



Since the process occurs at constant volume, $v_2 = v_1$. State 1 is fixed by the given property values, $T_1 = 520$ °C and $p_1 = 100$ bar. From Table A-4, $v_1 = 0.03394$ m³/kg.

State 2 now can be fixed by the properties, $v_2 = v_1 = 0.03394 \text{ m}^3/\text{kg}$; $T_2 = 270 \,^{\circ}\text{C}$. From Table A-2 at $T_2 = 270 \,^{\circ}\text{C}$, $v_{12} < v_2 < v_{g2}$. Thus, State 2 is in the saturated mixture region where pressure and temperature are NOT independent of each other. From Table A-2

$$P_2 = P_{\text{sat}} = 54.99 \text{ bar}$$

Since volume remains constant during the process, the process begins in the superheated vapor region and follows a vertical path to 270° C on both the T-v and p-v diagrams.

