrator, 295
Open-loop gain, 186
Operational amplifiers (op amps), 16, 38, 183–247

characteristics, 184–189
computer memory circuits, 203–205
current constraint, 197
difference amplifier, 206–207
digital-to-analog converters (DAC), 216–219
ideal model, 196–198
instrumentation amplifier, 214–216
inverting amplifiers, 198–200
inverting summing amplifier, 200–202, 206
Multisim analysis, 230–234
negative feedback, 195–196
signal-processing circuits, 209–214
voltage follower/buffer, 208–209

Ordinary node, 16
Organic LEDs (OLEDs), 192
OR logic gate, 156, 540
Oscillation frequency, 386
Oscillator, 423
Oscilloscope, 230
Output resistances, 141–143
Overcurrent, 86
Overdamped response, 340–346
Overloading, 208
Oxidation, 139
Oxide layer, 139

P
Parallax barrier 3-D, 638
Parallel-plate capacitor, 258
Parallel RLC circuit, 353–355, 359
Parasitic capacitance, 305–310
Paresthesia, 364

Parseval’s theorem, 710
Partial fraction expansion, 644–647, 650–652

distinct complex poles, 650–651
distinct real poles, 645–646
repeated complex poles, 651–652
repeated real poles, 646–647, 650

Particular solution, 341
Passband, 502
Passive filters, 522–530

bandpass filter, 523–528
bandreject filter, 529–530
highpass filter, 528–529
lowpass filter, 529

Passive RFID, 357
Passive sign convention, 29
Path, 17
PCB layout, 15
Peak-to-peak ripple voltage, 436
Peak value, 386
Percent clipping, 245
Percolation threshold, 126
Perfectly coupled, 611
Periodic excitation, 674
Periodic function, 675
Periodicity property, 460
Periodic waveforms, 249, 460–463

average values, 460–462
instantaneous values, 460–462
root-mean-square value, 462–463

Period (of a cycle), 386
Permeability of free space, 611
Permittivity capacitive sensors applications, 301–303
Perpendicular magnetic recording (PMR), 294
Phase, 388
Phase angle, 387
Phase current, 72
Phase lag, 387
Phase lead, 387
Phase representation, 681
Phase-shift circuits, 416–420
Phase-shift oscillator, 456
Phase spectrum, 681
Phase transition, 57
Phase voltage, 570, 572
Phasor counterpart, 396
Phasor diagrams, 413–416
Phasor domain, 396–403
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Phasor-domain techniques, 420–422, 425–429
Phasor versus Laplace versus Fourier, 710–711
Photon, 465
Piezoresistive coefficient, 70, 90
Piezoresistive effect, 70
Piezoresistor, 54
Planar circuits, 19–20
Planck’s constant, 465
Plasma displays, 192
Plastic-foil capacitor, 259
PMOS transistors, 221–223
pn-junction diode, 88
pnp configuration, 158
Polar form, 389
Polarization, 638
Polarizing 3-D, 638
Pole @ origin factor, 516–517
Pole factor, 530
Poles, 515, 645
Positive feedback, 195
Positive (123) phase sequence, 569
Positive saturation, 186
Potential difference, 25
Potentiometer, 54
Power, 28–29, 34–35, 265
Power factor, 472–476, 588

compensation, 474–476
significance, 473–474

Power factor angle, 467
Power factor compensation, 588–591
Power generation station, 586–587
Power grid, 567
Power in balanced three-phase networks, 582–588

�-load configuration, 583
total instantaneous power, 583–585, 588
Y-load configurations, 582–583

Power measurement in three-phase circuits, 591–594
Power rating, 55
Power supply circuits, 432–437

ideal transformers, 432–433
rectifiers, 433–434
smoothing filters, 434–436
voltage regulator, 436–437

Prefixes, 9
Pressure touchscreens, 395
Primary port, 602
Primary winding, 432

Printed circuit board, 15, 225
Printed conducting lines, 15
Proper rational function, 646
Protoboard/breadboard, myDAQ, 750–751
Prototype model, 507
p-type semiconductor, 88
Pulsed electromagnetic field (PEMF), 364
Pulse repetition frequency, 305
Pulse waveform, 253–256

Q

Quadratic-pole factor, 650
Quadratic-zero factor, 518
Quality factor, 524
Quantization error, 155
Quartz, 423
Quartz crystals and piezoelectricity, 423
Quasi-supernode, 121

R

Radio-frequency (RF), 548, 608
Radio frequency identification (RFID), 331, 356, 370–373,

386, 578
Radio frequency scavenging, 578
Radio waves, 466
Ramp-function waveform, 252–253
Random-access memories (RAMs), 204–205
RC and RL first-order circuits, 248–329
RC circuit, 250, 275
RC circuit response, 275–287
RCL circuits, 275, 330–384
RC op-amp circuits, 295–300, 304–305

ideal op-amp differentiator, 297
ideal op-amp integrator, 295–297
other op-amp circuits, 297–300, 304–305

