
PROBLEM 2.16

KNOWN: Beginning from rest, and object of known mass slides down an inclined plane. The length of the ramp is given.

FIND: Determine the velocity of the object at the bottom of the ramp.

SCHEMATIC & GIVEN DATA:

6R. MODEL: (1) The mass is a closed system. (2) There is no friction between the mass and the ramp, and air resistance is negligible. (3) The acceleration of gravity is constant.

ANALYSIS: By assumption (2), the only force acting on the system is the force of gravity. Thus, Eq. 2.11 applies $\frac{1}{2} m(V_z^2 x_1^{2}) + mg(Z_z - Z_1) = 0$

①
$$\frac{1}{2} \text{ pr}(\sqrt{2} - \sqrt{2}^2) + \text{pr}g(Z_2 - Z_1) = 0$$

solving for Vz

$$V_2 = \sqrt{2g(Z_1 - Z_2)}$$

From trigonometric relationships

Thus

$$V_2 = \sqrt{2(9.81 \text{ m/s}^2)(10 \text{ m})} \sin 40^\circ$$

= 11.23 m/s

 $\sqrt{2}$

1. Even though the object travels along an inclined path, the <u>vertical</u> distance appears in this expression.

PROBLEM 2.17

- O Exercise value = 620 Kcal
- O Caloric value, 1 cup of vanilla ice cream = 264 kcal (Internet)

To break even calorie - wise, Jack may have

Fig. P2.17