Review - Key Hydraulic Equations

(Review from the last two classes.)

Mean Velocity: V =

$$V =$$

Continuity: $A_1(V_1) =$

$$A_1(V_1) =$$

Momentum: $\sum F =$

(or Impulse-Momentum)

Bernoulli:

$$h_1 + P_1/\gamma + V_1^2/2g =$$

Energy:

$$h_1 + P_1/\gamma + V_1^2/2g =$$

Darcy-Weisbach: h_f =

→ f: Moody Diagram*

You can solve most pipe flow problems with these eqn's!

*Note: e/D = relative roughness; $N_R = (DV\rho)/\mu = (VD)/\nu$

	ors for Various ows (Review)
The Darcy-We	eisbach Equation
$h_f = f(L/C)$))(V²/2g)
Determination of the	e Friction Factor
□Laminar Flow:	
□ Turbulent Flow:	
Complete Turbulence	
□ Turb. (smooth pipe):	

Pipe Flow Problems (Iterative Solution)

(Example Problems - Solve on White Board)

Determine the flow rate (L/sec) in a 4-cm-diameter copper pipe. The pressure at point A is 210 kPa, and the pressure at point B is 180 kPa. The elevation at A is 90 cm higher than point B and the two points are separated by 91.9 meters of pipeline. Assume no minor losses and water @ 10° C.

Solution:

Other Friction Loss Formulas

- □ Background: Popular formulas based on experiments.
- □ Empirical formulas not dimensionally consistent (must use units established for formulas in experiments).
- ☐ Applicable only to conditions and ranges of experiments.

What are the vertical tubes? What do they measure? Sketch the HGL.

MANNING'S EQUATION $V = (1.49/n) R_h^{2/3} S^{1/2}$ Define the variables? $R_h =$ Where is h_f? Is the equation dimensionally consistent? n → Table 3.3 based on pipe material. ("n" is between for most pipes) ← Wetted Perimeter→ **Cross Section** (P) shown in red Area, A **Cross Section** Area, A Note: This equation is often used for open channel flow.