Reactance, 403
Reactive power, 468
Realistic current source, 38
Realizable circuits, 76
Real power, 582
Real voltage source, 36
Receiver, 548
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Rectangular form, 389
Rectangular function, 254
Rectangular pulse, 253
Rectenna, 578
Rectifiers, 433–434
Reflected impedance, 614
Regenerative receiver, 548
Region of convergence, 635
Relationship between u(t) and δ(t), 632
Relative permittivity, 258
Relative phasor diagram, 414
Relative power, 512
Repeated complex poles, 651–652
Repeated real poles, 646–647, 650–652
Residue method, 645
Resistance, 52–54
Resistance matrix, 132
Resistance measurement, myDAQ, 746–747
Resistive circuits, 50–114
Resistive sensors, 70–72

moisture and chemical, 71–72
thermistor, 70–71

Resistive touchscreens, 393
Resistivity, 51
Resistor in the s-domain, 653
Resistors and sources in parallel, 73–77
Resistors in series, 68–69
Resonance condition, 523
Resonant frequency, 342, 523
Resonator and clock advances, 424
Reversal property, 710
Reverse bias, 59, 88
RF, see Radio frequency
RFID, see Radio frequency identification (RFID)
RFID tags and antenna design, 356–358

antennas, 357–358
applications, 356–357
operation, 357

Rheostat, 54
Ripple, 436
Rise time, 227, 663
RLC bandpass filter, 536
RL circuit, 250, 275
RL circuit response, 287–292, 295
rms value, 462–463
Room-temperature superconductors, 58
Rotor, 568

Round-off error, 154
RTh—equivalent resistance method, 146–147
RTh—external source method, 147–149
R–2R ladder, 216
Rule of fives, 126

S
Sampling property, 632, 633
Scaled inverting adder, 200
Scale of things, 10
Scaling factor, 296
Scaling trends and nanotechnology, 13–14
Schematic capture window, 91
Schmidt triggers, 717
s-domain circuit analysis, 655–662
s-domain circuit element models, 652–654

capacitor in the s-domain, 653
impedance in the s-domain, 653–654
inductor in the s-domain, 653
resistor in the s-domain, 653

Secondary port, 602
Secondary winding, 432
Second-order circuit, 331
Second-order lowpass filter, 532
Self-capacitive sensing, 393
Self-inductance, 269, 602
Semiconductor memories, 203
Semiconductors, 51
Sensor, 15–16
Sensor pad, 301
Sensory and motor prostheses, 364
Series and parallel combinations

of capacitors, 263–264, 268–269
of inductors, 273–275
of resistors, 68–69, 73–77

Series impedances, 404–407
Series RLC circuit, 334–335, 340
Shannon-Hartley theorem, 689
Shift properties, 705
Shingled magnetic recording (SMR), 294
Short circuit, 28
Siemen, 60
Sigma-Delta Modulator, 713–717
Signal, 70
Signal and noise in communication, 688–689
Signal-processing circuits, 209–214
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Signal-to-noise ratio, 688–689
Signum function, 706
Simple-pole factor, 519
Simple-zero factor, 517–518
Sinc function, 699
Sine/cosine representation, 678–681
Single-phase equivalent circuits, 579–582
Single-phase generators, 572
Single-pole double-throw (SPDT), 28
Single-pole highpass filter, 537–538
Single-pole lowpass filter, 537
Single-pole single-throw (SPST), 28
Singularity function, 635
Sinusoidal signals, 386–389
Smoothing filters, 434–436
Software radio, 550
Solenoid, 269
Solid state, 203
Source, 15–18
Source circuit, 151
Source-free, 276
Source-free, first-order differential equation, 277
Source impedance Zs, 140
Sources in series, 69, 73
Source-load configurations, 572–573

balanced conditions, 572–573
balanced networks, 576, 579–582
Y and � notation, 572
Y-Y configurations, 574–576

Source superposition, 133–135, 140
Source transformation, 77–80, 410
Source-transformation principle, 410
Source vector, 131
Sources in series, 69, 73
Spacing between adjacent harmonics, 699
Spatial filters, 535
Speakers, 545–546
Spectral distortion, 544
Spectral filters, 533–535
SPICE, 91
Spinal cord stimulator, 364
Spring constant k, 337
Square wave, 89, 110
Standard form, 515
Static RAMs, 204
Stator, 569
Stator coils, 586

Steady-state, 233
Steady-state component, 249, 711
Steady-state response, 249–250
Steady-state solution, 341
Step-down transformer, 567, 617
Step function, 250, 631
Step-function waveform, 250–252
Step response, general form

RC circuit, 279–287
RL circuit, 288–292, 295

Step-up transformer, 567, 617
Stereopsis, 637
Stimulus, 70
Stopband, 502
Substrate, 136
Summing amplifier, 200–201
Supercapacitors, 259, 265–267
Superconducting electromagnet, 608
Superconducting Quantum Interference Devices (SQUIDs),

57
Superconductivity, 57–58
Superconductor, 51
Superheterodyne receiver, 548–549
Supermeshes, 128–129
Supernodes, 121–123
Superposition principle, 116
Susceptance, 403
Switches, 28, 39–40, 310–311
Switching frequency (speed), 305
Symbols, quantities, and units, 727–728
Symmetry considerations, 683–684
Synchronization, 549
Synchronous Graphics RAM (SGRAM), 205
Synthesis, 3–4
Synthetic biology, 695–696
System, 2

T
Technology circuit fabrication process, 136–139
T-equivalent circuit, 613
Thermal energy, 478
Thermal-infrared imaging, 477–479
Thermal-IR, 478
Thermistor, 54
Thermistor sensors, 70–71
Thermoelectric harvesting, 577–578
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Thermoelectric materials, 577
Thévenin equivalent circuit, 145, 150, 157, 218, 283,

410–413
Thévenin impedance, 482
Thévenin’s theorem, 143–144
Thévenin voltage, 149
Thin-film head, 294
Thin-film transistor, 191
3-D mapping
3-D modeling tools, 227
3-D TV, 637–638
Three-phase ac generator, 568
Three-phase circuits, 566–600
Three-phase network, 566
Three-phase power, 566
Three-phase transformers, 619–622
Three-wire single phase, 568
Tightly coupled, 611
Time constant, 256, 289
Time-dependent sources, modeling, 311–312
Time differentiation, 640
Time-domain/phasor-domain correspondence, 396–397
Time period, 348
Time scaling, 639
Time shift, 388, 639
Time-shifted ramp function, 252
Time-shifted step function, 251
Time-shift property, 639
Time-varying function, 396
Time-varying voltage measurement, myDAQ, 755–756
Total response, 674
Touch controller IC chips, 395
Touchscreen, 393
Touchscreens and active digitizers, 393–395
Transducer, 303, 336
Transduction, 336, 577
Transfer function, 501–507
Transformation between balanced loads, 576
Transformation between balanced sources, 576
Transformers, 567, 611–615

coupling coefficient, 611–612
equivalent circuits, 613–615
input impedance, 612–613

Transient component, 711
Transient response, 249, 341
Transistor, 4
Transmission line, 306, 566, 574

Transmission velocity, 21
Transmission window, 688
Trigonometric relations, 736
Trivial resonance, 504
True phase angle, 416
Truncated series, 680
Tuned-radio frequency, 548
Tuner, 548
Tunneling magnetoresistance (TMR), 294
Turns ratio, 617
Tweeters, 546
Two parallel lines, 617
Two-sided transform, 634
Two-source circuit, 65
Two-wattmeter method, 592

U
Ultracapacitor, 266
Ultraviolet imaging, 480
Ultraviolet rays, 465–466
Uniqueness property, 634
Unit, 9
Unit impulse function, 631–633
Unit rectangular function, 254
Units, dimensions, and notation, 9, 15
Unit step function, 313
Unity gain, 195
Unity gain amplifier, 208
Unity input, 501
Universal property, 639
Unrealizable circuit, 73
Up-conversion, 549
Upswing time constant, 434

V
VAR, see Volt-ampere reactive
Variable resistance, 54
Very large scale integrated circuits (VLSI), 225
Virtual globe, 648
Visible light rays, 466
Voltage, 25–28
Voltage coil, 591
Voltage constraint, 197
Voltage-controlled voltage source (VCVS), 37, 39
Voltage difference, 27
Voltage divider, 69, 100
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Voltage drop, 25
Voltage follower/buffer, 208–209
Voltage rails, 187
Voltage regulator, 436–437
Voltage rise, 25, 29
Voltage transfer function, 501
Voltage transformers, 601, 602
Voltage vector action potential, 131
Volt-ampere, 468
Volt-ampere reactive, 468
Voltmeter, 143

W
Wafer, 136
Wattmeter, 591
Wave-particle duality, 465
Wheatstone bridge, 84–86
Windings, 432
Woofers, 546
Word, 154
Wye–Delta (Y–�) transformation, 80–84

X
XOR logic gate, 156
X-rays, 465

Y
Y configuration, 586
Y-� transformation, 407–410. See also Wye–Delta (Y–�)

transformation
Y-load configurations, 582–583
Y-Y configurations, 574–576

Z
Zener diode, 436
Zener-diode resistance, 436
Zener voltage, 436
Zero @ origin factor, 516, 517
Zeroes, 515
Zero factor, 517–519
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